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Preface

We are proud to present the Book of Abstracts for the 8th International Conference on
Complex Networks & their Applications: COMPLEX NETWORKS 2019 Since 2012
the event has been held around the world on a yearly Basis. After Sorrento (Italy), Ky-
oto (Japan), Marrakech (Morocco), Bangkok (Thailand), Milan (Italy), Lyon (France),
Cambridge (UK) the eighth edition is hosted by the Gulbenkian Science Institute, in
Lisbon from December 10 to December 12, 2019. The originality of the conference
lies in the strongly interdisciplinary nature of the topics covered. Indeed, complexity
and network science are multidisciplinary fields that mobilize intellectual resources in
virtually all-scientific communities. Nowadays, all disciplines (physics, biology, social
sciences, economics, computer science, meteorology, etc.) are faced with a massive in-
flux of data and an explosion of information to manage. Through the data and their in-
teractions, network science aims at understanding these complex systems increasingly
large. COMPLEX NETWORKS is very focused at being an interdisciplinary event.
However, this is linked with willingness to the requirements that the quality of the con-
tributions must be among the best work in each of the scientific fields covered. In order
to guarantee the excellence and reputation of this event, for its eighth edition COM-
PLEX NETWORKS has brought together in its scientific committee more than 400
leading international experts from all over the world. Year after year the event has in-
creased its international influence. The 470 contributions that we received this year,
from more than 50 countries around the world have been peer reviewed by at least 3
independent reviewers. This publication gathers the 190 extended abstracts accepted for
presentation together with abstracts of six keynote speeches and two invited tutorials.

Each edition of the conference represents a challenge that cannot be successfully
achieved without the deep involvement of plenty of people, institutions and sponsors.
We would like to thank all of them. We record our thanks to our fellow members of the
Organizing committee for their huge efforts for the success of the conference. The pro-
gram committee members for their engagement in promoting the event and refereeing
submissions as well as the local committee members for their great commitment over
the past months. We are also indebted to our sponsors, in particular Tribe Communica-
tion for designing the visual identity of the Conference. We are equally grateful to all
the institutions that have helped us, in particular, the Calouste Gulbenkian Foundation
for hosting this event. We also wish to express our appreciation to all participants and
presenters. On a final note, we would like to express our deep sense of appreciation to
our keynote and tutorial speakers.

Hocine Cherifi
Sabrina Gaito

Joana Gonçalves-Sá
José Fernando Mendes

Esteban Moro
Luis Mateus Rocha

Francisco C. Santos
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Mapping networks in latent geometry: models and
applications

Maria Ángeles Serrano

Universitat de Barcelona, Spain

Complex networks talk a common language, regardless of their origin, and are im-
printed with universal features. Many of these features are well explained by the S1/H2
family of hidden metric space network models, where nodes are placed at specific co-
ordinates in an underlying geometry, which led to the discovery that the effective ge-
ometry of many real networks is hyperbolic. Hyperbolicity emerges as a result of the
combination of heterogeneous popularity and Euclidean similarity into an effective dis-
tance between nodes, such that more popular and similar nodes have more chance to
interact. The geometric approach allows the production of truly cartographic maps of
real networks in hyperbolic space that can be obtained using different techniques. Re-
cently, we have introduced Mercator, an embedding tool that mixes machine learning
and maximum likelihood approaches to perform dimensional reduction giving the co-
ordinates of the nodes in the underlying hyperbolic disk with the best matching be-
tween the observed network topology and the underlying S1/H2 geometric model. The
maps are not only visually appealing, but also meaningful and enable efficient naviga-
tion, the detection of communities of similar nodes, and a geometric renormalization
group that unravels the multiple length scales coexisting in the structure of complex
networks, strongly intertwined due to the small world property. The application of geo-
metric renormalization to real networks unfolds them into a multilayer shell that shows
scale invariance, meaning that the same principles are ruling the formation of network
connections at different length scales. Interestingly, this self-similarity may have its ori-
gin in an evolutionary drive. Beyond its explanatory power, practical applications of the
geometric renormalization technique include multiscale navigation and the production
of downscaled or upscaled network replicas, among many other.

M. Ángeles Serrano obtained her Ph.D. in Physics at the
Universitat de Barcelona in 1999 with a thesis about grav-
itational wave detection. One year later, she also received
her Masters in Mathematics for Finance from the CRM-
Universitat Autònoma de Barcelona. After four years in
the private sector as IT consultant and mutual fund man-
ager, she returned to academia in 2004 to work in the field
of complex networks. She completed her postdoctoral re-
search at Indiana University (USA), the École Polytech-
nique Fédérale de Lausanne (Switzerland) and IFISC In-

stitute (Spain). She came back to Barcelona in 2009, when she was awarded a Ramón y
Cajal Fellowship at UB. In February 2009, she obtained the Outstanding Referee award
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of the American Physical Society. She is a Founder Member of Complexitat, the Cata-
lan Network for the study of Complex Systems, and a Promoter Member of UBICS, the
Universitat de Barcelona Institute of Complex Systems. M. Ángeles Serrano is ICREA
Research Professor at the Universitat de Barcelona from October 2015.
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Wikimedia Public (Research) Resources

Diego Saez-Trumper

Wikimedia Foundation

The Wikimedia Foundation’s mission is to disseminate open knowledge effectively
and globally. In keeping with this mission, the Wikimedia Foundation support research
in areas that benefit the Wikimedia community. We aim to make any work with our
support openly available to the public. At the same time that we do a minimalist user
data collection, all the material (text and multimedia) available in our projects is public
and reusable by everybody. Moreover, all the article versions and interactions among
users are also public, and we offer a set of tools for accessing such data. In this tutorial
we are going to give an overview on all the data sources, and a detailed explanation
of how to interact with this content, including data and tools such as the Wikipedia
Dumps, Quarry (SQL Replicas), Pageviews, PAWS (Jupyter Public Notebooks), Wiki-
media Commons (multimedia content) and WikiData.

Diego Sáez-Trumper is a Research Scientist at Wikimedia
Foundation. Before, he was a post-doctoral researcher at
Yahoo! Labs (Barcelona), Senior Research Scientist at Eu-
recat , Data Scientist at NTENT, and part time lecturer at
UPF. He holds a diploma on Acoustic Engineering (Uni-
versidad Austral de Chile, 2006) and obtained his Phd in
Information Technology from Universitat Pompeu Fabra
(2013) under the supervision of Dr. Ricardo Baeza-Yates.
During his PhD he interned at Qatar Computing Research
Institute (2013), University of Cambridge (2012) and Uni-

versidade Federal de Minas Gerais (2011). His research interests include: Diffusion of
information, innovation, and influence in online social networks; User modeling; Free
knowledge; Relationship between social and mainstream media; Algorithms on graphs;
and privacy issues.
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Reflections of social networks

Lada Adamic

Facebook

In this talk I will describe two studies based on friendship ties on Facebook. In the
first, aggregate county-to-county ties in the United States tell of geographical distance
but also characteristics of the counties and past migrations between them. In the second,
we show how college social networks take shape, a process influenced by the type of
college and the seasonality of academic life

Lada Adamic leads the Computational Social Science
Team at Facebook. Prior to joining Facebook she was an
associate professor at the University of Michigan’s School
of Information and Center for the Study of Complex Sys-
tems. Her research interests center on information dynam-
ics in networks.
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Network-based dynamic modeling of biological systems:
toward understanding and control

Reka Albert

Penn State University

My group is using network science to understand the emergent properties of biolog-
ical systems. As an example, we think of cell types as attractors of a dynamic system of
interacting (macro)molecules, and we aim to find the network patterns that determine
these attractors. We collaborate with wet-bench biologists to develop and validate pre-
dictive dynamic models of specific systems. We then use the specific knowledge gained
to draw general conclusions that connect a network’s structure and dynamics. An ex-
ample of such a general connection is our identification of stable motifs, self-sustaining
cyclic structures in the network that determine a trap subspace of the system’s state
space, or equivalently determine points of no return in the dynamics of the system. We
have shown that control of stable motifs can guide the system into a desired attractor.
Such attractor control can form the foundation of therapeutic strategies on a wide appli-
cation domain. I will illustrate such applications in our model of a cell fate change that
represents the first step toward cancer metastasis. Several model-predicted therapeutic
interventions to block this cell fate change were validated experimentally.

Prof. Réka Albert received her Ph.D. in Physics from
the University of Notre Dame (2001), working with Prof.
Albert-László Barabási, then did postdoctoral research
in mathematical biology at the University of Minnesota,
working with Prof. Hans G. Othmer. She joined Penn State
in 2003, where she currently is a Distinguished Professor
of Physics with adjunct appointments in the Department
of Biology and the Huck Institute of the Life Sciences.
Prof. Albert is a network scientist who works on predic-
tive modeling of biological regulatory networks at multi-

ple levels of organization. Dr. Albert’s pioneering publications on the structural hetero-
geneities of complex networks had a large impact on the field, reflected in their iden-
tification as "Fast breaking paper" and "High impact paper". Prof. Albert is a fellow
of the American Physical Society and of the Network Science Society and an exter-
nal member of the Hungarian Academy of Sciences. She was a recipient of an NSF
Career Award (2007), the Maria Goeppert-Mayer award (2011), and the Distinguished
Graduate Alumna Award of the University of Notre Dame (2016). Her service to the
profession includes serving on the editorial board of the Biophysical Journal, Bulletin
of Mathematical Biology, npj Systems Biology and Applications, and as peer reviewer
for more than 35 journals.

The keynote is sponsored by Applied Network Science
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On a Positional Approach to Network Science

Urlik Brandes

ETH Zürich

This presentation is about network science methodology. By viewing it as a data
science rather than, say, a collection of methods or a unifying theory, we create op-
portunities for more rigorous research, both mathematically and empirically. Pivotal to
the adaptation of methods to general, multivariate and temporal, situations is the notion
of network position, which summarizes the relationships of a node with the rest of the
network. I will give examples showcasing how the analysis of centralities, roles, and
communities can benefit from a positional perspective.

Ulrik Brandes is a professor of social networks at ETH
Zurich since 2017. With a background in algorithmics, his
main interests are in network analysis and visualization,
with application to social networks in particular. He is a co-
author of the visone software for network analysis and of
the GraphML data format. Deutsche Forschungsgemein-
schaft (DFG) awarded him a Reinhart Koselleck-Project
on Social Network Algorithmics, in which he took a shot
at improving the methodological foundations of network
science, and he was a principal investigator in the ERC

Synergy Project NEXUS 1492 where he worked on reconstructing archaeological net-
works from fragmented and heterogeneous observations. Brandes received a Diploma
degree from RWTH Aachen in 1994and a PhD from the University of Konstanz in
1999, both in computer science. After postdoctoral research visits to Brown University
and the University of Sydney, he completed his habilitation in 2002 and became asso-
ciate professor at the University of Passau the same year. From 2003-2017 he was full
professor of algorithmics at the University of Konstanz. He is a member of the board
of directors of the International Network for Social Network Analysis (INSNA) since
2008, and was a member of the Graph Drawing Steering Committee 2007-2014. He acts
as the coordinating editor of Network Science and as an associate editor of Social Net-
works, and he is an editorial board member of the Journal of Mathematical Sociology
as well as the Journal of Graph Algorithms and Applications.
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Temporal networks: past, present, future

Jari Saramäki

Aalto University, Finland

The key strength of network science has been its ability to strip away unnecessary
details, making it easier to grasp the inner workings of systems that are large and com-
plex. At the same time, however, entire subfields have emerged that build on adding
back some of this detail: weighted networks, multilayer networks, and temporal net-
works, the latter being the topic of this talk. I will provide an overview of what temporal
networks are and what the temporal networks framework can do, and discuss when the
temporal-network treatment is useful and when not. I will discuss some key findings
and methods, using time-stamped social interactions as an example case, and finally,
try to sketch some future directions for temporal-network research.

Jari Saramäki is a full professor and vice head at the De-
partment of Computer Science, Aalto University, Finland.
He received his PhD in applied physics in 1998, study-
ing quantum crystals at milliKelvin temperatures. After
some career twists and turns involving technology com-
panies and what we would nowadays call data science, he
returned to academia in 2003 to study complex networks, a
new and rapidly expanding field at that time. Jari Saramäki
is probably best known for his work on social and tempo-
ral networks, but his broad range of research interests has

included topics from ant supercolonies to the human immune system.
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How to eliminate systemic risk from financial
multi-layer networks

Stefan Thurner

Medical University of Vienna, Austria

Given the detailed network structure of financial obligations in financial markets one
can compute not only compute the systemic risk contribution of the individual financial
players, but also it becomes possible to estimate the contribution of systemic risk of
every single financial transaction. This in turn allows us to design incentive schemes
for market participants to become systemic risk sensitive, by preferring systemically
unrisky transactions. We show that such schemes lead to a restructuring of financial ex-
posure networks in ways that suppress the possibility of cascading failure and thereby
drastically reduces systemic risk. We discuss ways to compute optimal financial net-
works that can be used to benchmark and monitor actual financial networks.

Stefan is full professor for Science of Complex Systems at
the Medical University of Vienna. He is the president of the
Complexity Science Hub Vienna, external professor at the
Santa Fe Institute, and a senior researcher at IIASA. Ste-
fan obtained a PhD in theoretical physics from the Tech-
nical University of Vienna and a PhD in economics from
the University of Vienna. Stefan started his career in the-
oretical particle physics and gradually shifted his focus to
the understanding of complex adaptive systems. He pub-
lished about 200 articles in physics, applied mathematics,

network theory, evolutionary dynamics, life sciences, economics and finance, and lately
in social sciences. He holds two patents. His work has been covered by international
media such as the New York Times, BBC world, Nature, New Scientist, Physics World,
and is featured in more than 400 newspaper, radio and television reports. Stefan was
elected Austrian “scientist of the year” in 2018.
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Machine learning for Graphs based on Kernels

Michalis Vazirgiannis

Ecole Polytechnique, France

Graph kernels have attracted a lot of attention during the last decade, and have
evolved into a rapidly developing branch of learning on structured data. During the past
20 years, the considerable research activity that occurred in the field resulted in the de-
velopment of dozens of graph kernels, each focusing on specific structural properties of
graphs. Graph kernels have proven successful in a wide range of domains, ranging from
social networks to bioinformatics. The goal of this presentation is to provide a unify-
ing view of the literature on graph kernels. In particular, we present a comprehensive
overview of a wide range of graph kernels. Furthermore, we perform an experimental
evaluation of several of those kernels on publicly available datasets, and provide a com-
parative study. Finally, we discuss key applications of graph kernels, and outline some
challenges that remain to be addressed. The experimental comparison was based on an
open source python library (Grakel) we designed implementing all the known so far
graph kernels.

Dr. Vazirgiannis is a Professor at LIX, Ecole Polytechnique
in France. He has conducted research in Frauenhofer and
Max Planck-MPI (Germany), in INRIA/FUTURS (Paris).
He has been a teaching in AUEB (Greece), Ecole Polytech-
nique, Telecom-Paristech, ENS (France), Tsinghua, Jiao-
tong Shanghai (China) and in Deusto University (Spain).
His current research interests are on deep and machine
learning for Graph analysis (including community detec-
tion, graph classification, clustering and embeddings, in-
fluence maximization), Text mining including Graph of

Words, deep learning for word embeddings with applications to web advertising and
marketing, event detection and summarization. He has active cooperation with indus-
trial partners in the area of data analytics and machine learning for large scale data
repositories in different application domains. He has supervised twenty completed PhD
theses. He has published three books and more than a 200 papers in international refer-
eed journals and conferences and received best paper awards in ACM CIKM2013 and
IJCAI2018. He has organized large scale conferences in the area of Data Mining and
Machine Learning (such as ECML/PKDD) while he participates in the senior PC of AI
and ML conferences – such as AAAI and IJCAI. He has received the ERCIM and the
Marie Curie EU fellowships, the Rhino-Bird International Academic Expert Award by
Tencent and between 2015 and 2018 he lead the AXA Data Science chair.

The keynote is sponsored by Frontiers in Big Data
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Biological Networks
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Network models of fracture in materials with
hierarchical microstructure

Nosaibeh Esfandiary1, Paolo Moretti1, and Michael Zaiser1,2

1 Dept. of Materials Science, WW8-Materials Simulation, FAU Universitt, Erlangen-Nrnberg,
Dr.-Mack-Strae 77, 90762 Frth, Germany
nosaibeh.esfandiary@fau.de,

WWW home page: http://matsim.techfak.uni-erlangen.de
2 School of Mechanics and Engineering, Southwest Jiaotong University

Chengdu 610031, China

1 Introduction

Hierarchical materials are characterized by modules that repeat several times on dif-
ferent length scales in a self-similar fashion. Biological materials provide examples of
heirarchical systems. Collagen protein, for instance, exhibits a hierarchical fiber or-
ganization in different scales from Angstrom until centimeter, comprises molecules,
microfibrils, fibers, and fiber bundles [1]. This structure provides some properties like
enhanced fracture toughness, which isolated collagen molecules can not show. Some
authors [2] have suggested that hierarchical structures may delay or prevent the nucle-
ation and spreading of critical flaws which control failure of non-hierarchical heteroge-
neous materials [3, 4].
Hierarchical structures play also a key role in adhesion, as it is evident in the case of
the gecko. The peculiarity of this reptile is its ability to walk on ceilings and vertical
walls, despite its comparably high weight. This is due to the particular fractal structure
of the gecko toes, whose extremities are composed by hundreds of thousands of 100
micrometer long fibers, named setae, each of them branching in hundreds of fibrils, or
spatulae, in the scale of nanometers. This structure optimizes the ability of the gecko to
use van der Waals forces to adhere to a surface, even if it is rough, to detach easily and
to resist flaws [5, 6].
In this work we use network models to study properties of hierarchical structures [7]
and to explore how hierarchical system affects the precursor activity in the run-up to
failure and ultimately changes the mode of failure, we formulate for the first time hi-
erarchical generalizations of the well-known random fuse network (RFN) [8, 9]. At the
same time we emphasize that RFN models represent a scalar caricature of tensorial elas-
ticity. RFN models can describe fracture of materials only in exceptional cases [10]. We
consider both 2- and 3-dimensional network models of hierarchical materials and we
show that both bulk fracture and interface adhesion and detachment of such systems are
characterized by a novel failure mode, in which crack growth is hindered at all scales.
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2 Results

In our work, we generalize fuse network models in different variants to investigate the
impact of hierarchical organization on failure modes and highlight differences between
hierarchical and non-hierarchical materials. We consider variants of deterministic and
stochastic fuse networks, both of the hierarchical (fractal) and of the non-hierarchical
type. While non-hierarchical systems are characterized by structural gaps (or voids)
with a well defined mean size and a short-tailed distribution, the hierarchical ones nat-
urally display heavy-tailed power-law gap size distribution, resulting in the ability of
such systems to confine crack growth.
Our numerical results confirm this picture. We use the standard Random Fuse Model to
investigate the elastic response of our systems and their failure behavior under load. Fig.
1 shows the crack profiles in non-hierarchical random reference fuse network (R-RFN)
and deterministic hierarchical fuse network (D-HFN), in their simpler 2-dimensional
variants. The non-hierarchical systems produce the typical self-affine crack profile, as
studied in the literature on RFN models[11], and pointing to fracture as a critical phe-
nomenon: the failure point is effectively a critical point, displaying scale-invariant be-
havior. The hierarchical systems, instead, do not fail by growing a single large crack at
the critical point, they rather accumulate micro-cracks all along the subcritical regime,
resulting in highly deflected crack profile at failure. Deflections are power-law dis-
tributed in size and point to a fracture scenario that does not change when reaching
the failure point. To understand better this fact, we study the distribution of avalanche
sizes in the subcritical and critical regimes, which is defined as the number of links that
fail without any further increase in the applied load. Once again, the non-hierarchical
systems exhibit a standard phase transition behavior, with avalanche size distributions
becoming power-laws at failure. In the hierarchical case, instead, no difference arises
between the behavior before failure and at failure: avalanche sizes are power laws at
every loading stage, with non-universal exponents that depend on the proximity of the
failure point. Therefore in hierarchical systems there is no qualitative difference in the
mechanical response at the failure point and before it, no precursory activity and no
critical crack growth.
Our results carry over to our three dimensional models of adhesion and interface fail-
ure of hierarchical materials in contact with heterogeneous substrates, motivated by the
case study of the gecko pad. In this case too, detachment of the hierarchical system
is not characterized by a single catastrophic event in which the spatial symmetry of
micro-crack layouts is broken in favor of a single critical crack. Micro cracks remain
localized instead. This ability to confine damage results in higher fracture toughness,
making the hierarchical system more effective in adhering to a heterogeneous substrates
with quenched disorder.

Summary. We study numerically fracture and failure in network models of bio-inspired
hierarchical materials, using the Random Fuse Model to simulate mechanical loading
and breaking. We find out that unlike non-hierarchical systems, in which failure occurs
as a critical phenomenon, with scale invariant behavior at a critical tipping point, in our
hierarchical systems no tipping point is found and breaking processes advance by dam-
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Fig. 1. Crack shape in a hierarchical (D-HFN) and a non hierarchical (R-RFN) model material.

age accumulation only, effectively limiting crack growth and enhancing the resilience
of the system at hand.
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Persistence of hierarchical network organization in
biological systems

Ali Safari1, Miguel Ángel Muñoz2, and Paolo Moretti1

1 Institute for Materials Simulation,Fredrich-Alexander-University Erlangen-Nuremberg,
Dr-Mack-Str 77 90762 Fürth, Germany,

ali.s.safari@fau.de,
http://www.matsim.techfak.uni-erlangen.de/staff/ali-safari.shtml
2 Departamento de Electromagnetismo y Fsica de la Materia e Instituto Carlos I de Fsica Terica

y Computacional, Universidad de Granada, Granada E-18071, Spain

1 Introduction

Human brain networks are well known examples of biological systems, which exhibit a
hierarchical modular structure [1, 2]. Collagen based biological matter, including bone
and tendon, share the same hierarchical organization. The ubiquity of hierarchical or-
ganization in biological systems is often ascribed to the enhanced resilience that the
hierarchical organization brings about.

In this work we address the problem of persistence of the hierarchical organization
upon variation of relevant system parameters. Can we highlight universal measures of
the hierarchical organization of a biological system? How robust are these measures
against parameter changes? While there is a general agreement about the hierarchical
nature of brain organization, their properties seem to depend on the correlation thresh-
olds applied to the dense correlation matrices as well as on the nature of the functional
process hosted by the network (e.g. subcritical vs. supercritical). Similarly, hierarchi-
cally organized biomaterials undergo significant changes under load, as damage (the
number of broken links) advances [3]. Is a damaged hierarchical material still hierar-
chical?

2 Results

In order to verify to which extent small spectral gaps extend to functional connectiv-
ity, we generate functional netwoks by computing coactivation matrices, as suggested
in [4], simulation spreading dynamics on hierarchical modular networks (HMN) [2, 5].
Spreading dynamics is associated with a spreading rate λ , which can be below or above
a critical λc. We generating dense coactivation matrices in both cases, we apply varying
finite and positive thresholds T and extract the sparse adjacency (or weight) matrix of
the functional network. Upon increasing T in Figure 1 , in the subcritical case, the spec-
tral gap drops by more than two orders of magnitude well before the network fragments.
The functional network indeed inherits the small-gap property of the structural one that
generated it. In other words, it is hierarchical too. In the supercritical case, instead, the
two transitions become closer and, more importantly, as soon as the spectral gap starts
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decreasing, the giant connected components shrinks too. In this case the functional net-
work never exhibits a small spectral gap except when it is fragmented: the functional
network is not hierarchical. Figure 1 also shows how this clear-cut separation between
subcritical and supercritical is reflected by the degree distributions of the ensuing func-
tional networks, which exhibit exponential tails in the subcritical case (mimicking the
degree distribution of the underlying structural network), and heavy power-law tails
in the supercritical regime. We show that in the case of functional brain connectivity,
the hierarchical organization is persistent upon variation of thresholds in the subcritical
and near-critical state that is commonly associated with healthy brain function, and is
lost in the supercritical regime which is often associated with pathological conditions
such as epilepsy. We observe the same persistent behavior in the context of fracture of

Fig. 1. comparisons between spectral gaps and giant connected component sizes (left) and Degree
distribution (right) for functional coactivation networks generated from HMNs of size N = 1024.

hierarchically patterned network models of biological materials using the Hierarchical
Fuse Network model (HFN) [3]. The critical point for such systems is represented by
the peak load, the maximum amount of mechanical stress such systems can withstand.
We measure eigenvector localization as an indicator of the hierarchical organization
of such networks as damage progresses, quantified as the inverse participation ratio
(IPR) of the eigenvectors corresponding to eigenvalues in the lower spectral edge of
the network laplacian. We also consider the case of a non-hierarchical reference square
lattice for comparison. As it is shown in Figure 2 top, in hierarchical systems, IPR val-
ues always increase with damage and the corresponding eigenvalues always decrease.
In Figure 2 bottom, the IPR determined for a typical eigenvector increases exactly at
the peak current, providing a clear-cut indicator of system’s incipent failure. Given the
rescaling on the vertical axis of Figure 2 bottom, we can conclude that damage induced
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Fig. 2. Eigenvector localization in a hierarchical fuse network (top left) and in a reference square
lattice (top right), at three different load stages and Evolution of localization in large-scale hier-
archical fuse network under load (bottom).

localization is a robust and persistent phenomenon in hierarchical systems, while in
non-hierarchical systems it only appears at the peak load. The robustness of our results
is further confirmed in Figure 2 (bottom right), where the above results are averaged
over different network realizations.

Summary. We study the persistence of hierarchical organization against structural changes,
in network models of biological relevance. We focus on two examples, functional brain
networks and network models of collagen based biological materials. We quantify the
hierarchical organization by looking at specific spectral properties such as spectral gaps
and eigenvector localization. We find that in both cases, normal function is associated
with persistent hierarchical traits that do not depend on parameter variation or damage
accumulation.
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Reachability Analysis in Discrete State Reaction
Networks with Conservation Laws

Gergely Szlobodnyik1 and Gábor Szederkényi12

1 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Prater u.
50/a, H-1083 Budapest, Hungary,

2 Systems and Control Laboratory, Institute for Computer Science and Control (MTA SZTAKI)
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1 Introduction

Dynamical behavior of complex systems of several interacting components can be mod-
eled by either continuous or discrete state models [1]. If the amount of the interacting
components is high, it is reasonable to use continuous differential equation based mod-
eling approaches to characterize the dynamical behavior of the system. However, in
the case of low abundance of the interacting components, it is worth introducing dis-
crete state models capable of quantitatively describing the discrete state evolution of
all the components. In the latter discrete state case, the so-called reachability problem
is strongly related to the quantitative dynamical behavior encoded by the underlying
network topology: given an initial state X0 and a target state X ′, is it possible to reach
X ′ from X0 along a finite non-negative state transition sequence? Through reachability
analysis several problems of great importance can be analyzed, such as the existence
of malicious states in a biochemical system or extinction events, i.e. state transition
sequences resulted in the lack of cretain components.

In this paper we consider discrete state Chemical Reaction Networks (d-CRNs),
a commonly used modeling approach employed for (bio)chemical systems when the
molecular count of the species is low (e.g. < 100 molecules). We discuss subclasses
of d-CRNs obeying conservation laws. We provide a set of conditions under which the
reachability realiation is equivalent to the existence of a non-negative integer solution
of the respective d-CRN state equation. We show how the results can be used in practice
to efficiently analyse the dynamical behavior of d-CRNs in terms of the decidability of
reachability problems. Our findings are shown on a representative example.

2 Results

A discrete state Chemical Reaction Network (d-CRN) can be described by a triple
(S ,C ,R) so that:

S = {si | i ∈ {1, . . . ,n}}

C = {y j =
n

∑
i=1

α jisi | α ji ∈ Z≥0, j ∈ {1, . . . ,m}, i ∈ {1, . . . ,n}}

R = {(yi,y j)⊂ C ×C | i 6= j}
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where si is the ith species and y j is the jth complex of the network. αi j is the
stoichiometric coefficient of the ith species in the jth complex. A reaction yi → y j
with source complex yi and product complex y j is represented by an ordered pair
(yi,y j).

A directed graph G = G(V,E) can be uniquely associated to a d-CRN so that the
edge set E and vertex set V correspond to the complex set C and the reaction set R,
respectively. Two nodes vi ∈ V and v j ∈ V are connected by a directed edge e ∈ E
pointing from vi to v j iff yi ∈ C and y j ∈ C have a common reaction (yi,y j) ∈ R.
From now on under the term structure we mean the topology of the directed graph
representation of the examined d-CRN.

The stoichiometric matrix Γ ∈ Zn×m of N is defined as

Γ = [r1 . . . rm] (1)

where ri is the ith reaction vector, i.e. [ri] j gives the number of molecules of species
s j ∈S produced or consumed by the ith reaction. For each reaction vector ri we can
introduce the vectors y−i and y+i so that [y−i ] j and [y+i ] j denote the stoichiometric co-
efficient of the jth species in the ith reaction’s source complex and product complex,
respectively. We also introduce the matrix Γ− as follows:

Γ− = [y−1 . . . y−m ]
>.

We note that a pair (Γ ,Γ−) uniquely characterizes the underlying reaction network
structure.

In this paper we restrict our attention to the subclasses of sub-and superconservative
reaction networks. A d-CRN of stoichiometric matrix Γ ∈ Zn×m is said to be subcon-
servative (superconservative), if there exists a strictly positive real-valued vector z of
dimension m, so that z>Γ ≤ 0 (z>Γ ≥ 0).

A state X
′ ∈ Zn

≥0 is said to be reachable from a state X ∈ Zn
≥0 (denoted by X  X

′

) if there exists a path in the state space so that X = Xν(1)→ Xν(2)→ ...→ Xν(l) = X
′
.

The associated state tranisition sequence is denoted by σX = X0 . . . X
′
.

Problem statement: consider a d-CRN N = (S ,C ,R) of stoichiometric matrix
ΓN and two integer states X0, X

′ ∈ Zn
≥0. Is it possible to find a non-negative state

transition sequence σX = X0 . . . X
′

[4]?
A necessary condition of the above reachability problem is the existence of a non-

negative integer c ∈ Zm
≥0 solution of the respective d-CRN state equation:

ΓN c = X
′ −X0, c ∈ Zm

≥0. (2)

E.q. (2) implies an integer programming problem which in general requires the
introduction of additional supplementary variables [2]. This may lead to computational
intractability. This problem motivates us to seek network topology related conditions
under which E.q. (2) is a sufficient and necessary condition of the reachability relation.

Before we state our main result the follwoing supplementary variable is introduced:

[M(Γ−)]i = max
{
[Γ−]i j : j = 1, . . . ,m

}
, i = 1, . . . ,n. (3)
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Proposition 1 [3] Let us consider d-CRN N = (S ,C ,R) with stoichiometric matrix
Γ ∈ {−1,0,1}n×l and Γ− ∈ {0,1}n×l for which C = S . Assume that N is either
subconservative or superconservative. Assume that for all r ∈R reactions ∑n

i=1 [y
+]i =

1 and ∑n
i=1 [y

−]i ≤ 1 hold. Let us consider two states X0, X
′ ∈ Zn

≥0 so that X0 �M and
X
′ �M hold where M = M(Γ−). Then

X0 N X
′ ⇐⇒∃c ∈ Zl

≥0 : X0 +Γ c = X
′

(4)

For more details on the above theoretical findings the reader is refereed to [3].
Figure 1 depicts a representative example of a reaction network structure satisfying

the conditions of Proposition 2.

Fig. 1. Nuclear factors of activated T-cells (NFAT) are transcription factors that can exist in both
highly phosphorylated and dephosphorylated states [5]. The transition between active and inac-
tive states of the protein is regulated by the level of phosphorylation. Lower case letters denote
the protein located in the cytoplasm while upper case letters refer to the protein in the nucleus.
a j, A j and i j, I j for j = 0, . . . 13 denote the active and inactive proteins, respectively. Lower
indices denote the number of phosphorylated residues.
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1 Introduction

We have applied the theory of complex networks to earthquakes, characterizing the
complete Chilean subduction zone with parameters of complex networks, for this pur-
pose, we have built a time-based complex network [1–3], making cells of side size δ in
the zone under study. If one of these cells contains an earthquake, we call this cell as
a node. The network is built following the time occurrence of the seismic events, i.e.,
the nodes connect with each other follow the temporal sequence of seismic events the
nodes [3, 4].

For this study we have divided the subduction zone of Chile into regions, from
the northern zone to the southern zone, each region is 300 km long. The time-based
complex network was built in each region. The seismic data set analyzed were collected
between January 2005 and March 2017 by the National Seismological Centre of Chile
(Servicio Sismológico Nacional, CSN [7]), so we have a completeness data set with a
total number of 38 083 seismic events measured along the Chilean coast, from 17.9◦

to 39.1◦ South Latitude and between 67.5◦ and 75◦ West Longitude. The magnitude of
completeness is Mw3.0 for all the data set. The data set used in this analysis could be
found and downloaded in www.sismologia.cl [7].

2 Results

We compute the critical exponent g from the probability distribution of connectiv-
ity (P(k) ∼ k−γ ) and the Average Shortest Path Length (ASPL) for 22 regions along
Chilean coast. We compare these results against the average coupling of the tectonics
plates, because the subduction is the physical mechanism that induces the earthquake
occurrence in Chile and the coupling and stress play an important role in the in this
occurrence, in order to looking for some connection between the physical parameters
related to the occurrence of seismic events and complex networks. The results are shown
in Figs. 1, 2 and 3.

Fig. 1 shows the spatial evolution of the parameter γ between 2005 and 2017 along
the Chilean coast. We can observe a change of this parameter, in the northern and the
southern zone the value of γ is lower than the central zone. Fig. 2 shows the spatial
evolution of the ASPL from the northern zone of Chile to the southern zone of Chile,
as Fig. 1, this value changes in each window studied. In Fig. 3 we can observe the
agreement between the coupling between Nazca plate and South American plate and
the value of the critical exponent γ .
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Fig. 1. Value of the critical exponent γ for the probability distribution of connectivity, computed
along the Chilean coast, from the 18◦ to the 39◦ South Latitude.

Fig. 2. Value of the ASPL for each region of 300 km, between the northern zone of Chile and the
southern.

3 Conclusions

In this work we present a first effort to find a relationship between the parameters of
complex networks, as the critical exponent γ of the probability distribution of connec-
tivity (P(k) ∼ k−γ ) and the physical dynamics involved in the earthquake occurrence.
Fig. 1 shows how the critical exponent γ change along the Chilean coast. This exponent
has its greatest value in the central north zone of Chile, and decreases in the northern
and the southern zone. The Average Shortest Path Length (ASPL) has a similar behavior
than the exponent γ , the greatest value is in the central north zone of Chile, Fig. 2.

Fig. 3 shows the average coupling measured by Métois et al. [5, 6] versus the values
of the critical exponent γ . Fig. 3 suggests an agreement between these two parameters
in the central zone of Chile, but it is possible to observe a disagreement between the
values of these two parameters in the northern zone and the southern zone of Chile.
Another important fact to consider is the occurrence of three large earthquakes in Chile
during the time analyzed. The Mw 8.8 Maule megathrust in 2010 (southern Chile), with
a rupture zone of 450 km, the Mw8.2 Iquique earthquake in 2014 (northern Chile), with
a rupture zone of 150 km and the Mw8.3 Illapel earthquake in 2015 (central-north Chile)
with a rupture zone of the 200 km. If we consider the effect of these three mega earth-
quakes, we could suggest a relation between γ and the occurrence of a large earthquake.
The epicenter of Maule megathrust it was at 36.2◦, in Fig. 3 we can observe a growth of
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Fig. 3. Average coupling in the subduction zone between Nazca plate and South American plate,
versus the critical exponent g along Chilean coast.

γ in the southern area of the epicenter. For the large earthquake in Iquique, the epicenter
it was located at 19.5◦, with a similar trend for the value of γ . Finally, the epicenter of
Illapel large earthquake is located at 31.5◦.

The main goal of this analysis is the proposal of a relation between the occurrence
of a large earthquake and a change in the value of the critical exponent γ .

This is a first approach to try to connect the critical exponent g with the physical
dynamics of the subduction mechanism of earthquake occurrence.
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1 Introduction

The process of genetic regulation is often influenced by other processes in a cell,
for e.g., metabolism. The structure of genetic regulatory networks (GRN) at a sys-
tem level, however, has often been studied in isolation. We study the architecture of
GRNs of two bacteria, Escherichia coli and Bacillus subtilis, under the effect of feed-
back from respective metabolic networks (MN). We organize the GRNs in a causal
flow-of-command hierarchy and show that the inclusion of feedbacks from MN into
GRN greatly alters this causal flow of information in the GRNs. Through a combi-
nation of graph theoretic approach of finding modules via strongly connected compo-
nents (SCCs) [1] and computational functional approach of flux balance analysis (FBA)
for simulating growth through metabolic models, we further show that the SCCs of
the GRN augmented with feedbacks from MN can be considered as modules or sub-
systems with logically relatable and biologically relevant functions.

2 Results

2.1 Feedback into GRN from MN

The GRN and MN of E. coli and B. subtilis were obtained from publicly available
databases and previous published works [2–5]. We identify the metabolites in metabolic
network which can form complexes with transcription factors (TFs) in GRN, and then
use this information to elucidate feedbacks from metabolic network into different levels
of a hierarchically organized GRN in which all regulations point downward [6], Fig. 1A.

2.2 Hierarchical structure of GRN augmented with feedback from metabolic
network

We obtain functional feedbacks from metabolic network into the GRN by choosing
metabolites from reactions deemed essential by flux balance analysis upon simulation
of growth in minimal media environmental conditions (ECs)—E. coli: 158 ECs (89
aerobic, 69 anaerobic), B. subtilis: 212 ECs (all aerobic). Using these feedbacks from
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Fig. 1. Feedbacks, hierarchical structure and modules in GRNs with feedback from
metabolic network. (A) Schematic of feedback from metabolic network into different levels
of GRN. (B) Hierarchical structure of the GRN of E. coli augmented with functional feedbacks
from metabolic network (graph G ). The blue nodes represent the SCCs/modules, shown in next
panel. (C) Strongly connected components (SCCs) from GRN augmented with feedback from
metabolic network for E. coli. Their location in the hierarchy is shown in panel B. (A few SCCs
of small size have been omitted from the figure due to space constrains, for details and for B.
subtilis see [6]). (D) An example of a module from E. coli along with its proximal circuit di-
agram and its activity under two simulated environmental conditions. In the proximal circuit
diagram a pointed arrow implies activation/production/up-regulation and a blunt arrow implies
deactivation/consumption/down-regulation, depending upon whether the regulated node is a TF,
metabolite or enzyme, respectively. Nodes highlighted in yellow indicate active part of the mod-
ule in respective environmental conditions.
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metabolic netowork, we augment the GRN and obtain graph G . Next, we organize the
augmented GRN into a causal hierarchical organization by applying graph condensation
and iterative leaf removal algorithms on graph G [6]. The hierarchical structure of E.
coli graph G is shown in Fig. 1B. The hierarchical structure of G is very different from
that of GRN without inclusion of feedback in that the causal flow of information is
significantly altered. The blue nodes represent strongly connected components (SCCs):
28 SCCs for E. coli and 14 SCCs for B. subtilis. Many strongly connected components
of E. coli for graph G are shown in Fig. 1C, (see [6] for full list). The blue node at
the top of the hierarchical structure is the largest SCC (LSCC), which has a size of 97
nodes for E. coli (13 for B. subtilis). The largest strongly connected component has a
more complex structure and requires further study.

2.3 Regulatory modules in GRN augmented with feedbacks from metabolic
network

Next, we study the activity of all strongly connected components (SCCs) of graph G in
each of the simulated environmental conditions (ECs) by carefully developing proximal
‘circuit diagrams’ around the nodes of these SCCs. We find that most of the strongly
connected components can be ascribed biologically relevant functional roles and the
proximal circuit diagram relates well to their activity in different environmental condi-
tions under elementary on/off -logic. An example of this is given in Fig. 1D through the
Idonate-Gluconate module in E. coli which is partially active in right manner for the
uptake of Idonate or Gluconate as food in their respective simulated minimal media en-
vironmental condition. For a complete list of modules, ascribed biological function and
corresponding proximal elementary circuit diagrams, for both E. coli and B. subtilis,
see [6].

Summary. We studied the architecture of gene regulatory network (GRN) under the
effect of feedback from metabolic network (MN) and present an updated hierarchical
structure thereby showing that the inclusion of feedbacks from metabolic network into
the GRN significantly alters the causal flow of information in the GRNs. We algorithmi-
cally identify dynamical sub-systems of the joint genetic-metabolic network and show
that the identified modules posses biologically relevant and logically relatable function-
ality. The list of identified modules obtained in our work may be used in future as a
starting point for improved modeling of sub-systems in these bacteria. Further, our al-
gorithmic approach may be automated to find important sub-systems in other organisms
as and when their GRN and MN become available.

References

1. Rodrguez-Caso, C., Corominas-Murtra, B., Sol, R.V.: On the basic computational structure
of gene regulatory networks. Molecular BioSystems 5(12) (November 2009) 1617–1629

2. Salgado, H., Peralta-Gil, M., Gama-Castro, S. et al: RegulonDB v8.0: omics data sets, evo-
lutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic
Acids Research 41 (2013) D203–D213

27

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



3. Reed, J., Vo, T., Schilling, C., Palsson, B.: An expanded genome-scale model of Escherichia
coli k-12 (iJR904 GSM/GPR). Genome Biology 4(9) (2003) R54

4. Freyre-Gonzalez, J., Manjarrez-Casas, A., Merino et al: Lessons from the modular organiza-
tion of the transcriptional regulatory network of Bacillus subtilis. BMC Systems Biology 7(1)
(2013) 127

5. Henry, C.S., Zinner, J.F., Cohoon, M.P., Stevens, R.L.: iBsu1103: a new genome-scale
metabolic model of Bacillus subtilis based on SEED annotations. Genome Biology 10(6)
(2009) R69

6. Kumar, S., Mahajan, S., Jain, S.: Feedbacks from the metabolic network to the genetic net-
work reveal regulatory modules in E. coli and B. subtilis. PLOS ONE 13(10) (October 2018)
e0203311

28

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Gene coexpression networks for the study of Rhizobium
leguminosarum

Javier Pardo-Diaz1,2, Mariano Begueressi-Diaz3, Phillip Poole2, Charlotte M Deane1,
and Gesine Reinert1

1 Department of Statistics, University of Oxford, Oxford OX1 3LB, UK,
jdiaz@stats.ox.ac.uk,

WWW home page: https://www.stats.ox.ac.uk/˜ jdiaz/
2 Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK,

3 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

1 Introduction

In this work, we aim to generate gene coexpression networks in which nodes corre-
spond to the genes and edges represent high positive correlations in their expression
across different samples (6). Therefore, genes which are expressed under the same con-
ditions are connected in the network, easing the study and visualisation of the expres-
sion data (8, 11). Genes that are coexpressed across multiple conditions are likely to
have related functions (4, 9, 10). This makes possible to deduce gene function using
guilt by association approaches. Network-based methods such as community detection
may help in this process. This procedure is especially useful if the studied organism is
poorly annotated.

The most commonly used methods to generate gene coexpression networks are
based on the absolute value of the Pearson correlation coefficient of the expression of
each pair of genes (11). Based on this value, there are two possibilities: treating the co-
expression as a continuous value and constructing weighted networks; or constructing
an unweighted network by applying a threshold. The later approach allows the selection
only the strongest relationships but may give rise to a loss of information.

We use Rhizobium leguminosarum gene expression data from a collection of mi-
croarrays to generate both unweighted and weighted coexpression networks. R. legu-
minosarum is an α-proteobacterium that fixes atmospheric nitrogen when associated
with legumes (eg. peas, beans, lentils). R. leguminosarum transforms molecular nitro-
gen into ammonia which can be assimilated by plants. Nitrogen fixation improves the
growth of plants as nitrogen is one of the limiting factors during the growth process (3).
R. leguminosarum experiences very large changes in its metabolism from the free-living
bacteria to the plant-associated bacteria (12). These changes are reflected in the gene
expression levels (5) and we aim to detect them in our gene coexpression networks.

2 Results

We present a pipeline to generate and study gene coexpression networks from gene ex-
pression data (Fig. 1). Firstly, we set the expression of the 20% lowest expressed genes
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from each microarray to zero to remove noise that may compromise later steps in our
network construction methodology. We also apply the quantile normalisation method
(2) to our expression matrix to make the distribution of the expression values of each
experiment identical in statistical properties. This allows us to compare values from dif-
ferent microarrays. After the preprocessing steps, we calculate the correlation between
the expression of each pair of genes in the expression matrix to obtain a symmetric
correlation matrix.

Fig. 1: Pipeline to generate gene coexpression networks. The correlation matrix is ob-
tained from the gene expression data. Afterwards, there are two possibilities: generating
an unweighted network and use community detection to find functionally-related genes,
or generating a weighted network and use an ego-network based approach.

We impose a threshold to the correlation matrix to obtain an unweighted network
network with edges only between the genes whose expression correlation is higher than
the threshold. We test different thresholds and score the resulting networks using a
Monte Carlo test and metabolic information from biological databases. The optimal
threshold (0.63) balances noise reduction whilst retaining functional information. In this
network, with density 1.2%, 82% of the top 500 pairs genes reported to be coexpressed
according to the database STRING are connected. To optimise the network partitions,
we use the Louvain method (1), using 101 different resolution parameter values. We
study communities enriched in genes which are involved in the same biological process,
restricting our evaluation to only those with between 6 and 60 nodes since sizes outside
this range are not interesting from a practical point of view (7). We find that genes
involved in the same metabolic pathways tend to be in the same communities. It would
be interesting to study other methods of association and different community detection
algorithms to assess performance and robustness of the network.

Alternatively, the correlation matrix can be used to generate a weighted network.
In this case, the weights of the edges between pairs of genes are the values of the
correlation of their expression. We use only positive correlation values greater than 0.3.
We use an ego-network based approach to obtain the genes related to a given set of

30

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



genes. This approach allows us to recover half of the genes annotated as ribosomal
genes in R. leguminosarum by using the other half of those genes as seed.

The next step in our analysis will be the use of RNAseq data from transcriptional
regulators mutants. This information will allow us to study the role of those proteins in
the coexpression network.

Summary We have applied our pipeline to generate unweighted and weighted R. legu-
minosarum gene coexpression networks. Our results suggest that both such networks
can be a useful guide in the identification of genes involved in the same biological pro-
cesses, in the prediction of gene function, and in the verification of genome annotations.
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1 Introduction
Networks encoding symmetric binary relations between pairs of elements are mathe-
matically represented by (undirected) graphs. Graph theory is a well developed math-
ematical subject, but empirical networks are typically less regular and also often much
larger than the graphs that are mathematically best understood. Several quantities have
therefore been introduced to characterize the large scale behavior or to identify the most
important vertices in empirical networks. As the crucial structure of a graph is, however,
given by the set of its edges rather than by its vertices, we should systematically define
and evaluate quantities assigned to the edges rather than to the vertices.
Curvature is a notion originally introduced in the context of smooth Riemannian man-
ifolds to measure local or global deviation of a manifold from being Euclidean. Ricci
curvature specifically, as a local measure, provides relatively broad information about
the structure of positively curved manifolds. Therefore, there have been several attempts
to discretize curvature notions to other settings such as cell complexes [5], graphs [4]
and undirected hypergraphs [7] for obtaining similar results. By this discretizations they
have been able to transfer some of the analytical or topological properties of original
smooth curvatures to these discrete spaces [6]. For the directed hypergraph case, these
curvatures were introduced recently and very little is known about their descriptive
power. In this paper, we first present the results of our discretizations of Forman-Ricci
[1] and Ollivier-Ricci [2] curvature notions, then, we show that they are powerful tools
for exploring local properties of directed hypergraph motifs. To conclude, we carry out
a curvature-based analysis of the metabolic network of E. coli.

2 Results
Forman-Ricci Curvature. The structure of a graph is given by its edges. Therefore,
a structural analysis of a graph should involve quantities describing local properties of
edges, as a complement of the usual quantities of local properties of nodes. Forman-
Ricci curvature serves that purpose. This notion was introduced by Forman for simpli-
cial complexes and therefore, for graphs (graphs are one-dimensional simplicial com-
plexes). Considering an undirected unweighted graph and an edge e with nodes i, j, it is
simply given by F(e) = 4−deg(i)−deg( j). Edges connecting nodes with large degree
have very negative Forman-Ricci curvature values, allowing a readily identification of
those edges playing a key role in the cohesion of a network.
We generalize this notion to directed hypergraphs, [1]. Formally, a directed hypergraph
is a couple H = (V,E) where V is a set of vertices and E a set of ordered pairs of subsets
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of V called hyperedges. Moreover, given a hyperedge e= (ei,e j)∈E, ei⊆V and e j ⊆V
are called the tail and head of e respectively. We define the Forman-Ricci curvature of
e as F(e) = |ei|+ |e j|−∑

i∈ei

in-deg(i)− ∑
j∈e j

out-deg( j) (1)

Ollivier-Ricci Curvature. Similar to its smooth Riemannian counterpart, the definition
of Ollivier-Ricci curvature involves comparing the average distance between the points
of two balls (neighbourhoods) with the distance of their centers. In [2] we introduced
this curvature notion for directed hypergraphs by using the Wasserstein distance be-
tween two probability measures associated to a directed hyperedge. We say that u→ ei
if there exists a hyperedge e = (ek,ei) such that u ∈ ek. Similarly, e j→ v if there exists
a hyperedge e = (e j,ek) such that v ∈ ek. Given a hyperedge e = (ei,e j), we define two
sets M := {u : u→ ei}∪ {i ∈ ei : there is no incoming hyperedge to i} called masses
and H = {v : e j→ v}∪{ j ∈ e j : there is no outgoing hyperedge from j} called holes.
Then, we assign a probability measure to each set, namely µM and µH . For u∈M and
v ∈H , we call µM (u) and µH (v) the size of the mass u and the size of the hole v, re-
spectively. Considering the distance between each mass and each hole as the minimum
number of directed hyperedges connecting them, this distance is at most 3. Now the
question (formally called optimal transport problem) is how the first probability mea-
sure can be moved to the second one in an optimal way. We want to minimize expression
(2) which iterates over all those matrices E (called transport plans) whose entries repre-
sent the amount of mass, out of µM (u), to be moved from vertex u to vertex v, denoted
by E (u,v). Moreover, d(u,v) stands for their distance (with d(u,v) ∈ {0,1,2,3}).

∑
u→ei

∑
e j→v

d(u,v)E (u,v) (2)

Given an optimal transport plan, if mx is the amount of mass that is moved at distance
x, then the Ollivier-Ricci curvature κ of e is defined as κ(e) = m0−m2− 2m3. It is
bounded above by κ = 1 (reached when m0 = 1 i.e. when each mass coincides with a
hole of its same size) and below by κ = −2 (reached when m3 = 1 i.e. each mass has
to be moved at distance 3).

Connectivity motifs: Forman-Ricci vs Ollivier-Ricci. Fig. 1 shows the local structure
of directed hypergraphs with positive, negative and zero values for both Ricci curva-
tures. For the given orange directed hyperedge e, O(e) and F(e) correspond to Ollivier
and Forman curvatures respectively. Therefore, from left to right we can detect changes
in the signs for Ollivier curvature while the sign of Forman is fixed. On the other hand,
when we move vertically in the plot, Forman’s sign change while Ollivier’s sign is fixed.
In the diagonal, directed hyperedges have the same sign for both curvatures.

Metabolism of E.coli. Fig. 2a) shows the number of metabolic reactions with |ei| re-
actants and |e j| products. 90% of chemical reactions have at most three reactants and
three products (also observed for the whole Chemical Space [3]), which, according to
equation 1, indicates that frequent curvature values in Fig. 2b) are ruled by the accu-
mulated in- and out-degree. In particular, frequent values of curvature were found to
distinguish bottle neck and redundant reactions in the metabolic network [1]. On the
other hand, when considering the number of incoming neighbors of reactants and of
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Fig. 1. Hypergraph motifs and
their curvature sign. F(e) is a
balance between edge degree
and node degree (in-degree for
nodes in the tail and out-degree
for nodes in the head), while
O(e) is a local measure of what
is known in metabolic networks
as topological overlap.

outgoing neighbors of products for every reaction, frequencies are of the order of hun-
dreds and, for some reactions, almost the whole substrate set, as shown in Fig. 2c). The
question that arises is how close are those masses and holes in the metabolic network.
Ollivier-Ricci curvature distribution in plot Fig. 2d) gives us the answer: most masses
and holes are at distance lower than 3, since the vast majority of them have curvature
greater than -0.5. Less than 10% of incoming and outgoing neighbors are at distance
3. Only four reactions have curvature -2, indicating that their masses are at least three
reactions away from their holes.
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1 Introduction

A key, and often debated, concept in the physics of life is the criticality of living sys-
tems. The idea first put forward by Kaufman [1, 5] is that life evolves on the “edge of
chaos“, that is, a living system is sufficiently stable to sustain its organization, but has
the ability to easily adapt itself to changes in the environment. It has been reported that
a number of biological systems such as neural firing, animal motion and gene regula-
tion [2–4, 8] indeed display behaviour evidencing their operation near criticality. Such
critical behaviour is also present in ecological systems, which can therefore be prone
to small perturbations, and are commonly said to reside near a tipping point. It is com-
monly believed that there are three modes of operation which are shared by all criti-
cal biological systems: (i) stable, (ii) critical, (iii) chaotic (super-critical). In the sem-
inal work of Kaufman [1, 5] it was first stated that gene regulatory networks (GRNs)
are critical and (random) Boolean networks have been developed to study their criti-
cal behaviour. An explanation behind why biological systems are poised at criticality,
however, is still lacking [2, 8]. In this paper we address this question by developing a
new nonlinear minimal model of interacting co-evolving GRNs to help shed light on
this intriguing question. In contrast to the existing approaches, which mainly use Ran-
dom Boolean Networks, we use ordinary differential equations with nonlinear boundary
conditions to model the GRNs, which was originally put forward by Stokic, Hanel and
Thurner [6]. Our main idea is to use similarities between critical systems in physics and
in biological systems. To be able to address biological systems using techniques from
statistical physics, a generalized non-equilibrium statistical mechanics [5] is needed in
order to describe the properties of ensembles of complex systems with very many dy-
namically coupled elements. Understanding the characteristic structure and behaviour
of the members of the ensemble will help to understand both the emergence of order in
organisms and its adaptive evolution.

2 Results

We start from an existing model for a single regulatory network with dynamics as pro-
posed by Stokic, Hanel and Thurner [6, 7], which we generalize to accommodate many
co-evolving GRNs. The set of linear stochastic evolution equations is complemented
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with nonlinear constraints (xα
i > 0). The concentrations of mRNA (xα

i ) evolve accord-
ing to

dxα
i

dt
= ∑

j
Aα

i jx j + Jα
i + rα

i (1)

Here Aα
i j is the weighted adjacency matrix of the full (autocatalytic) reaction network,

whose entries may be zero, positive or negative, indicating that species i is stimulated,
not affected or supressed by species j. Jα

i models the flow of molecular species i into
(> 0) or out of (< 0) the system. Typically Jα

i arises as a consequence of the fact that the
average concentration xα

i is positive. The noise terms ri comprise both multiplicative
and additive noise. For a single network this model can generate oscillatory, chaotic
and stable behaviour [6]. In particular it can be numerically calculated for what kind of
network structure and in particular for which average degree k (10 < k < 25 in [6]) the
network is critical by computing the largest Lyapunov exponent of the equations (1).
Largest Lyapunov exponents near zero signal critical behaviour.

Here we also take evolution of the networks Aα
i j into account. How the network

topology will evolve in time is an extremely relevant question in biology, but has so far
been hardly addressed. In this paper we discuss different classes of evolution. One im-
portant class of evolution equations may be obtained by using the so-called Kullback-
Leibler divergence between the rows of matrix Aα

i j and Aβ
i j (DKL(Aα

i j|A
β
i j)) where Aβ

i j
constitutes an average of all GRNs, which quantifies the information loss when the
matrix Aα

i j is used to estimate the environment constituted by Aβ
i j. By requiring the

(DKL(Aα
i j|A

β
i j)) to be minimal, we can evolve the adjacency matrices in time. We nu-

merically show that this indeed leads to a critical state, that is, the evolution naturally
gives rise to networks with an average degree in the range of the critical networks; see
Fig. 1

Fig. 1. The behaviour of the average value of the degree < k > as a function of the time t. The
network ends in the range where the system is critical, that is k ∈ [10,25].
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Summary. We have studied a dynamical system on a network that models GRNs. The
nonlinearities in the system give rise to interesting behaviour depending on the network
topology. The topology that arises when the network evolves according to a principle of
minimal Kullback-Leiber divergence is such that indeed the network evolves to a state
where the Lyapunov exponent is nearly zero.
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1 Introduction

The medical referral between Primary Care Physicians (PCP) and specialists represents
the formal mechanism in the health system to address the need of patients for specialty
care [5]. Typically, for a given patient with clinical needs, PCP can make a choice
of several specialists to whom they may refer and their choice would have important
downstream effects. As such, primary-specialty referral may affect many aspects of
patient care, such as quality of care, patient satisfaction and health care costs, etc. [3].

Researchers recently leveraged the patient consultation history extracted from insur-
ance claims data to construct the patient sharing network between physicians based on
the shared patients [3, 6]. Essentially, patient sharing network operationalizes an infor-
mal information-sharing network in which physicians provide care to shared patients.
This network does not necessarily conform to the formal organizational structure that
physicians are affiliated with, but may provide valuable insights in explaining the re-
ferral mechanism. For example, both [3] and [7] performed social network analysis on
Medicare administrative data and showed that structure of patient sharing networks and
the position of physicians in the network has a significant relationship with the over-
all cost and intensity of care. [2] further discovered small-world structure and strong
correlations between certain network statistics with health system statistics. These met-
rics derived from network science can serve as informative features to boost predictive
model performance and optimize health system for improved medical outcomes [1].

2 Primary-Specialty Referral Network Analysis

In this paper, we aim to add to the literature of understanding the primary-specialty
referral mechanism. We obtain a large-scale patient consultation dataset from a private
European health provider with over 9 million consultations between 1.3 million patients
and 2,308 physicians (515 PCP and 1793 specialists) in 7 hospitals between 2012-2017.
The primary-specialty referral is defined as when a patient consults a PCP and then a
specialist within 30 days. In other words, there only exist links between two distinct
set of physician nodes, namely PCP and specialists. As such, we develop a weighted
bipartite network where 460 PCP are connected with 1,542 specialists through 78,593
edges. The edge weight of referral network represents the number of patients that PCP
refer to the specialists. Importantly, 306 physicians do not have any edge to the referral

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



network, which raises the potential inefficiency concerns for their lack of involvement
in referral process.

Besides, we obtain additional physician registration data from the Human Resource
department of the provider, including gender, age, education and internship institution,
specialty, working hospital, etc. As we augment the referral network with such infor-
mation, summary statistics show PCP and specialists indeed have different background.
The gender composition for PCP is 69% of female and 31% male, and 43% of female
and 57% of male for specialists. Also, we observe certain level of homophily. For ex-
ample, more than half of the referrals are made between the physicians with the same
gender and more than 70% of the referrals are made between those with the age dif-
ference less than 10 years. More interestingly, 67% of the referrals are made between
physicians that work at the same hospital, implying that referral network may exhibit
strong clustering in terms of physicians’ background.

Following [8], we compute macro-level structural metrics from the resulting referral
network and compare them against those of a synthetic Erdős-Rényi random network.
We find that degree distributions (the number of specialists that PCP refers to, and the
number of PCPs that specialist receives from) for the referral network do not follow
Poisson distribution. Meanwhile, we obtain average clustering coefficient for the refer-
ral network (0.17) to measure the fraction of the number of observed squares to the total
number of possible squares in the network. It is about 2.5 times higher than that of ran-
dom network (0.07). This represents an essential precondition for referral network to
exhibit small-world structure and suggests that physicians in the referral network have
higher tendency to cluster together. We also quantify both betweenness and closeness
centrality for physicians in the referral network. The former describes the number of
shortest paths that pass through a physician while the latter describes the reciprocal of
the sum of distance to all other physicians in the network. Top 25% and bottom 25%
of PCP in terms of betweenness centrality initiate 58.4% and 0.07% of referrals, re-
spectively. Top 25% and bottom 25% of specialists in terms of betweenness centrality
receive 55.9% and 3.3% of referrals, respectively. Again, this raises the inefficiency
concern as referral process occurs high skewed towards a small number of physicians.

We adopt the popular modularity-based optimization algorithm Louvain to extract
communities from the referral network [4]. In total, we identify 7 distinct communi-
ties, which happens to correspond to the number of hospitals of the provider. Figure 1
shows the visualization of community structure. In general, PCP tend to refer patients
to specialists belonging to the same community, which indicates that physicians may
form a “referral clique” wherein referral process occurs more likely than to physicians
from different communities. Meanwhile, there is one community (in purple) that is lo-
cated distantly from other communities, which contains physicians mostly working at
the hospital in a different region. Moreover, we demonstrate that physicians within the
same community share more similarity in terms of their background, namely, they are
at the similar age, have similar number of years of experience, used to study and intern
at the same institution and now work at the same hospital. Our results show that refer-
ral network may highly overlap with the social network of physicians and in the future
work we plan to explore the correlation between them.
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Fig. 1. Communities extracted from the referral network
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1 Introduction

Alternative splicing is a tightly-controlled transcriptional regulatory mechanism where
exons can be selectively included or excluded during pre-mRNA processing. These ex-
ons may have essential roles in protein structure and function. Splicing is composed of
a variety of event type definitions which are characterized by exon positions and rules
governing exon usage. Skipped-exon (SE) events are the most common and refer to
the inclusion or exclusion of single exons. Splicing has a significant influence on many
aspects of cellular physiology, including cellular identity, plasticity, signaling and can-
cer [1,2]. Splicing has also been linked to cancer drug resistance [3,4]. Certain spliced
isoforms can manipulate kinase signaling and alter cellular drug response [5,6]. De-
spite this, few studies have explored connections between drug response and splicing.
It is well known that many drugs exploit similar targets or pathways as development
of structurally homologous compounds is cheaper and faster than development of novel
therapeutics. Yet, to the best of our knowledge, no one has investigated the commonality
between predictive splicing signatures and various related or unrelated compounds.

In previous work we identified differentially spliced SEs in pre-treatment transcrip-
tional profiles from cancer cell lines, the SEs’ relationships with drug response and the
regulatory elements that play a role in their splicing [7]. We found that alternatively
spliced SEs were highly predictive of doxorubicin drug response. Additionally, extend-
ing the same modeling approach to other drugs yielded similar results. We then hypoth-
esized that drugs from the same class or with similar activities would share predictive
splicing features. Here, we expand our work to incorporate other categories of alter-
natively spliced events and construct tissue-specific drug networks utilizing common
predictive splicing features. We describe the drug network characteristics and explore
individual drug modules across networks.

2 Methodology

RNAseq data for 975 cell lines from the Cancer Cell Line Encyclopedia (CCLE) were
integrated with drug-response data for 501 drugs (tested in 860 cell lines) from the
Cancer Therapeutic Response Portal (CTRP) [8,9]. The number of cell lines with both
RNAseq and drug response data differed by drug. RNAseq data was mapped with STAR
using Hg19 and GRCh37v87 annotation [10,11]. A list of spliced events in reference
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genes was generated from the annotation GTF file and junction read counts for each
splice variant were collected. For each drug, cell lines were separated into sensitive
and resistant groups based on the quantile of the area under the concentration-response
curve (AUC) value in CTRP; 33% or less were considered sensitive and 66% or above
were considered resistant. Differentially-spliced events across sensitive and resistant
cell lines were identified for each drug by using a previously published quasi-binomial
generalized linear modeling framework and applying a FDR cutoff of <= 0.01 [7]. To
select for validity and biological significance, we required each event to have at least
one splice-junction read in >= 35% of all cell lines and a minimum difference in the
mean fraction of inclusive to total junction reads between sensitive and resistant cell
lines >= 0.10. Drug-drug networks for each tissue were constructed using a modified
Jaccard index for edge weight:

Wab =
(A∩B)−Dab

A∪B
(1)

where Dab = divergent, (i.e. the number of exons observed to have a higher inclusion
level in sensitive cells of drug A but lower inclusion level in sensitive cells of drug
B). Module identification was accomplished in three steps. First, hierarchical clustering
was performed on the network matrix using average distance. Next, all clusters in the
bottom 15% of tree heights with between 3 and 15 members were extracted and merged
if one contained all members of another. Finally, clusters were filtered for significance
<=0.05 using their b- and c-scores, which are metrics analogous to the probability
of observing a module in the random network given the network size, module size,
inner- and outer-degrees [12]. Modules were annotated with drug activity from CTRP.
Differentially-spliced events present across multiple drugs in a module were identified
and annotated with gene symbol, protein structure, function and domain information.

3 Results

We combined two large public datasets, CCLE and CTRP, to maximize the number of
cell lines and different classes of drugs in the networks. Cell lines were grouped by tis-
sue type and the two groups containing the most cell lines, haematopoietic & lymphoid
(HL) and lung, were selected for further study. We observed a total of 437 connected
drugs with 38,802 edges in the HL tissue network and 441 connected drugs with 43,371
edges in the Lung tissue network (Table 1). Both networks exhibited random network

Table 1. Tissue-specific Network Summary
Tissue Nodes Edges Unfiltered Modules Filtered Modules
HL 437 38,802 35 14
Lung 441 43,371 30 11

structure and upon bi-partite inspection, there appeared to be a small number of drugs
with many differentially spliced events. These drugs created hairballs in the network
by facilitating weak connections with many smaller degree nodes and made module
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identification more difficult. Therefore, we applied a module identification strategy that
would take advantage of the expected behavior of drugs in a network while minimizing
the size of extracted modules. Some of the stronger modules we identified, as defined
by larger size and a high average Wab, shared many of the same drug members in both
tissue types. These modules primarily contained chemotherapeutic agents such as the
platinum and anthracycline families of anti-cancer drugs. Other modules were more
specific to the respective tissue and members clustered with different partners. One such
example is erlotinib, an EGFR tyrosine kinase inhibitor (see Fig. 1). Erlotinib modules
from HL and Lung networks both included tyrosine kinase and EGFR inhibitors.

Fig. 1. Erlotinib modules from HL and lung networks are highly connected and share similar
activity but different compound identities. a. HL module, out of 513 events 70 were found signif-
icant in more than one compound. b. Lung module, out of 332 events, 69 were present in more
than one compound.

4 Conclusions

We found network analysis using pre-treatment splicing information shows drugs of
similar activity cluster together by having common splicing features associated with
drug response; however, clusters may not retain the same cluster partners or predictive
splicing features in other tissues. We suspect this is due to tissue-specific splicing regu-
lation and that drugs of the same class may have altered activity in certain tissues. We
intend to further characterize this and other observations from the networks.
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Part II

Community Structure
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1 Introduction

The voter model is a paradigmatic agent-based model that represents opinion dynamics
in social networks. The dynamics of the model consists of repeatedly choosing one
agent uniformly at random. The selected agent then copies the current opinion of a
randomly selected neighbour. As long as the network is connected and finite, this update
rule guarantees that the agents must eventually reach a consensus after a finite time T .
The mean consensus time 〈T 〉 depends on the initial distribution of opinions and the
network structure.

While early studies of the voter model focused on complete graphs or regular lat-
tices, interest has recently shifted towards networks with more complex topologies, for
example networks with a community structure [1], [2], [3]. Here we analyze the voter
model on the simplest possible multi-community network: two cliques (i.e. fully con-
nected subgraphs) connected by a small number X of intercommunity edges (Figure 1).
Previous work on networks with two equally large cliques has shown that the mean
consensus time 〈T 〉 is proportional to the number N of vertices in the network unless
the connections between the cliques are extremely sparse [2]. Because 〈T 〉 ∝ N is the
same scaling relation as in the case of a single-clique network [4], it has been argued
that community structure is of limited importance for the voter model. Here we show
that, on the contrary, the two-clique topology gives rise to many intriguing features.

2 Results

Let us denote by α the relative fraction of vertices in clique 1. For example, in the
network depicted in Figure 1, α is equal to 7

12 . For all values of α , sparsely connected
cliques need a long time to reach a consensus, as one might intuitively expect. Coun-
terintuitively, however, additional links between the cliques do not necessarily speed up
the consensus (except in the special case α = 1

2 ). Instead, numerical simulations (Fig-
ure 2) show that there is an optimal intermediate connectivity that minimizes 〈T 〉. The
simulations suggest that the optimal number of interclique edges scales as Xmin ∝ N3/2,
which puts the optimum between the case of a constant number of interclique edges per
agent (Xmin ∝ N) and a complete graph (Xmin ∝ N2). Hence, to accelerate a consensus
between cliques, agents should reach out to members in the other clique, but not to the
extent that cliques lose their identity as distinct communities.
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We confirm the numerical results with an equation-based analysis. For the sake of
simplicity, we show the equations only for the case of a polarized initial condition (i.e.
both cliques are internally unanimous, but there is disagreement between the cliques).
Similar results can be derived for other initial conditions. We make two heterogeneous
mean-field approximations for the consensus time 〈T 〉:

– a Taylor expansion for small X ,

〈T 〉 ≈ tsparse =
α2(1−α)2N
Xd(α,N,X)

[
2(2α2−2α +1)X3 +2(α2−α +1)NX2 (1)

+α(1−α)(2α2−2α +3)N2X +α2(1−α)2N3]

with the auxiliary function

d(α,N,X) =(3α2−3α +1)(2α2−2α +1)X2 (2)

+α(1−α)(4α4−8α3 +11α2−7α +2)NX

+α2(1−α)2(2α2−2α +1)N2,

– an adiabatic approximation for large X ,

〈T 〉 ≈ tdense = (3)

− α(1−α)N[(2α2−2α +1)N2 +2X ]2

α(1−α)N2[(3α2−3α +1)N2 +2X ]+X2 [m lnm+(1−m) ln(1−m)],

where

m =
(α2N2−αN +X)

(2α2−2α +1)N2−N +2X
. (4)

Clique 1 Clique 2

A

B

C

Fig. 1. Small illustrative example of a two-clique network. Each vertex represents an agent that
has exactly one of two possible opinions: “red” or “blue”. In this example, clique 1 is a complete
graph with 7 vertices, whereas clique 2 has only 5 vertices. The cliques are connected by two
intercommunity edges (thick lines). In our analysis, we vary the relative sizes of the two commu-
nities and the number of intercommunity edges. We apply the update rules of the voter model.
That is, we first choose a random focal vertex, for example A in the depicted network. Then we
choose a random neighbour of the focal vertex and copy the neighbour’s opinion. In our example,
if the chosen neighbour is B, A changes its opinion to blue. However, if the chosen neighbour is
C, A keeps its current (i.e. red) opinion.
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Fig. 2. Mean consensus time 〈T 〉 as a function of the number of interclique edges X . Point sym-
bols represent simulation results. In all simulations, the initial opinions are completely polarized:
both cliques are internally unanimous, but there is disagreement between the cliques. The curves
are equation-based predictions. In (a), we fix the number of vertices to be N = 1000 and vary the
fraction α of vertices in the first clique. If α 6= 1

2 , the minimum of 〈T 〉 is attained at an intermedi-
ate value of X , where the cliques are neither sparsely nor fully connected. In (b), we fix α = 0.9
and vary N. The value Xmin that minimizes 〈T 〉 is proportional to N3/2.

By interpolating between the two asymptotic approximations, we obtain an equation
for 〈T 〉 that is in excellent agreement with the simulations for all values of X ,

〈T 〉= tdense(X)+ tsparse(X)− lim
X ′→∞

tsparse(X ′). (5)

This interpolation is shown by the curves in Figure 2. From equations (1)–(5) it can be
shown that Xmin ∝ N3/2 [5], consistent with the numerical results.

Summary. We show that, counterintuitively, the mean consensus time 〈T 〉 is typically
not a monotonically decreasing function of interclique connectivity. To minimize 〈T 〉,
the optimum number of interclique edges Xmin should scale as Xmin ∝ N3/2, where N
is the number of vertices. Consequently, to reach a consensus quickly, the agents must
strike a balance between a sparse and a dense interclique connectivity.
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Bogumił Kamiński1, Bartosz Pankratz1,3, Valérie Poulin2, Paweł Prałat3, Przemysław
Szufel1, and François Théberge2
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1 Introduction

Despite the fact that many important problems (including clustering) can be described
using hypergraphs, theoretical foundations as well as practical algorithms using hyper-
graphs are not well developed yet. In [2], we proposed a hypergraph modularity func-
tion that generalizes its well established and widely used graph counterpart measure of
how clustered a network is. In order to define it properly, we generalized the Chung-
Lu model for graphs to hypergraphs. Moreover, some theoretical foundations about our
hypergraph modularity function as well as some simple experiments on synthetic hy-
pergraphs are provided. In particular, we showed that a strict version of our proposed
modularity function often leads to a solution where a smaller number of hyperedges
gets cut as compared to optimizing modularity of 2-section graph of a hypergraph. The
conclusion is that the proposed novel approach to deal with hypergraphs yields sub-
stantially different clusters than its 2-section graph counterpart. It is different but the
question is: is it better or worse?

In order to answer this question, we work on developing fast algorithms for clus-
tering on hypergraphs. We have implemented a SimpleHypergraphs.jl library4

using the Julia language [1]. In this way our algorithms are computationally efficient
and easy to develop and maintain at the same time. Our next step is to perform more ex-
periments on real networks that are naturally represented as hypergraphs, see Section 3.

The presented research was partially financed by NAWA — The Polish National
Agency for Academic Exchange.

2 Theoretical Foundations

Review of Graph Modularity. The definition of modularity for graphs was first intro-
duced by Newman and Girvan in [3].

For a graph G = (V,E) and a given partition A = {A1, . . . ,Ak} of V , the modularity
function is defined as follows:

qG(A) = ∑
Ai∈A

(
eG(Ai)

|E| −
(vol(Ai))

2

4|E|2
)
, (1)

4https://github.com/pszufe/SimpleHypergraphs.jl
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where eG(Ai) = |{{v j,vk} ∈ E : v j,vk ∈ Ai}| is the number of edges in the subgraph
of G induced by the set Ai, and vol(Ai) = ∑v j∈Ai deg(v j). The modularity measures the
deviation of the number of edges of G that lie inside parts of A from the corresponding
expected value based on the Chung-Lu distribution G (G) [4]. The modularity q∗(G) is
defined as the maximum of qG(A) over all possible partitions A of V .

Hypergraph Modularities. In [2], we generalized the Chung-Lu model to hypergraphs
and used it as a null model allowing us to define hypergraph modularity. Consider a
hypergraph H = (V,E) and A = {A1, . . . ,Ak}, a partition of V . For edges of size greater
than 2, several definitions can be used to quantify the edge contribution given A, e.g.:

(a) all vertices of an edge have to belong to one of the parts to contribute; this is a strict
definition that we focus on in this paper;

(b) the majority of vertices of an edge belong to one of the parts;
(c) at least 2 vertices of an edge belong to the same part; this is implicitly used when

we replace a hypergraph with its 2-section graph representation.

We see that the choice of hypergraph modularity function is not unique and it depends
on how strongly we believe that a hyperedge is an indicator that vertices belonging to it
fall into one community.

In [2], we derived a general formula that covers all variants but here, for illustration
purpose, we concentrate only on the extreme case, option (a), that we call strict. The
strict modularity function of a hypergraph partition A is defined as follows:

qH(A) =
1
|E|

(
∑

Ai∈A
e(Ai)−∑

d≥2
|Ed | ∑

Ai∈A

(
vol(Ai)

vol(V )

)d
)
, (2)

where Ed ⊆ E is the set of hyperedges of size d and vol(V ) = ∑d≥2 d · |Ed |. Just as for
graphs, the corresponding modularity q∗H is defined as the maximum of qH(A) over all
possible partitions A of V .

Note that similarly to graphs, finding a graph partition that yields the highest modu-
larity is an NP-hard problem. Within the fore-mentioned SimpleHypergraphs.jl library
we are working on heuristics for detection of communities which are also discussed in
[2].

3 Experiments

In [5] we performed some initial experiments on a hypergraph obtained from Yelp data-
set which consists of thousands of nodes (restaurants) millions of their reviews (that
from hyperedges). Additionally, we observed that the additional information conveyed
via hypergraphs (as opposed to their 2-section representations) lead to better partition-
ing of the vertices in the analyzed data-set with respect to considered ground truth.

Now we want to test the hypergraph-based approach in web-graph applications. The
growth of Internet usage in last two decades has created unprecedented opportunities
for social scientists. Digital services, especially social media, are amazing reservoir of
data, holding valuable insights about social systems. As a result, researchers are able to
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experiment on real systems on the previously unprecedented scale. The usage of the so-
cial media data allows to better understand the dynamics of the protests movements [6,
7] and polarisation of the political debate [8]. However, Internet also has changed the
way how the people behave and communicate. The rise of the social media creates new
mechanisms shaping the society.

In this work we show that hypergraphs, are superior to their traditional counterparts
which are widely used in the network science. In the context of the social network, the
representation of the social circles (e.g. followers on Twitter or friends on Facebook) as
a hyperedges seems more natural than the edges connecting only two nodes.

In order to prove that, we design an experiment measuring the polarization of polit-
ical views of Twitter users. The phenomenon of the Internet bubbles or echo chambers
(closed groups of users showing strong resemblance and interacting mostly inside spe-
cific clusters) is crucial to understand the way how the political debate is or might be
shaped by the different actors. The selective exposure to sources of information makes
the citizens more prone to the discourse framing techniques such as fake news [9] or
political bots [10].

By using tweets concerning different political and nonpolitical issues we build hy-
pergraphs and then measure the strength of their community division and similarities
between nodes in each cluster. As a result, we are able to detect the most important
topics and better understand the online communication patterns regarding different sub-
jects. Finally, we compare obtained results to the clustering of the regular graphs build
around the same data and results previously obtained in the literature.
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1 Introduction

The computational demands of community detection algorithms such as Louvain and
spectral optimization can be prohibitive for large networks. These community detection
algorithms require either numerous iterations through combinatorial partitions of the
network nodes or linear algebraic operations on the adjacency matrix. More recent
literature on community detection extends the use of these methods, altering calculations
and processes, but do not deviate from the iterative maximization of modularity. For large
complex networks the computational and memory requirements often prove impractical.

This work demonstrates the utility of Katz centrality and eigenvector centrality as
indicators of community membership in large undirected networks. This method is
shown to produce well-defined communities (when sufficient modularity is present in
the network) in a much faster runtime than Louvain. Based on our datasets our proposed
approach has runtimes as low as 8.6% of the Louvain community detection runtime for
smaller networks, and 0.002% of the Louvain runtime for larger networks.

2 Methods

Eigenvector centrality is based on the idea that a node’s importance is related to the
importance of its neighbors. The eigenvector centrality of node i (xi) is measured by the
scaled sum of the eigenvector centralities of its neighbors,

x =
1
λ1

Ax, (1)

where λ1 is the leading eigenvalue of the adjacency matrix A, and x = [x1,x2, . . . ,xn]
T

[1]. This is clearly the equation for the leading eigenvector of the adjacency matrix, thus
it only describes the most dominant mode of the network. In modular networks, this has
been shown to confine the large eigenvector centrality values to a certain collection of
nodes, despite the existence of other collections that appear to have similar importance
[2].

Katz centrality is calculated similar to eigenvector centrality, but with free centrality
β given to all nodes and α chosen such that α < 1

λ1
[3],

x = (I−αA)−1 β1. (2)
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As shown in [2], the inverse operation above can be expressed in terms of its power
series, allowing Katz centrality to be equivalently written as

x = a1u1

∞

∑
k=0

(αλ1)
k +· · ·+anun

∞

∑
k=0

(αλn)
k, (3)

with real coefficients a1, . . . ,an. Since α < 1
λ1

, each infinite sum will converge and reveals
that Katz centrality spans the entire eigenbasis of A. Thus the localization of centrality
in modular networks will be significantly reduced compared to eigenvector centrality. In
this work we leverage the localization of eigenvector centrality against the robustness of
Katz centrality in sufficiently modular networks to identify the communities that give
rise to the modularity by plotting them against each other (Fig. 1). Because of the radial
structure of these plots, we use an algorithm similar to the radon line detection algorithm
[4] to perform cluster identification in the Katz vs Eigenvector Centrality (KE) plot.
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Fig. 1. Three communities discovered in the Amazon beauty review network [5].

3 Results

We apply the KE community detection method on a suite of synthetic and real-world
networks [5], measuring the resulting modularity (Q) of the detected communities,
comparing to the results obtained from the Louvain method (summarized in Table 1). The
KE method is shown to be far superior to Louvain in runtime, and to generally produce
comparable modularity values indicative of high performing community detection. The
resulting Q from the KE method on many of the test networks is lower than the that from
Louvain. But the maximum obtainable modularity (Qmax) given the assigned community
members is also lower than Louvain, so the normalized modularity for both methods is
similar. This is likely because the two methods are extracting similar communities at
different scales. For example, Louvain discovers 25 and 34 communities in the Amazon
Beauty and Health networks, respectively, while the KE method discovers 3 and 2. The
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combinatorial, iterative nature of Louvain method is likely causing the detection of
micro-level community structures; whereas the KE method’s use of a network’s spectral
properties causes the detection of macro-level community structures. This assertion is
supported by Figure 2, where the Louvain-detected communities of an ad-hoc modular
network also organize into larger communites detectable by the KE method.

Runtime Modularity (Q/Qmax) N

Network L S KE L S KE L S KE

AMZN Product 371 ms 231 ms 32 ms 0.801/0.908 0.781/0.893 0.359/0.467 14 17 3
AdHoc BA 1 11.8 s 877 ms 329 ms 0.485/0.491 0.485/0.490 0.480/0.498 2 2 3
AdHoc BA 2 2.03 m 3.88 s 228 ms 0.291/0.930 0.454/0.464 0.228/0.471 17 2 2
DBLP 12.0 m 1.15 hr 751 ms 0.805/0.982 0.713/0.974 0.019/0.034 129 191 2
AdHoc BA 3 2.07 hr 4.65 m 1.97 s 0.203/0.931 0.382/0.393 0.123/0.492 18 3 2
AMZN Beauty 11.7 hr 14.5 m 11.8 s 0.499/0.840 0.566/0.735 0.365/0.645 25 4 3
AMZN Health 16.2 d 5.30 m 35.7 s 0.413/0.543 0.00/0.00 0.423/0.608 34 1 2

Table 1. Comparison of runtime, resulting modularity, and number of detected communities (N)
between Louvain community detection (L), spectral community detection (S), and the KE plot
method of extracting communities from various networks with n nodes and m edges.
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Fig. 2. 16 communities detected using Louvain, reduced to two groups that largely follow the
pattern utilized by the KE method.
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Summary. We analyse the behaviour of users navigating on a web portal with tools from
Information Theory. We show that the higher order Markovianity of such dynamics is a
fundamental part of the system complexity and a first order Markovian approximation
can include several errors. We propose a partition detection algorithm based on an in-
formation theoretic criterion, the maximization of the auto–information, which leads to
a low-dimensional model that simulates the real dynamics more closely.

1 Introduction

Dynamical systems that evolve on top of networks, such as disease spreading, informa-
tion diffusion, or transportation systems are nearly ubiquitous. Analysing the properties
of a such dynamical systems often offers valuable insights about the relevant connec-
tion patterns present in the underlying network. Indeed, dynamical properties have been
used to find community structures [1,2], to rank nodes (e.g, via random–walk centrality
and pagerank [3]), or to analyse other aspects of complex networks.

While the topology of the underlying network will add to the complexity of the
system behavior, part of that complexity may emerge from the dynamics themselves:
in particular, if the system behaves in a non–Markovian way and the evolution of the
system depends on its own history; see for example the highly cited works [4,5,6] and
a recent paper on epidemics on networks [7].

In this work we demonstrate how the non-Markovianity of a dynamics on a network
should be considered when analysing the system behaviour. To this end we consider the
behaviour of users navigating on a web portal of a Belgian broadcasting network. We
show that this dynamics is more accurately described by a non-Markovian dynamics
where memories plays a fundamental role, even though our urge to understand and
simplify the system often leads the researcher to model it as a simple Markov process
with no memory [3].

2 Results

The entrogram [8] (see Figure 1A) is a set of information theoretical quantities defined
as follows:

Ii = I(xt ;xt−i−1, . . . |xt−1, . . . ,xt−i) i ∈ N0, (1)

where I(·; ·) is mutual information and X = {. . . ,xt−1,xt ,xt+1, . . .} represents the states
of the dynamics at each time–step. The entrogram provides a concise characterization
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of the complexity of the dynamical system. The area ∑i Ii of the entrogram represents
the total dynamical complexity of the system [8]. The latter can be divided into a mea-
sure of predictability (I0), and a measure of the non-Markovian memory inherent in the
dynamics (∑i≥1 Ii). The dynamics displays a non-negligible amount of memory (see
Figure 1A), with a Markovian behaviour of at least order three.

Fig. 1. Analysis of a non-Markovian dynamics of users browsing a web portal. The Entrogram [8]
of the web browsing (A) shows clear signs of dynamical memory. The analysis of the three–steps
patterns shows how two of such patterns are under-represented in a Markovian approximation of
the dynamics (B). Detecting communities preserving the Markovian order of the dynamics gives
a slightly different partition than classical approaches (C, D). We show that Markovian–order–
preserving community detection can be used to better simulate the original dynamical complex
system.

The analysis of the dynamical patterns contained in the dataset further supports that
the real dynamics is far from being well approximated by a simple first order Markov
process (see Figure 1B), and some patterns are under-represented in the latter.

As a second contribution, we introduce a state aggregation procedure that respect
the Markovian order of the dynamics. To do this we maximise the auto–information
between two distant time–steps in the dynamics projected to the partition space:

I(yt ;yt−T ), (2)
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where T is set to three to respect the Markov order of the original dynamics. This
results in a slightly different partition of the web portal pages as compared to classical
partitioning algorithms, see Figures 1C and 1D. Despite the apparent small distance
between the two partitions, simulating a Markovian evolution on the reduced graph
obtained from maximizing the auto–information leads to a dynamics sensibly closer to
the original non–Markovian dynamics.
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1 Introduction

Currently, the big data revolution is changing the way many disciplines perform a large
amount of experimental measures and their interpretation and modeling. In fact, due to
the successes of information technology revolution and the advances in robotics many
scientific experiments have today an observational character rather then a design investi-
gating a fully controlled set up. Examples are space-time records of particles dynamics,
climatological monitoring of large scale regions, earthquake investigations, brain ac-
tivities, gene expressions, dynamics of social and financial systems. All these types of
complex systems present datasets that are genuinely multivariate and that are recorded
in the presence of sources of uncertainty (modeled as noise). Their interpretation and
modeling with statistically validated data mining tools require the characterization of
the hierarchical sub-units present in them. A traditional unsupervised tool for the char-
acterization of sub-units of a complex system is hierarchical clustering. In spite of the
effectiveness and simplicity of this approach the extraction of a hierarchically nested
partition from a hierarchical tree is still today an open problem. The most widely used
approach for cluster detection used in the scientific literature is an approach originally
proposed in phylogenetics and today implemented by the algorithm called Pvclust [4].
This algorithm is widely used in many disciplines and especially in genomics. It is
the standard reference in the literature but present two serious limits. The first limit
concerns computational time and scalability with system size. The algorithm is rela-
tively slow and has a limited scalability and therefore it is not appropriate for very large
datasets. The second limit (partly overlapping with the previous one) is related to the
open problem of how to deal with the so-called familywise error. This type of error is
a source of statistical errors occurring when a large number of statistical tests is per-
formed in parallel in a system. This type of errors originates naturally in very large
datasets.
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2 Results

In this work, we propose a greedy algorithm based on bootstrap resampling that as-
sociates a p-value at each clade of a hierarchical tree. Our algorithm gives good re-
sults when applied to benchmarks mimicking the complexity of hierarchically nested
complex systems. We call our algorithm statistically validated hierarchical clustering
(SVHC)[2, 1]. Specifically, for each pair of parent and children nodes in the hierar-
chical tree, we test the difference between the proximity measure (in our approach a
dissimilarity) associated with a clade h and the dissimilarity measure associated with
the clade defined by its parent node in the genealogy of the dendrogram. The statistical
test we perform consider as a null hypothesis that the dissimilarity of the parent node
is larger than the dissimilarity of the children node. Our tests are performed by consid-
ering multiple hypothesis test correction. In fact, we always apply the control of false
discovery rate. By selecting those clades that reject our null hypothesis, we identify a
hierarchically nested partition involving a certain number of elements of the investi-
gated systems. In order to evaluate the performance of our method, we test it with some
benchmarks obtained by using a hierarchical factor model.

By performing numerical experiments on a representative benchmark and on a ref-
erence empirical dataset, we show that our algorithm is quite accurate and much faster
and scalable than the state of the art algorithm (Pvclust). Moreover, it shed light on the
role and limits of the presence or absence of a procedure for the multiple hypothesis
test correction (Fig. 1). For these reasons, we believe the new algorithm will be of in-
terest for those scholars working with large multivariate datasets in biology, computer
science, neuroscience, physics, sociology, and other disciplines dealing with large scale
multivariate data.

(a) (b) (c)

Fig. 1. (a) and (b) Numerical experiments with a benchmark composed by 12 overlapping clus-
ters. (a) Number of statistically validated clusters detected by the algorithms as a function of the
system size N. (b) Computational time of the algorithms as a function of the system size N; (c)
hierarchical tree (average linkage HC) and correlation matrix of lung tissues dataset [3]. In the
correlation matrix we highlight hierarchically nested clusters detected by our method.
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Summary. We develop a greedy algorithm that is fast and scalable in the detection of a
nested partition extracted from a dendrogram obtained from hierarchical clustering of
a multivariate series. Our algorithm provides a p-value for each clade observed in the
hierarchical tree. The p-value is obtained by computing a number of bootstrap replicas
of the dissimilarity matrix and by performing a statistical test on each difference be-
tween the dissimilarity associated with a given clade and the dissimilarity of the clade
of its parent node. By performing numerical experiments on a representative benchmark
and on a reference empirical dataset, we show that our algorithm is quite accurate and
much faster and scalable than the state of the art algorithm (Pvclust). Moreover, it shed
light on the role and limits of the presence or absence of a procedure for the multiple
hypothesis test.
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2. Bongiorno, C., Miccichè, S., Mantegna, R.N.: Nested partitions from hierarchical clustering

statistical validation. arXiv preprint arXiv:1906.06908 (2019)
3. Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-

Gengelbach, M., Van De Rijn, M., Rosen, G.D., Perou, C.M., Whyte, R.I., et al.: Diversity
of gene expression in adenocarcinoma of the lung. Proceedings of the National Academy of
Sciences 98(24), 13784–13789 (2001)

4. Suzuki, R., Shimodaira, H.: Pvclust: an r package for assessing the uncertainty in hierarchical
clustering. Bioinformatics 22(12), 1540–1542 (2006)

60

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Embeddings-enhanced Language Communities
Separation
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1 Introduction

The number of methods proposed for community detection (CD) in graphs is constantly
increasing, however, those typically do not support setting the number of resulting com-
munities upfront [1],[2]. Nevertheless, in real-life problems, the number of existing
communities could be known and one ”just” needs to assign instances to the most ap-
propriate communities. One such problem that we are considering here is whether in a
multi-language country it would be possible to separate language communities based on
the (solely) customer calling data (hence without any additional attributes that might be
more related to the language used). To this end, we propose using k-means clustering
on top of learnt proximity preserving customer representations (and not hand-crafted
topological features as has been a common practice so far).

Therefore, the main contribution of this study is providing the evidence that even the
simplest clustering algorithms can perform better than some well-known, sophisticated
CD methods, if they are applied on top of learnt representations. This is especially the
case when only a network topology is available and no other seemingly related attributes
could be derived from the underlying network.

2 Methodology and Experimental Setup

Methodology Our methodology consists of three main steps. The first one is a call
network construction, implemented (classically) by assigning nodes to customers and
adding links if corresponding customers had a call. We resort to exploiting the largest
connected component (LCC) with ∼3.9M nodes and ∼5.7M edges as it achieves better
performance than the original graph. Secondly, we perform representation learning
on the call network, whereby we learn node (customer) representations (aka embed-
dings). To this end, we use a learning method based on random walks and word2vec
[3], proximity preserving neural network language model. More concretely, we exploit
both SkipGram and CBOW methods to generate embeddings. Finally, the third step
is clustering of the embeddings. More specifically, we perform k-means clustering on
previously generated embeddings, imposing the number of clusters to be equal to that of
the ground truth. Finally, we evaluate the quality of clustering using the Adjusted Rand
Index (ARI) and balanced accuracy (BACC), to account for the imbalanced number of
instances in the ground truth clusters.
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Data We operate with anonymized call detail records (CDRs) containing info about
caller, callee, date/time and duration per call. In addition, for a subset of users we have
their voicemail language settings. These serve as a proxy for the language spoken by
a customer. Among four identified languages (denoted as Lang1-Lang4), Lang2 and
Lang3 are far more used, so both 2 and 4 clusters were considered as a ground truth.

Baselines Three methods were used: 1) Louvain [1], a well-known CD algorithm orig-
inally proposed as well for distinguishing language communities, 2) the Asynchronous
Fluid (AF) community detection algorithm [4], based on the interaction of fluids in an
environment, that allows for a predefined number of communities (the main motivation
for using it) and, 3) K-means clustering combined with various hand-crafted network
features (denoted as net feat) which would permit to directly compare the efficiency of
learnt embeddings against the manually derived topology-based information.

3 Results

Applying Louvain [1] on the LCC, yielded as much as 2175 different communities.
An analysis of the largest 50 of them (Figure 1), shows that typically one particular
language (mostly Lang2 and Lang3) dominates each community. However, there is a
problem of the same language users being scattered over many clusters. Furthermore,

Fig. 1. Language distribution across the largest 50 Louvain communities.

Louvain does not allow specifying the number of communities, and merging them post-
hoc does not guarantee (to say the least) maximal modularity (the Louvain’s main idea).

The rest of the methods could be properly benchmarked given that the number of
pre-set communities was the same (2 or 4). As can be seen from Table 1, both ARI and
BACC are the highest when embeddings were used, with SkipGram providing better
results than competing CBOW. Moreover, the ARIs close to 0.0 for methods based on
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Table 1. ARI (the best in boldface) and BACC using 4 different methods and 2 versions of ground
truth. EmbSG and EmbCBOW stand for embeddings obtained by SkipGram and CBOW methods,
respectively, while net feat refers to hand-crafted features derived from the LCC directly.

Method
ground truth: 4 clusters ground truth: 2 clusters

ARI BACC ARI BACC
Asynchronous Fluid 0.0413 0.2713 -0.0114 0.4735

k-means+net feat -0.0001 0.2500 -0.0001 0.4998
k-means+EmbSG 0.3651 0.4075 0.8002 0.9466

k-means+EmbCBOW 0.1736 0.3261 0.4297 0.8036

AF and net feat, clearly indicate that the corresponding labelings are almost random.
Furthermore, using only 2 clusters as ground truth provides better results (except for the
AF method), probably as the two less used languages introduce some noise otherwise.

It is worth mentioning that due to the huge size of the LCC, calculating many fea-
tures that deemed as potentially informative, was not feasible within a reasonable time
frame (48 hours). This was particularly the case with most of the centrality measures. As
such, the final set of features (per node) included in net feat were: first-order degree, av-
erage neighbor degree, clustering coefficient, degree centrality, number of triangles and
PageRank score. Similar computational issues were encountered with standard commu-
nity detection algorithms such as [2].

Summary. The obtained results clearly demonstrate that embeddings can improve the
quality of clustering and lead to outperforming sophisticated CD methods. This is espe-
cially valuable when there is a lack of any additional data (except for network topology,
that is). Furthermore, presented method was proven to be scalable on large networks.

As a future work we envision benchmarking obtained results with the methods aim-
ing at learning network (node) representations taking into account underlying commu-
nities such as [5]. Additionally, it would be worthwhile taking a further look into the
dynamics related to observed communities.
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1 Introduction

Networks are ubiquitous in modern society; from the Internet and online blogs to pro-
tein interactions and human migration, we are surrounded by inherently connected
structures [4]. A fundamental problem in network analysis and machine learning is that
of clustering, which aims to identify groups of nodes that are highly inter-connected
or exhibit similar features. Spectral methods for network clustering have a long and
successful history, and have become increasingly popular in recent years due to their
computational efficiency and amenability to theoretical analysis under various proba-
bilistic models. However, traditional spectral methods have shortcomings, which stem
from their inability to capture latent higher-order network structures [2], and the chal-
lenges faced when handling directed edges [3], which renders the adjacency matrix no
longer symmetric. Motif-based spectral methods have proven more effective for cluster-
ing directed networks on the basis of higher-order structures [7], with the introduction of
the motif adjacency matrix (MAM). We explore motif-based spectral clustering meth-
ods with a focus on addressing these shortcomings for weighted directed networks, and
augment our findings with numerical experiments on synthetic and real-world networks.

2 Problem Statement and Main Results
We consider clustering a weighted directed graph without self-loops or multiple edges.
To exploit higher-order structures, we look for the occurrence of motifs (small con-
nected subgraphs, Figure 1). We consider the weighted motif adjacency matrix M as-
sociated with a graph G and motif M , where Mi j is the total weight of all instances of
M in G containing both nodes i and j, and apply traditional spectral clustering to the
resulting (symmetric) matrix M. For motifs on at most three nodes, Proposition 1 gives
a fast and parallelizable matrix multiplication-based procedure for computing MAMs.
In addition, we also present a novel motif-based method for clustering bipartite graphs.

Proposition 1 (MAM formula). Suppose G is a graph on n vertices, and M is a
motif on at most three vertices. Then calculating an MAM takes at most 18 matrix
multiplications, 22 entry-wise multiplications and 21 additions of n×n matrices.
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Fig. 1. Example of directed motifs which might appear as subgraphs of a larger graph.
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2.1 Motif-Based Clustering in Directed Graphs
We consider a family of directed stochastic block models (DSBMs) that exhibit im-
balanced flows in terms of the edges between clusters, and show that our motif-based
method performs better than traditional spectral clustering. Figure 2 plots the popular
Adjusted Rand Index (ARI) [6] attained by various motifs, averaged over 20 trials, for
asymmetric two-block DSBMs with n = 200 nodes. The first motif Ms yields the tra-
ditional spectral clustering algorithm, while the others consider higher-order structures.
The top of the plot shows |C|, the number of nodes clustered by the algorithm. Higher
values of ARI and |C| are better, and clearly motif M1 outperforms traditional methods.
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Motif
Fig. 2. Left: block structure and sparsity matrix of the asymmetric two-block DSBM. Right: ARI
violin plot for the asymmetric two-block DSBM.

Next, we consider the US Migration data set [8], where the n = 3107 nodes denote
the counties in mainland US, and the weighted directed edges indicate human migration
flows during 1995–2000. Figure 3 shows the motif-based second eigenvector embed-
dings (x2) and clusterings (C) obtained using various motifs, with k = 7 clusters.

Ms M6 M9

x2

C

Ncut = 1.13 Ncut = 1.35 Ncut = 1.17

Fig. 3. Top: motif-based colorings of the US Migration network, from the second eigenvector of
M. Bottom: clustering structure recovered from standard random-walk spectral clustering on M.

We also considered the US Political Blogs network [1], with n = 1222 nodes denot-
ing blogs labelled as “liberal” or “conservative”, and weighted directed edges indicating
the number of citations between blogs. Figure 4 plots ARI against number of vertices
clustered by various motifs, and shows the eigenvector embedding given by motif M12.
2.2 Motif-Based Clustering in Bipartite Directed Graphs
We consider bipartite stochastic block models (BSBMs), and show the effectiveness of
motif-based methods for clustering them. We also demonstrate bipartite clustering on
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Fig. 4. Left: The US Political Blogs network. Middle: ARI versus largest connected component
size for various motifs. Right: eigenvector embedding for motif M12, colored by political leaning.

the Unicode Languages network [5], where source nodes denote territories, destination
nodes denote languages, and weighted directed edges indicate number of speakers. Fig-
ure 5 shows a clustering of territories into 6 clusters based on their common languages.

   Cluster 1
   Cluster 2
   Cluster 3
   Cluster 4
   Cluster 5
   Cluster 6
   No Cluster

Fig. 5. Clustering of the territories from the Unicode Languages network.

3 Discussion and Conclusion
Motif-based spectral clustering is a valuable tool for clustering weighted directed net-
works, which is scalable and easy to implement. Potential extensions include an anal-
ysis of the differences between clustering based on functional and structural MAMs, a
comparison with the Hermitian-based clustering in directed graphs [3], and application
to directed core-periphery detection.
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Introduction

Community detection has grown to become a standard tool for the observation of mod-
ular structures [3]. One of the most used approaches is optimising the so-called modu-
larity function [6], for which a wide range of algorithms exist [5, 2, 9]. Next to modular-
ity based approaches, new graph-generating ideas based on stochastic block modeling
emerged [8], allowing the discovery of disassortative community structures and even
the inclusion of metadata in the partitioning [7].
Another way to detect communities can be considering coordination games on net-
works. The social feedback model [1] provides an agent-based interaction model in
which agents change their opinion based on the reaction of their neighbors. In a binary
opinion space, the stability of the final opinions (or communities) on the network can be
assessed using the cohesion measure [4]. We will see that the per-node cohesion, which
we call “node belongingness”, is closely related to the modularity.
The following efforts aim to provide an interpretation of the modularity metric in re-
lation to game-theoretic models. In this context, we want to ask how many opinions
a certain network configuration supports, and what the roles of single nodes can be in
enabling the emergence or disappearance of certain opinions in networks.

Social Feedback Model

There are different opinions oi that agent i can adopt and express to their neighbors.
Agents become more convinced of an opinion if the response from their neighbors is
positive, and less convinced otherwise.
The internal evaluation of the agent is updated by:

Ci(o)←
{
(1−α) Ci(o)+αri : if o = expression

Ci(o) : else

with reward ri = 1 if oi = o j and −1 else.
Agents express the opinion they most strongly support during the current timestep:

oi = argmax
o

Ci(o)
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Modularity and mean belongingness

The modularity is defined as:

Q =
1

∑i ki
∑
i, j
(Ai j−Pi j) δ (gig j) (1)

where ki is the weight of node i, Pi j is a null model and gi is the community index
of node i. Usually, the null model is based on the degree distribution of the network,
resulting in:

Q =
1

∑i ki
∑
i, j
(Ai j−

kik j

∑i ki
) δ (gig j) (2)

We define the belongingness of a node to its community as the fraction of its neighbors
that share the same opinion:

ci =
∑ j δ (gig j) Ai j

∑ j Ai j
(3)

We compute the mean belongingness:

1
N ∑

i
ci =

1
N ∑

i

∑ j δ (gig j) Ai j

∑ j Ai j
=

1
N ∑

i

∑ j δ (gig j) Ai j

ki
(4)

The modularity can be rewritten in the following way :

Q =
1

∑i ki
∑
i, j

Ai j δ (gig j)−κ = ∑
i

ki

∑ j k j
ci−κ (5)

The value κ depends on the null model Pi j:

κ =
1

∑i ki
∑
i, j

kik j

2m
δ (gig j) =

1
∑i ki

∑
i, j

Pi j δ (gig j) (6)

We see in (5) that the modularity is proportional to the node belongingness. This is
a first step in interpreting the modularity function in terms of game-theoretic stability
criteria. For a space of two opinions, the stability criterion based on cohesion [4] is
quite straightforward: an opinion configuration is stable if mini(ci) > 0.5. However, if
we consider more than two possible opinions, the criterion is not as clear. We aim to
connect these notions of stability to a multi-opinion context, which could be one path
to testing modularity-based partitions for meaning.

Results

We test the social feedback model on the paradigmatic Karate Club network [10]. Links
in the network represent social ties between the members of a university karate club.
The club is torn by a dispute between the instructor and the president, which eventually
leads the network to split in two, resulting in the so-called “ground truth” partition. Ex-
cept for member number 9, who picked his final faction stategically, Zachary was able
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Fig. 1. Different partitions of the Karate Club network and their node belongingness dis-
tribution. Nodes are colored according to their community. The Karate Club network’s “ground
truth” partition is presented on the left. In the middle is a Louvain partition, which presents
four communities. On the right is the outcome of the social feedback model, in which the in-
dividual opinions were initialised using the Louvain partition. Only two opinions survive. The
learning rate is set to α = 0.015. On the lower plots, each node’s belongingness c is shown:
min

louvain
ci = 1

3 < min
groundtruth

ci = 2
5 < min

social f eedback
ci = 1

2 .

to find the partition using a maximum flow algorithm [10].
We compute a Louvain partition of this network with resolution 1.0. The resulting par-
tition is used to initialise the node’s opinions for the social feedback model at t = 0.
The learning rate is set to α = 0.015. At t = 100000, only two opinions survive, corre-
sponding to the ground truth partition except for member number 9. Figure 1 shows the
different partitions of the network and the according node belongingness values for each
node. The Louvain partition presents several nodes with ci < 0.5. From this first look,
it is possible to get an intuition of stability of certain partitions. For instance, the ab-
sorbtion of two out of four communities from the Louvain partition could be predicted
using the node belongingness value.

Summary and Outlook

This abstract provides a first approach at interpreting the abstract modularity function
in the game-theoretic context of the social feedback model. The model can be used to
test a given network partition for stability, which is demonstrated on the Karate Club
network. Here, two small commmunities are absorbed by larger ones, resulting in a
two-opinion network.
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Further work will investigate the role of individual nodes in an opinion space, especially
at the borders of communities, to see if there are interaction patterns that enhance or
suppress opinion absorbtion. Ultimately, the question of how many communities are
supported given a network structure will be addressed in the course of this research.
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Handling Noisy Constraints in Semi-supervised
Overlapping Community Finding

Elham Alghamdi, Ellen Rushe, Mehran H.Z. Bazargani,
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1 Introduction

Community structure is an essential property that helps us to understand the nature
of complex networks. Since algorithms for detecting communities are unsupervised
in nature, they can fail to uncover useful groupings, particularly when the underlying
communities in a network are highly overlapping [1]. Recent work has sought to address
this via semi-supervised learning [2], using a human annotator or “oracle” to provide
limited supervision. This knowledge is typically encoded in the form of must-link and
cannot-link constraints, which indicate that a pair of nodes should always be or should
never be assigned to the same community. In this way, we can uncover communities
which are otherwise difficult to identify via unsupervised techniques.

However, in real semi-supervised learning applications, human supervision may be
unreliable or “noisy”, relying on subjective decision making [3]. Annotators can dis-
agree with one another, they might only have limited knowledge of a domain, or they
might simply complete a labeling task incorrectly due to the burden of annotation. Thus,
we might reasonably expect that the pairwise constraints used in a real semi-supervised
community detection task could be imperfect or conflicting. The aim of this study is to
explore the effect of noisy, incorrectly-labeled constraints on the performance of semi-
supervised community finding algorithms for overlapping networks. Furthermore, we
propose an approach to mitigate such cases in real-world network analysis tasks. We
treat noisy pairwise constraints as anomalies, and use an autoencoder, a commonly-
used method in the domain of anomaly detection, to identify such constraints. Initial
experiments on synthetic network demonstrate the usefulness of this approach.

2 Methods and Experimental Design

The key aspect of our work is an iterative approach using an autoencoder to remove
noisy pairwise constraints selected by the AC-SLPA algorithm [2]. An autoencoder
(AE) refers to a neural network architecture that attempts to reconstruct a given input
in an effort to learn an informative latent feature representation. Formally, for an input
vector x, we attempt to map x to a reconstruction of itself x′. By doing this, a latent repre-
sentation of the data is created in the hidden layer(s) of the network [4]. These networks
can utilize a “bottleneck” configuration where the hidden layer(s) of the network com-
press the data [4]. The network is trained by minimizing the mean squared error (MSE)
between the reconstruction and input. Additionally, autoencoders can be constrained to
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enforce sparsity in the network and therefore no longer require a compressed network
capacity. One type of constrained autoencoder adds a sparsity penalty to hidden repre-
sentations by constraining their absolute value. This penalty term is weighted and added
to the cost function. In our work we employ the above neural network architecture to
identify potentially noisy pairwise constraints selected by AC-SLPA before applying
the community detection process.

Firstly, feature vectors are constructed as inputs to the autoencoder, one vector per
input constraint pair. Along with the constraint type, the other features include standard
measures based directly on the network topology: whether the pair of nodes shares an
edge, their number of common neighbors, shortest path length, and cosine similarity.
We also include more complex features: their SimRank similarity [6] and their simi-
larity as computed on a node2vec embedding generated on the network [5]. From this
data, the model then learns to reconstruct the original constraints from the latent repre-
sentation. The reconstruction error is then given by the difference between the original
constraints and the reconstruction. A large error is indicative of an anomaly (i.e. a noisy
constraint), while a low error indicates a “normal” example (i.e. a correctly-labelled
constraint). The expectation is that, as the vast majority of pairwise constraints are non-
noisy, the autoencoder’s latent representation will be biased towards these examples.
This makes the model somewhat robust to outliers. Based on this property, it is then
assumed that examples which are noisy will have a high reconstruction error.

As our initial evaluation, we assess the capability of autoencoders to detect noisy
constraints. Once the set of constraints is selected by AC-SLPA and labeled by the
oracle, the autoencoder is trained on this set. These are then passed through the autoen-
coder once again to obtain a reconstruction error for each constraint. The AUC over this
error is calculated, which provides an estimate of the number of constraints that were
successfully detected in the absence of a definitive threshold. The number of layers in
each autoencoder is varied to examine whether this task benefits from a deeper model.
We consider both compression-based autoencoders and sparse autoencoders.

Evaluations are performed on 64 LFR benchmark networks containing either small
or large communities, for a variety of parameters {N,Om,On,µ} (see Table 1). The
depth of the autoencoder is varied to assess its effect on performance. In the case of
the compression autoencoders, the nodes are gradually decreased in the encoder and
increased in the decoder, while this compression is not necessary for the L1 constrained
models [4]. In the case of the constrained autoencoders, the sparsity weight is kept at
10−5. All models were trained with a learning rate of 10−3 for a maximum of 100
epochs and a batch size of 256.

3 Results

The results in Table 1 are divided into two parts, which represent the AUC scores of the
autoencoder on networks with 10% and 50% overlapping nodes respectively, averaged
across 10 runs. Each table entry shows the AUC value of an AE model (on the rows)
for each network (on the columns). For each network, the AUC scores of AE models
are ranked, and the best performance is highlighted in bold. The last column reports the
average rank score of each model. As we can see, all AE models show high AUC scores,
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Table 1: AUC scores on LFR networks with 10% of noise in pairwise constraints. AE*
[ layers dimension]: indicates the number of layers in compression autoencoders, and
AE* l1 [ layers dimension]: indicates the number of layers in L1 constrained autoen-
coders: AE1: [7,3,7], AE1 L1: [7,7,7], AE2: [7,5,3,5,7], AE2 L1: [7,7,7,7,7], AE3:
[7,6,5,3,5,6,7], AE3 L1: [7,7,7,7,7,7,7].

(a) AUC scores on networks with 10% overlapping nodes
Comm.
size Large Communities Small Communities Average

Rankµ 0.1 0.3 0.1 0.3
Om 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
AE1 0.752 0.736 0.777 0.736 0.829 0.770 0.744 0.751 0.775 0.757 0.756 0.773 0.795 0.733 0.773 0.739 4.4 (4)
AE1 L1 0.759 0.800 0.801 0.758 0.837 0.772 0.829 0.732 0.832 0.828 0.774 0.766 0.810 0.824 0.826 0.759 2.9 (2)
AE2 0.760 0.739 0.803 0.776 0.797 0.787 0.798 0.749 0.783 0.795 0.765 0.764 0.786 0.780 0.775 0.773 3.3 (3)
AE2 L1 0.762 0.706 0.791 0.760 0.792 0.801 0.789 0.784 0.775 0.795 0.798 0.769 0.770 0.834 0.831 0.813 2.9 (2)
AE3 0.754 0.809 0.771 0.810 0.794 0.797 0.796 0.792 0.817 0.833 0.836 0.822 0.769 0.839 0.827 0.849 2.3 (1)
AE3 L1 0.720 0.777 0.773 0.776 0.779 0.751 0.764 0.740 0.729 0.753 0.726 0.793 0.786 0.795 0.774 0.782 4.4 (4)

(b) AUC scores on networks with 50% overlapping nodes
Comm.
size Large Communities Small Communities Average

Rankµ 0.1 0.3 0.1 0.3
Om 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
AE1 0.744 0.797 0.823 0.793 0.832 0.815 0.804 0.798 0.779 0.829 0.828 0.778 0.813 0.831 0.849 0.806 3.3 (3)
AE1 L1 0.766 0.804 0.811 0.834 0.788 0.788 0.826 0.766 0.847 0.755 0.874 0.818 0.756 0.826 0.842 0.836 3.1 (2)
AE2 0.741 0.767 0.799 0.668 0.771 0.806 0.803 0.676 0.783 0.760 0.784 0.799 0.762 0.808 0.823 0.812 4.9 (5)
AE2 L1 0.780 0.798 0.791 0.833 0.794 0.827 0.818 0.783 0.801 0.776 0.867 0.790 0.792 0.879 0.848 0.819 2.6 (1)
AE3 0.696 0.720 0.706 0.757 0.782 0.745 0.823 0.779 0.822 0.770 0.858 0.669 0.820 0.837 0.808 0.803 4.4 (4)
AE3 L1 0.752 0.824 0.835 0.805 0.831 0.808 0.837 0.774 0.787 0.785 0.860 0.669 0.801 0.853 0.852 0.811 2.6 (1)

with the lowest scores around 70%. However, we see the AE3 models perform better on
networks with On = 10%, while AE1 L1 and AE2 L1 also perform well here. On the
networks with On = 50%, AE2 L1 and AE3 L1 are the top-ranked models. In general,
these results suggest that deeper autoencoder models do not perform significantly better
than simpler ones when detecting noisy constraints.

In summary, our proposed approach currently yields promising results on bench-
mark networks. A second set of experiments is currently in progress, which directly
evaluates the performance of AC-SLPA when incorporating reliable constraints as se-
lected by the autoencoder model, on both synthetic and real-world networks.
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1 Introduction

In the classical network theory, in weighted (or valued) networks, edge weights are
constants [1, 2]. However, in real–world applications these weights may vary within
ranges rather than being constants [3]. To better model such variability of weights in
a network, instead of using constants or point values (real numbers) and associated
methods to represent the information present in the edges of the networks, we represent
weights as intervals [4]. A representation of these values in the form of closed intervals
composed with the precise information following the ontic approach [5], can be more
meaningful and useful in a dynamic environment than point–valued output, as these
intervals contain more information in expressing raw data variability [6].

Although several extensions of modularity to weighted networks were proposed,
none takes into account the variability of link weights. To fill this gap, we extend
both, Newman’s modularity for weighted networks [2], and one state–of–the–art greedy
method to optimize modularity introduced by Blondel et. al. [7] (the Louvain algo-
rithm), to the general case of interval–weighted networks (IWN). Finally, we apply our
community detection approach for IWN to a real–world commuter network between
the Portuguese mainland municipalities.

2 Modularity in Interval-Weighted Networks

The generalization of the (unstandardised) modularity for weighted networks, QW =

∑C∈C ∑i, j∈C (oi j− ei j) (where C is a partition of the vertices into q sets), gain of mod-
ularity (∆QW = QW

new −QW
last) and consequently of the Louvain method to this new

approach, was done considering that the IWN can be represented as a contingency ta-
ble, denoted by OI , whose cells represent the observed interval–weights oI

i j = [oi j,oi j]

(oi j ≥ oi j > 0; oI
i j ⊆ R+), if there is an weighted edge between vertices (i, j) and

zero otherwise. The interval total weight/strength attached to vertex i, is denoted by
sIO

i =∑n
j=1[oi j,oi j], and the total weight is, ∑n

i=1 sIO
i =∑n

j=1 sIO
j =∑n

i=1 ∑n
j=1[oi j,oi j] (to

simplify, hereafter we will use the notation [2w,2w]). Analogously, and assuming inde-
pendence between the vertices, the contingency table for the expected interval–weights
is defined as EI = eI

i j, where eI
i j is the interval–weight that would be obtained if the hy-

pothesis of row–column independence were true, eI
i j =

[ sIO
i sIO

j
2w ,

sIO
i sIO

j
2w

]
, (0 /∈ [2w,2w]).

Further, these expected frequencies must pass through an “adjustment” of its total lower
(2w) and upper limits (2w). The generalization of modularity (QW ) and modularity gain
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(∆QW ) to interval data was done as follows: assuming that we have a fixed partition
consisting in two communities Cr and Cs, the modularity for interval–weighted net-
works is equal to: QIW = ∑r D(orr,err), where “D” represents the difference between
the observed orr and the expected err interval–weights; likewise, to evaluate the modu-
larity gain resulting from the merging of the two communities Cr and Cs into a single
community Ct =Cr∪Cs, the modularity gain for interval–weighted networks is equal to:
∆QIW = QIW

new−QIW
last . Then following the same procedure, Newman’s normalization of

modularity [9] was generalized for the case of IWN by: QIW
norm = QIW

QIW
max

= ∑r D(orr ,err)

D
(
[2w,2w],∑r err

) .

In the previous generalizations we face two major setbacks: interval dependency; and
the fact that the value of the distance between intervals is always positive. To con-
tour these drawbacks we propose the following three types of measures to evaluate de
difference between two intervals [x,x] and [y,y]: d1

(
[x,x], [y,y]

)
= max

{
x− y,x− y

}
,

d2
(
[x,x], [y,y]

)
= max

{
|x− y|, |x− y|

}
sign argmax

{
|x− y|, |x− y|

}
, and a “vectorial

difference”
#»

d 3
(
[x,x], [y,y]

)
=
(
x− y,x− y

)
. According to the type of difference used,

other alternative modularity measures were defined. Similarly, various community de-
tection methods based on the Louvain algorithm have also been developed.

3 Application to a Commuters Interval-Weighted Network

We analyse the community structure that emerges from the movements of daily com-
muters in mainland Portugal between the twenty three Regions NUTS 3 (Nomenclature
of Territorial Units for Statistics) [8]. The applied methodology is capable of detect-
ing productive regions composed of cohesive NUTS 3 in terms of commuting flows.
The elements oI

i j denote the maximum variability of the bi–directional flows i j and ji
between the NUTS i and j (Figure1b): oI

i j =
[

min{o′i j,o
′′
ji},max{o′i j,o

′′
ji}
]
=
[
oi j,oi j

]

(flows greater than 50 daily movements). Therefore, taking into account the assumption
of regular bi–directional movements along the edges, the adjacency matrix is symmet-
ric, oI

i j = oI
ji, and the network is described as an undirected interval–weighted network.

Fig. 1. (a) Bidirectional interval flows i→ j and j→ i, (b) Undirected interval flow between i j.

For the sake of simplicity, we only report the results for the difference d2. The final clus-
tering reveals the existence of three NUTS 3 communities, with normalised modularity
QIW

norm = 0.596 (QIW
max = 10792.1, and QIW = 6371.6), which means a moderate/strong

clustering structure. The Louvain algorithm for IWN reached maximum modularity at
the end of the second pass. These communities roughly represent the division of the
country into two major regions, the northern region (C2: AMI, ATA, AMP, AVE, CAV,
DOU, RAV, RCO, TES, TTM, VDL) and the southern region (C1: ACE, AAL, BAL, ALI,
ALG, AML, LTJ, OES, MTJ, RLE). However, the less “important” region, centre interior
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of Portugal (C3: BBA, BSE), forms a community of its own. Table 1 and Figure 2 be-
low, show the adjacency matrix for the interval–weighted network and geographical
representation that outcomes from this community detection method for IWN. These
intervals account for the maximum variation in daily commuters flows within and be-
tween those communities.

Table 1. Interval–weighted adjacency matrixa.

C1 C2 C3
ACE, AAL, BAL, ALI,
ALG, AML, LTJ, OES,

MTJ, RLE

AMI, ATA, AMP, AVE,
CAV, DOU, RAV, RCO,

TES, TTM, VDL
BBA, BSE

ACE, AAL, BAL, ALI,
ALG, AML, LTJ, OES,

MTJ, RLE
[2562,24720] [966,3483] [269,411]

AMI, ATA, AMP, AVE,
CAV, DOU, RAV, RCO,

TES, TTM, VDL
[966,3483] [4328,41994] [221,731]

BBA, BSE [269,411] [221,731] [110,996]
a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alen-
tejo, AMI-Alto Minho, ATA-Alto Tâmega, AML-Área Metropolitana de Lisboa, AMP-Área
Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra
da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do Tejo, MTJ-Médio Tejo, OES-Oeste,
RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria, TES-Tâmega e Sousa,
TTM-Terras de Trás-os-Montes, VDL-Viseu Dão Lafões. Fig. 2. Geographical representation.

Summary. We consider Interval–Weighted Networks (IWN) where the weights are rep-
resented by closed intervals, thus taking into account the variability of network edge
weights. Accordingly, both Newman’s modularity (Q), and modularity gain (∆Q) for
weighted networks, as well as Louvain’s algorithm, were generalized to the general case
of IWN. Further measures have been developed to evaluate the difference between the
observed and expected values. Finally, we apply our community detection approach for
IWN to a real–world commuter network between the Portuguese mainland municipali-
ties to put in evidence homogeneous groups (communities) of territorial units.
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Abstract 

Latent geometry has been recently shown to be relevant in applied fields of network 
science such as community detection and greedy routing [1]. However, there have 
been no general investigations so far on the extent to which latent geometry inspired 
graph dissimilarities can boost the task of community detection regardless of the par-
ticular type of principle adopted in the graph partitioning algorithm (stochastic flow, 
message passing, modularity optimization, etc...). For instance, Affinity propagation 
(AP) [2] and Markov Clustering (MCL) [3] are among the most effective algorithms 
for data clustering in high-dimensional feature space. However the numerous attempts 
to test their performance for community detection in real complex networks have 
been attaining results very far from the state of the art methods such as Infomap [4] 
and Louvain [5]. Indeed, the crucial problem is to convert the network topology in a 
‘smart-enough’ pre-weighted connectivity or dissimilarity matrix that is able to 
properly address the algorithmic procedure behind these clustering techniques. Here 
we discuss how to leverage network latent geometry notions in order to design 
weighted matrices for community detection. Our results demonstrate that the dissimi-
larity measures we designed can boost AP [6], MCL and also Louvain, not only on 
several original real networks, but also when their structure is corrupted by noise 
artificially induced by missing or spurious connectivity. On the other side, further 
investigations are needed for enhancing Infomap. Finally, the results obtained on real 
networks are also con-firmed in tests performed on synthetic networks generated ac-
cording to a hyperbolic latent geometry model [7] that induces community structure. 
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Fig. 1. Community detection on nPSO networks: comparison between different affinity 

propagation variants. Synthetic networks have been generated using the nPSO model with 
parameters γ = 3 (power-law degree distribution exponent), m = 7 (half of average degree), T = 
[0.1, 0.3, 0.5] (temperature, inversely related to the clustering coefficient, whose respective 
value is reported on the upper part of each plot), N = [100, 500, 1000] (network size) and C = 
[3, 6, 9] (communities). For each combination of parameters, 100 networks have been generat-
ed. For each network the community detection methods LGI-AP-RA, LGI-AP-EBC, J-AP, CN-
AP, ESP-AP and SP-AP have been executed and the communities detected have been com-
pared to the annotated ones computing the Normalized Mutual Information (NMI). The plots 
report for each parameter combination the mean NMI and standard error over the random repe-
titions. For further details, please see the Reference [6]. 
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3 

Table 1. The table reports the Normalized Mutual Information (NMI) computed between the 
ground truth communities and the ones detected by every community detection algorithm for 8 
real networks. NMI = 1 indicates a perfect match between the two partitions of the nodes. For 
Affinity propagation (AP) different dissimilarity matrices are compared: the best latent geome-
try inspired (LGI) variant and the ones introduced in previous studies, i.e. Jaccard (J), Common 
Neighbours (CN), Shortest Path (SP) or Euclidean Shortest Path (ESP). For further details, 
please see the Reference [6]. For Markov Clustering (MCL) the best latent geometry inspired 
(LGI) variant is compared with the unweighted version. The respective variants for each of the 
two methods are ranked by mean performance over the dataset. 

Method Karate 
Opsahl 

8 

Opsahl 

9 

Opsahl 

10 

Opsahl 

11 
Polbooks Football Polblogs 

mean 

NMI 

LGI-AP 0.67 0.52 0.42 1.00 0.93 0.56 0.91 0.69 0.71 

J-AP 0.73 0.48 0.45 1.00 0.96 0.39 0.89 0.40 0.66 

ESP-AP 0.57 0.38 0.35 0.96 0.96 0.50 0.92 0.47 0.64 

CN-AP 0.16 0.40 0.54 0.89 0.72 0.52 0.91 0.68 0.60 

SP-AP 0.83 0.50 0.20 0.65 0.09 0.46 0.63 0.29 0.46 

LGI-MCL 0.83 0.59 0.39 1.00 0.96 0.57 0.93 0.00 0.66 

MCL 0.73 0.55 0.43 1.00 0.68 0.57 0.93 0.00 0.61 
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1 Introduction

Exploiting random walk is an effective approach to designing methods for detecting
communities from networks [1–3]. Following this approach, we have recently proposed
a probabilistic machine-learning formulation of community detection, which we have
called modular decomposition of Markov chain (MDMC) [4, 5]. This formulation pos-
tulates decomposition of an infinite random walk spreading over the entire network,
from which we wish to detect communities, into local modules as proxy for communi-
ties. The decomposition is mathematically expressed by the mixture distribution:

p(n) = ∑K
k=1 π(k)p(n|k) , (1)

where N is the total number of nodes; p(n) is the ‘global’ probability that a random
walker is at node n [6]; p(n|k) is the ‘local’ probability that he/she is at node n con-
ditioned that he/she is staying in community k; π(k) is the probability that he/she is
staying in community k. We have derived the EM algorithm to infer p(n|k) and π(k) [4,
5], by which community detection is attained.

The structure of each community k detected by MDMC is delineated by p(n|k),
which defines the relative strength of membership of each node n in community k. Since
p(n|k) normally takes a non-negative graded value, such a community has no clear
boundary that separates members and non-members of the community. Such a structure
of communities is described as “pervasive” [7]. Thus, MDMC detects communities as
pervasively structured objects.

The present study is devoted to demonstrating that pervasive community detection,
which is out of reach of most existing methods [7], is a key advantage of MDMC. First,
we propose to use a specific type of stochastic block modelling to synthesize benchmark
networks planted with pervasive communities. Then, MDMC’s performance of perva-
sive community detection is quantitatively evaluated using these benchmark networks.

2 Methods

Benchmark networks planted with pervasively structured communities are mathemat-
ically synthesized using Ball-Karrer-Newman’s stochastic block model (BKN’s SBM)
[8], which defines the probability of generating a network with adjacency matrix A =
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(Anm) by Poisson distribution in the form

p(A) =
N

∏
n, m=1




(
∑K∗

k=1 θnkθmk

)Anm

Anm!
exp

(
−

K∗

∑
k=1

θnkθmk

)
 . (2)

Here, K∗ is the number of planted communities; θnk is a parameter representing the
“propensity” of node n to block k and takes a continuous non-negative value, whereby
delineating the pervasive structure of block k (namely, planted community k); ∑K∗

k=1 θnkθmk
is the rate for a Poisson event of generating a link between nodes n and m.

The {θnk}K∗
n=1 is stochastically generated so that they follow a power-law distribu-

tion p(θnk)∼ θ−γ
nk . Assuming the power law stems from the observation that the degree

distribution obeys a power law in many of real-world networks. The parameter values
for the synthesis are set as follows: N = 1000; K∗ = 10; γ = 3.

To quantitatively measure how correctly planted pervasive communities are recov-
ered by community detection, we introduce the “maximum rank correlation (MaxRC)”,
defined as follows. Let R∗(k) and R(k′) be the rank order of nodes defined in planted
community k and detected community k′ according to the descending order of θnk and
p(n|k′), respectively. Spearman’s rank correlation between R∗(k) and R(k′), denoted
by r (R∗(k),R(k′)), is then calculated for all combinations of k (k = 1, · · · , K∗) and
k′ (k′ = 1, · · · , K). Therefore, MaxRC is given by

MaxRC =
1

K∗
K∗

∑
k=1

max
k′

r
(
R∗(k),R(k′)

)
. (3)

BKN’s SBM can also be used to detect pervasive communities. This is achieved by
inferring θnk for the adjacency matrix A = (Anm) of a given network [8]. Indeed, BKN’s
SBM is one of few existing methods that can detect pervasive communities. Therefore,
BKN’s SBM is taken as a baseline for quantitative evaluation of MDMC’s performance
of pervasive community detection.

3 Results and Discussion

Each planted community k is delineated by θnk, or equivalently, ‘normalized’ propen-
sity defined by p∗(n|k)≡ θnk/∑N

n=1 θnk. Panels in Fig. 1a show the normalized propen-
sities for planted communities of the same network but with the node number (#) n
sorted in descending order of p∗(n|k) for a specific k. Note from these panels that per-
vasive communities are extensively soft-overlapping. MDMC has only one parameter,
α , which has turned out to be controlling the resolution of community detection (the
smaller α , the network is decomposed into more communities of smaller sizes) [4, 5].
Therefore, we have calculated MaxRC as a function of α (Fig. 1b). KBN’s SBM has
no such resolution-controlling parameter and is required to predetermine the number of
communities to which the network should be decomposed [8]. We therefore examined
KBN’s SBM for K =10, 20 and 30 (note that K =10 is consistent with the number of
planted communities). MaxRC given by MDMC for a wide range of α surpasses that
given by KBN’s SBM for any K, indicating that MDMC outperforms KBN’s SBM.

81

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



a b

Fig. 1. (a) Pervasive structure of communities planted in the benchmark network. The same set of
{p∗(n|k)}K∗=10

k=1 is shown in the top, middle and bottom panels with the node number (#) sorted in
descending order of p∗(n|1), p∗(n|2) and p∗(n|3), respectively. (b) MaxRC for MDMC averaged
over 24 benchmark networks is plotted as a function of α (filled circle). MaxRC by BKN’s SBM
for K =10, 20 or 30 is indicated by red, orange or yellow horizontal line, respectively.

Computational cost of MDMC scales ∼ O(LK) with L being the total number of
links, which means that it belongs to the fastest class of algorithms to detect pervasive
communities [4, 5]. Together with this, the results obtained suggest that MDMC is a
feasible approach to detecting pervasive communities from real-world networks. In the
conference, we will demonstrate hierarchical organization of pervasive communities
using brain networks constructed from connectome data of Allen Brain Atlas [9].

References
1. Lambiotte, R, Delvenne, J.C., Barahona, M. Laplacian dynamics and multiscale modular

structure in networks. arXiv:0812.1770v3 (2009)
2. Delvenne, J.C., Yaliraki, S.N., Barahona, M. Stability of graph communities across time

scales. Proc Natl Acad Sci USA 107, 12755–12760 (2010)
3. Mucha, P.J. et al. Community structure in time-dependent, multiscale, and multiplex net-

works. Science 328, 876–878 (2010)
4. Okamoto, H., Qiu, X.-L. (2018). Community detection by modular decomposition of random

walks. Complex Netwok 2018 (December 11-13, 2018, Cambridge, United Kingdom) Book
Of Abstracts, 59–61

5. Okamoto, H., Qiu, X.-L. Modular decomposition of Markov chain: detecting hierarchical
organization of pervasive communities. arXiv:1909.07066 (2019)

6. Page, L., Brin, S., Rajeev, M., Winograd, T. (1999). The PageRank Cita-
tion Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab,
http://ilpubs.stanford.edu:8090/422/

7. Fortunato, S., Hric, D. Community detection in networks: A user guide. Phys Rep 659, 1–44
(2016)

8. Ball, B., Karrer, B., Newman, M.E.J. Efficient and principled method for detecting commu-
nities in networks. Phys Rev E 84, 036103 (2011)

9. http://connectivity.brain-map.org/

82

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Not all Bridges Connect: Integration in
Multi-Community Networks

Babak Heydari1 and Pedram Heydari2 Mohsen Mosleh3

1 Northeastern University heydari@northeastern.edu
2 Geisinger ADMI pheydari@geisinger.edu

3 Massachusetts Institute of Technology, mmosleh@mit.edu

1 Introduction

There are many social and economic situations where two or more communities need
to be integrated in an efficient and stable way that facilitates overall resource access
throughout the network. We study structures for efficient integration of multi-community
networks where building bridges across communities incur an additional link cost com-
pared to links within a community. Building on the connections models with direct link
cost and direct and indirect benefits, we show that the efficient structure for homoge-
neous cost and benefit parameters, and for communities of arbitrary size, always has a
diameter no greater than 3. We further show that if the internal cost is not small enough
to justify a full graph for each community, integration always follows one of these three
structures: Single star, two hub-connected stars, and a new structure we introduce in
this paper as parallel hyperstar, which is a special multi-core/periphery structure with
parallel bridges that connect the core nodes of different communities and includes a
wide range of efficiently integrated structures. Then we investigate stability conditions
of these structures, using two different definitions: The standard pairwise stability, as
well as a new stability notion we introduce in this paper as post transfer pairwise stabil-
ity, which allows for bilateral utility transfers. We show that once post transfer pairwise
stability is used, efficiency guarantees stability. Our results imply that both under and
over integration (building too few or too many bridges) could negatively impact both
stability and efficiency. More details of the results can be found in [1].

2 Model and Background Definitions

Agents, Networks, and Communities: Consider a set of nodes N = {1, . . . ,n+ n′}
each belonging to community I or I′ (also called community 1 and 2 respectively) with
|I|= n and |I′|= n′. A network G is a set of pairs of agents {i, j} that describes which
agents are connected. We assume that the links are undirected and unweighted. For a
given network G , we use Ni(G ) to denote the neighborhood of node i,and di j(G ) to
denote the distance (the minimum path length) between i and j.
Benefits, Costs and Utility: Following [2], the benefit that i receives from j is b(di j)
for b : N→ R≥0 such that for any k > 0, b(k) ≥ b(k+ 1) ≥ 0 and for any k ≥ n+ n′,
b(k) = 0. Also, the cost of a link to j for i, denoted by ci j, is c, if j is from the same
community and is c+δ , otherwise, for some δ ≥ 0.
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Fig. 1. Three efficient structures for two community networks.

Fig. 2. Parallel hyperstar structure.

Let ui(G ) and U(G ) represent the net utility that agent i receives under G and the
total utility of G , respectively. We assume U( /0) = 0. Therefore, we have: ui(G ) =

∑ j∈N −{i} b(di j(G ))−∑ j∈Ni(G ) ci j, and U(G ) = ∑n
i=1 ui(G ).G is efficient if it maxi-

mizes U(G ). Also, G is (weakly) more efficient than G ′ if U(G ) ≥U(G ′). G is a star
if there exists i ∈N such that for any two distinct nodes j,k ∈N , { j,k} ∈ G if and
only if i ∈ { j,k}. In addition to this standard structure, we introduce the following def-
initions.
Parallel Hyperstar Structure: One can regard a parallel hyperstar as a structure in
which each community includes a core,a set of nodes that act as a super-hub where
the connections across communities are only between those core nodes. An illustrative
figure of the parallel hyperstar structure is depicted in Figure 2.

3 Efficient Integration

We focus on the less trivial (and more realistic) case where c> b(1)−b(2) and a general
benefit function. Our first result below shows that when integration does not make sense
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Fig. 3. Most efficient structure (color coded) for each combination of model parameters. Only
values that result in integration are shown.

at all (i.e., it is not efficient to create any bridges between the two communities), then
the efficient network is either empty, or it would consist of two separate stars, each
residing in one of the two communities. On the other hand, when integration makes
sense, then depending on the cost and benefit parameters only two classes for efficient
structures are possible: Single star with a node from the larger community that acts as
the global hub; and the new class of structures that we introduced in the previous section
as parallel hyperstar. These results are formally stated in the following two theorems:

Theorem 1: If the connection cost c > b(1)− b(2), the efficient network is either an
empty network, two separate stars, a parallel hyperstar, or a single star.
In Theorem 1, we proved that the efficient network, if connected, is either a parallel
hyperstar or a single star. The following theorem shows that when indirect benefits
decay relatively slowly with distance, or the cost of forming internal links is relatively
high, then a parallel hyperstar with more than 1 bridge cannot be efficient. The special
case of 1 bridge is in fact a two (hub) connected starts structure.

Theorem 2: When c > b(1)− b(3), no parallel hyperstar with more than 1 bridge is
efficient.

Figure 3 shows sample plots where the efficient structure is color coded and labeled.
When benefits fall considerably with distance, i.e., b(d +1) is sufficiently smaller than
b(d), for a wide range of cross-community connection costs, parallel hyperstar is the
most efficient structure. This makes parallel hyperstar a crucial design form for many
practical applications where cost parameters in the mid-range, and benefits drop signif-
icantly as a function of distance.
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4 Integration Stability

A central question of integration is that whether we can achieve simultaneous efficiency
and stability, thus allowing a stronger role for direct intervention by a central authority
during the integration process. We investigate the stability conditions of the efficient
structures that were introduced in the previous section. We show that this is not in gen-
eral possible, using the standard definition of pairwise stability. However, we argue that
the standard definition of pairwise stability is too strict and does not include intuitive
cases where agents are willing to subsidize formation or maintenance of some links
through direct payment of cash or favour to their current or potential neighbors. To in-
clude such cases, we introduce a modified notion of stability, i.e. pairwise stability with
bilateral transfers and prove that all three possible efficient structures are simultane-
ously stable.
A network G is pairwise stable, if for every two nodes i, j, the following two conditions
hold:1) If i j ∈ G , then ui(G − i j) ≤ ui(G ) and u j(G − i j) ≤ u j(G ). 2) If i j /∈ G and
ui(G + i j)≥ ui(G ), then u j(G + i j)< u j(G ). Based on this definition, we then show that
simultaneous stability and efficiency isn’t possible for integration structures in general.

Theorem 3: The single star structure is both efficient and stable when δ is small
enough. A parallel hyperstar can be both stable and efficient only when it has just one
bridge; i.e., it is a two-connected-stars.

Post Transfer Pairwise Stability: A network G is post transfer pairwise stable if for
every i, j ∈ N , we have: 1)i j ∈ G ⇒ ∆−i j

i (G ) + ∆−i j
i (G ) ≤ 0, And, 2)i j /∈ G ⇒

∆+i j
i (G )+∆+i j

i (G )< 0.Under this more realistic notion of stability, we can prove that
efficiency can insure stability, in all the integration structures, particularly in the parallel
hyperstar.

Theorem 4: Efficiency for parallel hyperstar structures guarantees post transfer pair-
wise stability.

This is a notable result, since it indicates that for all values of network parameters, the
central authority can interfere in the integration process by leading the integrated net-
work towards efficiency, and if pairwise direct transfer is allowed, the resulting network
will automatically be stable. These results also indicates that both under and over inte-
gration (building too few or too many bridges) could negatively impact both stability
and efficiency.
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1 Introduction

One of the most important topological properties in complex networks is the organi-
zation of nodes as communities, a division of the nodes in groups with dense inter-
nal connections and sparse external connections. Different from traditional methods for
community detection, which consider the division of the network as a partition problem,
many works in the literature are focused on the identification of overlapping community
structure in networks.

This work presents SOCS (Spectral Based Method for Overlapping Community
Structure), a method for overlapping community detection built on the top of a tra-
ditional method for community partition: Newman’s spectral method [5], a bisection
divisive method for modularity optimization which calculates, at each bisection, the
leading eigenvector of a modularity matrix, based on the adjacency matrix, solving a
relaxed version of the modularity optimization problem. As proposed by Newman, after
each bisection, the solution of the spectral method is improved by a fine-tuning stage,
based on Kernighan-Lin algorithm [3] that swaps nodes from one community to the
other in order to induce, at each step, the largest increase in modularity. SOCS performs
a variation at the fine-tuning stage, allowing each node to belong to both communities
in the bisection if it causes a positive gain to the modularity of both communities.

The proposed method is based on a high performance implementation of Newman’s
spectral method [8] and works with networks in the scale of millions of nodes, being
able to be applied to several real world contexts. Preliminary experiments with real
world benchmark networks, omitted in the current work due to lack of space, show that
the method proposed in this work presents superior or similar quality when compared
to state-of-art overlapping community detection methods.

2 Spectral Based Method for Overlapping Community Structure
(SOCS)

In order to detect overlapping communities, SOCS performs successive bisections, as
proposed by the original formulation of Newman’s spectral method for modularity op-
timization. After each bisection, in [5], Newman proposes to swap nodes from commu-
nities in order to increase the modularity in a fine-tuning stage based on Kernighan-Lin
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method. SOCS focuses on this fine-tuning stage to identify the overlapping nodes. As
originally stated, Newman’s original fine-tuning calculate which nodes were placed in
a certain community (Ci) by the spectral stage but increases the overall modularity of
division if placed in the other community (C j). Then, Newman’s spectral method swaps
these nodes from Ci to C j. The methodology proposed in this work is based on a slightly
different idea: if a node contribute positively for the modularity of two communities Ci
and C j, then it should remain in both communities.

Some modifications are made to the original fine-tuning stage such that overlapping
communities can be identified. The original fine-tuning stage evaluates, at each step,
which are the nodes that may be swapped between two communities Ci and C j in order
to estimate those that cause the largest increase in the modularity when moved (from
Ci to C j or the opposite). The method stores the intermediate states and considers, as
output, the one that represents the modularity with largest partition. For the overlapping
approach, whenever a node increases the modularity in both Ci and C j, it is considered
as a member of both communities.

3 Results

After applying SOCS to a set of benchmark networks, the performance of SOCS can be
assessed and compared to other methods found in the literature, regarding the execution
time and the overlapping modularity Qov as proposed by Shen et al. [7]. The results
are shown in Table 1. The computational environment consists of an Intel Core i9-
9900K processor with 32Gb RAM running an Ubuntu 18.04 OS. The results presented

Table 1. Execution time (in seconds) and Overlapping modularity Qov for the studied networks.

SOCS CFinder [6] Bigclam [10] Demon [1] COPRA [2] SLPA [9] OSLOM [4]
Time Qov Time Qov Time Qov Time Qov Time Qov Time Qov Time Qov

CAHepPh1 1.64 0.51 - - 5.03 0.35 74.65 0.14 2.37 0.16 4.31 0.25 480.86 0.46
CitHepTh1 8.65 0.33 - - 35.37 0.16 86.18 0.04 9.67 0.01 15.02 0.14 1782.84 0.32
Dolphins2 0.01 0.48 0.01 0.29 0.45 0.08 0.12 0.28 0.09 0.26 0.08 0.39 0.34 0.37
Football2 0.01 0.54 0.02 0.55 1.89 0.16 0.15 0.27 0.10 0.25 0.15 0.24 0.36 0.60
Karate2 0.01 0.40 0.01 0.1147 0.27 0.09 0.11 0.04 0.10 0.18 0.07 0.33 0.10 0.367
Keys2 1.20 0.60 2111.34 0.38 1.93 0.63 2.98 0.31 1.64 0.68 2.50 0.71 122.20 0.38
Lesmis2 0.01 0.53 0.01 0.28 1.15 0.13 0.39 0.15 0.07 0.41 0.13 0.41 0.38 0.49
Polbooks2 0.01 0.48 0.02 0.43 1.84 0.13 0.15 0.08 0.13 0.35 0.16 0.43 0.56 0.49

in Table 1 allow us to see that SOCS is able to identify the overlapping community
structure of the benchmark networks in a very low execution time. It is worth to notice
that SOCS is able to identify communities in less than 10 seconds in networks with
tens of thousands of nodes, as in the case of CitHepTh, with 27700 nodes and 352324
edges. SOCS can also identify overlapping communities in large scale networks (with
more than one million nodes) in a reasonable time (less than one hour) without applying
any sample strategy or reduction in the size of the network.

1Downloaded from: http://snap.stanford.edu/data/
2Downloaded from: http://www-personal.umich.edu/∼mejn/netdata/
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Regarding modularity, community structure identified by SOCS presents a better
quality than those identified by most other methods. For more than half of the networks
explored, the communities detected by SOCS are more modular than those found by the
other methods. For some networks, such as Karate and Les Miserables, the modularity
measured for the communities extracted in this work is more than 25% higher than
modularity observed for most competing methods. Even for networks where SOCS
does not obtain the best results, Qov is very similar to the other results.

Despite the good results obtained in this work regarding modularity, other aspects
can highlighted to confirm the suitability of the method on real world contexts. The
method is based on a high performance implementation of Newman’s spectral method
[8], which allows it to be applied to large scale networks (in the order of million of
nodes). The proposed methodology is simple, since it is based on a traditional and
consolidated method for non-overlapping community detection, taking advantage of
some benefits of the method, such as its well-known behavior.

For the next steps of the work, the resulting community structure identified by the
proposed methodology should be more deeply studied in order to investigate the rela-
tionship between different network properties, such as modularity, community size and
overlapping size, and better understand numerical aspects of the method. The adaptation
proposed for the fine-tuning stage can be also applied to other non-overlapping com-
munity detection methods, potentially revealing high quality methods for community
detection based on popular community detection methods. Yet, the methodology must
be tested in a wider set of networks, in order to explore other contexts and, specially,
larger scales of problems in a more appropriate computational environment.
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1   Introduction 
 
 

Knowledge heterogeneity has been investigated based on the observation of the bene- 
fits of integrating distant knowledge in the diversity of firm collaborations. Many re- 
searchers have demonstrated the effectiveness of incorporating knowledge from rare 
links, with widely accepted concepts such as shortcuts in small world [10], bridges 
between cliques as weak ties [5] and bridges over structural holes [1]. However, con- 
trary to the prevailing conceptual works and case studies, there are fewer studies on the 
measurement of rareness of the links in a network. 

The driving hypothesis of the present study is that the importance of a node is esti- 
mated from the heterogeneity of the links it brings. We already know, hubs which are 
nodes with many links, are important [4], but there is comparatively less evidence for 
the composition or values of the links that makes a node important. Most conventional 
network indexes, such as betweenness centrality [3], PageRank [8], or Burt’s constraint 
[1] tend to be affected by the link density with adjacent nodes, which is sometimes 
unrelated to the community structure in the whole network. Although these indexes 
are effective to extract apparently significant nodes that have many important links [4], 
another method is required to find rare nodes that have a few important links. 

In this paper, we propose an analyzing schema to comprehend the inter-community 
structure by combining the measures of nodal importance and community relevance. 
We demonstrate that the proposed index shows better performance compared to the 
participation coefficient P (Pi ) in detecting nodes that connect distant communities. We 
validate the performance of the proposed index with the visualization of node rankings 
in networks with varied communities, and rank correlations, suggesting that proposed 
index identifies nodes that would make the average shortest path longer if they are if 
removed. Our approach sheds new light on node values by offering a way to detect 
latent mediators in heterogeneous communities with different number and density of 
nodes and links, that is consistent with the theories and numerous empirical studies in 
social and industrial networks [10, 5, 1]. 
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2   Results 
 

Firstly, we designed a new index PWi by using experimentally verified community rele- 
vance (CRJC) and Pi . Based on the theory of information entropy [9], we took negative 
logarithm of the average of CRJC multiplied by Pi , and named the index as PWi , which 
is defined as follows: 

 

PWi = −Pi log ∑ 
j∈Γ (i)IC , j/=i 

CRJC(ci , c j ) .  (1) 
L + δ 

where Pi quantifies the proportion of links of the node i connecting to different modules 
[6]. CRJC(ci , c j ) is Jaccard coefficient computed between the set of nodes and their 
neighbors of the communities ci  and c j  [2]. Γ (i)IC   is the set of node i’s neighbors 
that do not belong to ci . L represents the number of the nodes in Γ (i)IC . δ  has an 
infinitesimal value of 0.000001 to prevent zero division error. We chose this equation 
because the amount of new information brought by node i to communities is given 
by the probability Pi of connecting communities while predicting the difference using 
existing knowledge, represented by community relevance. 

Secondly, to estimate the performance of the new index, we generated the LFR net- 
work [7] with tightly connected 2 communities and weakly connected 3 communities. 
We visualized the network ranked by within-cluster degree Z [6], Katz centrality, be- 
tweenness centrality, Pi , PWi , and inverse of Burt’s constraint. Pi  and PWi  ranked the 
nodes between communities highly, while the other indexes ranked the nodes within 
communities highly. In addition, only PWi ranked the nodes mediating distant commu- 
nities relationships higher than those connecting the most relevant communities (Fig.1). 

 
 

 
 

Fig. 1. Node rankings by six indexes in LFR network. Each network has 100 nodes colored 
by their values of corresponding index, 391 edges and 5 communities with 0.1 mixing rate. The 
labels of the ranking in each index are limited to top 10 nodes to avoid the complexity. 

 
 

Thirdly, we investigated attack tolerance by measuring the average shortest path 
length (L) after removing a node sorted by community-based index of Z, Pi  and PWi . 
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Table 1. Rank correlation in LFR networks with varied link rates. Each network has 100 
nodes, 8 degrees per node, 10 communities with 0.1 to 0.6 inter-community link rates. 

 
mu Z P PW 

0.1 -0.424 0.617 0.895 
0.2 -0.569 0.596 0.838 
0.3 -0.435 0.549 0.766 
0.4 -0.357 0.404 0.504 
0.5 0.019 0.258 0.280 
0.6 -0.021 0.082 0.163 

 
 

We generated six LFR networks with different inter-community link ratio (mu), and 
calculated Spearman’s rank correlation between the ranking ordered by each index and 
L. As a result, PWi showed the highest correlations in all networks, suggesting that PW 
identifies nodes that if removed would make the average shortest path longer (Table1). 

 
Summary.  While node evaluation based on the adjacency relationship mainly uses lo- 
cal information, the community structure that characterizes the network has hardly been 
considered. In this study, we propose a new index that contributes to the understanding 
of the inter-community structure of a network by combining the measures of link distri- 
bution and community relevance. The visualization of node rankings and the rank corre- 
lations with respect to the attack tolerance of networks demonstrated that the proposed 
index showed the highest performance in comparison with five previously proposed 
indexes, suggesting a new way to detect latent mediators in heterogeneous networks. 
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Part III

Diffusion and Epidemics
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1 Introduction

The Internet has changed modern lifestyle and played a role of reformation in infor-
mation propagation. Nowadays information of all walks has occupied a large part of
network users’ daily routine, with various social media such as Facebook, Twitter and
Wechat. Different information propagation platforms and spread ways determine the
length of the informations survival time[1]. In the process of information propagation,
a certain piece of information can be seen and received by the users in two ways. First,
the information is pushed to the homepage with the users’ support or the control of the
websites manager, and then spread to all the online users. As most information never
spread from the homepage, the second way is propagating among friends through the
connecting networks. Researches on the propagation mechanism can discover the fac-
tors influenced the propagation rate, and then provide useful suggestions to control the
spread process. Such researches have important applications for advertisers seeking,
which expect to spread the advertisements to a range of net friends in a short time. In
addition, a contrary application is to suppress public opinion, avoiding some incorrect
information to spread fast and influence a large number of people. Here, the researches
provide the mathematical models and theoretical analysis, so that people can make some
targeted measures to control the propagation process.

2 Results

In the basic propagation model, parameters π and µ(indicating the rate that users en-
ter and exit the OSNs respectively) are proposed to extend the original SEIR model,
as shown in Fig.1(a). In the extended SEIR model, similar definitions from epidemi-
ology[2] are used to categorize the users in information propagation. The susceptible
population (S) consists of users who have not yet seen a certain piece of information,
the exposed population (E) is made up of users who can see a certain piece of infor-
mation because their connected users have forwarded it, the infected population (I) is
composed of users who have forwarded a certain piece of information and it is visible
by their connected users, the recovered population (R) is comprised of users who have
forwarded a certain piece of information but (after a period of time) it is no longer visi-
ble on their followers homepages, or who have read but did not forward the information.
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(a) Basic propagation model (b) Propagation model considering homepage

Fig. 1. The propagation model

.





S′(t) = π−β0S(t)I(t)−µS(t)
E ′(t) = β0S(t)I(t)−σE(t)−αE(t)−µE(t)
I′(t) = αE(t)− rI(t)−µI(t)
R′(t) = rI(t)+σE(t)−µR(t)

(1)

The extended SEIR model can be presented as Eq. (1), where all the parameters are
non-negative and defined as follows:π is the rate that users enroll the site; µ is the rate
that users exit the site; β0 is the transition rate from S to E ; σ is the transition rate from
E to R; α is the transition rate from E to I; r is the transition rate from I to R. Since
the explicit solution could not be found, the basic model reaches the equilibrium sta-
tus[3] when the time-dependent ratios of S(t), E(t), I(t), and R(t) become constant. By
calculation, two equilibrium points E1(S∗,E∗, I∗) and E2(S∗∗,E∗∗, I∗∗) can be solved.

In the basic mode, the influence of homepage has not been taken into account.The
Information on the homepage can be seen by all users in OSNs. Therefore, the informa-
tion pushed onto the homepage will have a considerable influence because it faces to all
users and have the maximum receivers. Assuming the probability of the users in OSNs
who read the information on the homepage is β1, which means there is another way for
susceptible users transforming into exposed users. The propagation model considering
homepage effect is shown in Fig.1(b).





S′(t) = π−β0S(t)I(t)−β1S(t)−µS(t)
E ′(t) = β0S(t)I(t)+β1S(t)− (σ +α +µ)E(t)
I′(t) = αE(t)− rI(t)−µI(t)
R′(t) = rI(t)+σE(t)−µR(t)

. (2)

Similar with the solution in Eq. (1), the equilibrium point E3
(
Ī, S̄, Ē

)
in Eq. (2) can

be obtained.
To further verify the proposed models, the data of Digg.com is used for the case

study.It is noted that the information diffusion mode in the Digg.com is good match
with the extended SEIR model. Digg.com is an online social network platform where
users are able to post content to a personal web page, vote for this content and share the
content with other users who are connected with them. Once the posted content receives
a large number of votes over a particular period of time, the content will be posted to
the homepage of Digg.com and visible to all users. The dataset contains 3553 distinct
stories (online content), the number of votes for a particular story, the particular users
that voted for each story and the time at which each user cast the vote. It is noticeable
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that this dataset only includes the stories which were promoted to the homepage of
Digg.com in June 2009.

The most popular article, denoted by s714, is analyzed to display the one typical
propagation mechanism. The actual data of I(t) and numerical simulation are shown in
Fig 2.

(a) The basic propagation model (b) The propagation model with homepage effect

Fig. 2. The propagation model applied on Digg.com

At the end of each hour, the cumulative number of users who have voted for the story
can be calculated and used as the metric of prediction. Herein, the predict accuracy
is 82.97%, which is 11.79% lower than the accuracy of the propagation model with
homepage.

Summary. In this paper, we have extended the SEIR model for investigating the infor-
mation propagation in OSNs and obtained two equilibrium points with powerful proof.
In addition, through introducing the homepage effect, a more complex and comprehen-
sive model is proposed and only one equilibrium point is obtained. An important control
parameter R0, corresponding to the basic reproduction value in the infectious disease,
has been constructed and analyzed. Finally, the paper has worked at the data of two ar-
ticles in Digg.com, respectively representing two typical propagation mechanisms. The
predictive accuracy is 94.76% for the one that posted on the homepage at the beginning
and 94.27% for the second article, which has experienced basic propagation process
and then pushed to the homepage. The results of case study verify the mathematical
analysis and simulation experiments.
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1 Introduction

In many practical applications networks are the natural representation of a complex sys-
tem (airport connections, social networks). Often, however, the complex system only
provides a general dataset (e.g. in climate) from which a data-driven network has to
be constructed. A common approach for network construction is to establish links be-
tween nodes (variables, to be determined from the dataset) with pairwise correlation
over a given threshold τ (Correlation Networks, CNs). In climate science the applica-
tion of CNs have proven successful with a number of recent applications [1][2][3][4][5].
The choice of the threshold is however non-trivial and results in a trade-off between the
statistical significance of the allowed connections and the richness of network struc-
tures unveiled [1][3]. In [7] we revisit CNs in the context of a climate application in
which a variable Xi represents the monthly mean temperature in gridbox i (lattitude λi,
longitude φi, ∆λ =∆φ = 10◦). We show that CNs by construction include redundant in-
formation in the network topologies. From a probabilistic perspective, this is expressed
by over-parameterized probabilistic models when considering the underlying empirical
Gaussian model with non-zero covariances for linked variables.

As an alternative approach to construct data-driven networks we propose the use of
more sophisticated probabilistic Bayesian Networks (BNs), developed by the machine
learning community as a data-driven modeling and prediction tool. A BN is learned by
a structure learning algorithm that includes only the (pairwise and conditional) depen-
dencies among the variables needed to explain the data (maximizing the likelihood of
the underlying probabilistic model). The topology of a BN is much more sparse than
the corresponding —in terms of similar likelihood of the data— CN, but allows to ex-
tract the same physical relationships when analyzed with complex network measures
(clustered regions, communities, central nodes). Also, the probabilistic model (density
function) obtained from the BN graph is parsimonious and contains only significant pa-
rameters making the model suitable for probabilistic inference. We therefore advocate
the use of BNs instead of CNs to construct data-driven complex networks as they can
be regarded, from both graph analytic and probabilistic perspective, as the probabilistic
backbone of the underlying complex system.
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2 Results

We analyzed complex CNs and BNs of increasing complexity (number of edges, |E|)
considering different correlation thresholds τ , and different iterations of the structure
learning algorithm [6], respectively. This resulted in CNs and BNs of sizes up to ap-
proximately 200000 and 8000, respectively. Global graph analysis, quantified by global
graph measures as clustering coefficient and diameter, reveals that small CNs (in terms
of |E|) capture local regions that are highly linked (e.g. the tropics and Antarctica), but
only few long-distance links characterizing teleconnections. Distant teleconnected de-
pendencies —resulting from large-scale atmospheric oscillation patterns— are in gen-
eral weaker than local dependencies, but they are key for regional climate variability
[8]. Bigger CNs do capture distant dependencies but show a high degree of redundancy
in both local- and distant-link density. On the other hand, a small BN captures both
locally clustered regions and long-distant dependencies without redundant links. The
balance of local and large distance links plays a role when deeper topological analysis
is to be performed. For example, a community division algorithm based on between-
ness centrality can characterize a small BN in its most important (teleconnected) regions
—Figure 1(a),— but struggles to characterize (small and big) CNs —Figure 1(b)— be-
cause of redundancy in the link distributions. Small CNs show community structures
with many isolated regions that can not be grouped into a community and large CNs
exhibit one giant community covering great part of the global area which is difficult to
disassemble.

We also analyzed the networks from a probabilistic perspective, extending the net-
works to probabilistic models in which the edges in the network represent parameters
in a Gaussian probability density function (pdf) —the global temperature dataset is as-
sumed to be multivariate Gaussian—. Using cross-validation of likelihood values of the
probabilistic models, optimum models were learnt with good generalization capabili-
ties (avoiding overfitting): BN (1796 edges) and CN (3119 edges). Larger networks do
explain the train dataset better but fail to explain the validation dataset, making physical
features extracted of both topology and associated density function non-generalizable.
We observe a discrepancy in the size of optimum CNs (around 3119 edges) and topo-
logical informative CNs; only CNs of size much bigger (∼ between two and four times)
than 3119 reveal an informative network topology. On the other hand, the size of a statis-
tical optimal and topological informative BN coincide (Figure 1). The same conclusion
can be drawn analyzing the associated probabilistic models of the networks on their
capacity to propagate evidence (calculating conditional probabilities). Figure 1 shows
the propagation of el Niño like evidence (significant alteration of temperatures in the
Pacific Ocean: E = 2). Propagation of evidence in BN (1796) is on both local and global
scale whereas in CN (3119) the propagation is only on local scale.

Summary. Correlation Networks (CNs) suffer from redundant information in their
network topology. Bayesian Networks (BNs), on the other hand, include only non-
redundant information (from a probabilistic perspective) resulting in a sparse topology
from which generalizable physical features can be extracted. We advocate the use of
BNs to construct data-driven complex networks as they can be regarded as the proba-
bilistic backbone of the underlying complex system.
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Fig. 1. First row: Results of community division algorithm when dividing the optimum BN (1796)
and CN (3119) in 15 communities. The algorithm is not able to efficiently group the variables
in communities for the CN. Second row: Propagation of El Niño like evidence (significant alter-
ation of temperatures in the Pacific Ocean, E = 2) in optimum BN and CN probabilistic models.
The maps show for each gridbox X the conditional probability of significantly increased (red
color scale) or decreased (blue color scale) temperature given the evidence. The CN model only
propagates the evidence on a local scale (i.e. does not capture teleconnections shown in the BN
model).
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1 Introduction
Gossip protocols concern a set up in which each agent holds initially a secret and the aim
it to arrive, by means of point-to-point communication (called calls) over a network, at a
situation in which every agent knows all other secrets. During a call the agents involved
exchange all secrets that they know. In other words, the aim of a gossip protocol is to
generate a connected temporal graph [9].

Such protocols were successfully used in a number of domains, for instance commu-
nication networks [6], computation of aggregate information [8], and data replication
[10]. For a more recent account see, e.g., [7].

In [4] a dynamic epistemic logic was introduced in which gossip protocols could be
expressed as formulas. These protocols rely on agents’ knowledge and are distributed,
so they are distributed epistemic gossip protocols. This means that they can be seen as
special cases of knowledge-based programs introduced in [5].

In [1] a simpler modal logic was introduced that is sufficient to define these protocols
and to reason about their correctness. In [3] we showed that the distributed gossip proto-
cols that use formulas of this logic are implementable and that their partial correctness
and termination of these protocols is decidable.

In spite of this progress, several intriguing questions about distributed gossip proto-
cols remain open. We discuss here these problems and establish some partial results.

2 Background
We assume a fixed set A of n ≥ 3 agents each located on a node of a directed graph
(digraph) and stipulate that each agent holds exactly one secret. The secret of agent a is
denoted by A, of agent b by B, etc. and the set of all secrets is denoted by Sec.

The language of our modal logic L is defined by the following grammar: φ ::= FaS |
¬φ | φ ∧φ | Kaφ , where S ∈ Sec and a ∈ A. So FaS is an atomic formula, while Kaφ is
a compound formula. We read FaS as ‘agent a is familiar with the secret S’ (or ‘agent
a holds secret S’) and Kaφ as ‘agent a knows that formula φ is true’. Other Boolean
connectives can be defined using ¬ and ∧ in a standard way.

In the paper we shall use the following sublanguages of L :

– L0, its propositional part, consists of the formulas that do not use the Ka modalities;
– L1 consists of the formulas without the nested use of the Ka modalities;
– L a

1 , where a ∈ A is fixed, is a subset of L1 where the only modality used is Ka.

The goal of a distributed epistemic gossip protocol is to reach a gossip situation
in which each agent is an expert, i.e., he knows all other secrets, starting at a gossip
situation where each agent knows only his secret.

∗This extended abstract is based on [2].
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In other words, their goal is to transform a gossip situation in which the formula∧
a∈A(FaA∧∧b∈A,b6=a¬FaB) is true into one in which the formula

∧
a,b∈A FaB is true. Or,

in the context of temporal graphs, the aim is to generate a connected temporal graph.
Let us recall the definition of the distributed gossip protocols [3]. By a component

program for an agent a we mean a statement of the form ∗[[]mj=1 ψ j→ c j], where m≥ 0
and each ψ j→ c j is such that a is the caller in the call c j, and ψ j ∈L a

1 and all atomic
formulas used in ψ start with Fa. If m = 0, the component program is empty.

We call each such construct ψ → c a rule and refer in this context to ψ as a guard.
Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where each

time non-deterministically a rule is selected whose guard is true.
By a distributed epistemic gossip protocol, from now on just a gossip protocol, we

mean a parallel composition of component programs, one for each agent. We call a gossip
protocol propositional if all its guards are propositional, i.e., are from the language L0.

We presuppose that in each gossip protocol the agents are the nodes of a digraph and
that each call ab is allowed only if a→ b is an edge in the digraph. A minimal digraph
that satisfies this assumption is uniquely determined by the syntax of the protocol. Let
now us look at an example gossip protocol to which we shall return later.

Example 1. In [4] the following correct gossip protocol, called Learn New Secrets (LNS
in short), for complete graphs was proposed. In the syntax of [1] used here, LNS is
propositional, as it has the following component program for agent i: ∗[[] j∈A¬FiJ→ i j].
Informally, agent i calls agent j, if agent i is not familiar with j’s secret.

Consider a gossip protocol P that is a parallel composition of the component pro-
grams ∗[[]ma

j=1 ψa
j → ca

j ], one for each agent a ∈ A. By a computation of P we mean any
call sequence c such:

– If c has finitely many calls then no guard ψa
j is true after all calls in c are made, i.e.,

c cannot be extended any further.
– For any prefix c′ of c, there exists a rule ψa

j → ca
j such that ψa

j is true after all calls
in c′ are made and c′.ca

j is also a prefix of c. (Intuitively, this records the effect of
the execution of the rule ψa

j → ca
j performed after the call sequence c′ takes place.)

Any computation c corresponds naturally to a temporal (interval) graph. The k-th
call in c where agent i calls agent j corresponds to an undirected edge from i to j with
label [k,∞), i.e., this edge is active from the time point k onwards.

We say that the gossip protocol P is partially correct if for all its finite computations
c, after all calls in c are made, every agent is an expert. We say furthermore that P
terminates if there are no infinitely long computations and say that P is correct if it is
partially correct and it terminates.

3 Results
We begin with the following result for propositional gossip protocols.

Theorem 1 (cf. [2]). Suppose that the agents form a star graph, so a graph in which
some agent, say a, is present in all edges. Then no correct propositional gossip protocol
exists for such a communication graph.
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Note that the LNS protocol from Example 1 shows that all complete digraphs have a
correct propositional gossip protocol. We make here the following conjecture.

Conjecture 1. The class of graphs for which a correct propositional gossip protocol
exists are digraphs with the property that the complement of the edge set does not
contain a directed cycle.

One of the early results, see for instance [11], is that for n≥ 4 agents at least 2n−4
phone calls are needed and sufficient to reach a situation in which each agent is an expert.
However, such a gossip protocol is centralized and we conjecture here that it cannot be
replicated in a distributed setting.

Conjecture 2. Prove that the lower bound 2n−4 cannot be achieved for any distributed
gossip protocol. In other words, prove that every correct gossip protocol for n≥ 4 agents
generates computations of length > 2n−4.

We show that this conjecture is at least true for n = 4.

Theorem 2 (cf. [2]). Every correct gossip protocol for 4 agents generates computations
of length > 4.

On the other hand, the following holds.

Theorem 3 (cf. [2]). Suppose that n ≥ 4. There exists a correct gossip protocol for n
agents whose all computations are of length 2n−3.

We finally conjecture that this does not hold for propositional gossip protocols.

Conjecture 3. Prove that the lower bound 2n−3 cannot be achieved by a correct propo-
sitional gossip protocol.
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1 Introduction

In this work we explore the impact of community on individual behavior in a model
we call the Rehab-Recovery-Relapse cycle. This model explores a system where indi-
viduals can either be susceptible to drug use or resistant to it. [1] In this system, the
ability of individuals to change from one state to another is dependent on their commu-
nity. That is, individuals can change if the community itself changes and becomes either
more healthy or more susceptible. There is scholarship suggesting that the health of a
community can be improved with the use of network intervention techniques.[2] These
studies often involve training community members over the course of a day on how to
motivate healthier practices among their peers. While these results are promising, they
do raise concern with regards to the performance of drug rehabilitation centers. If in-
dividuals attending a short training can positively impact a community, then a similar
positive effect should be seen from individuals who attend a rehab facility for a number
of days. Rehab facilities have the benefit of removing a susceptible individual from a
community. This provides individuals with time to recover in a healthier community as
well as to learn how to positively affect their home community. However, unlike the net-
work intervention studies, rehab facilities are in the open market and are not overseen
by an individual researcher. Because of this, comparisons between network interven-
tions and the rehab industry is not possible. In addition to this problem, it is also not
easy to compare the communal impact of one rehab facility to that of another. The goal
of the ”Rehab-Recovery-Relapse” model is to provide a framework to examine the im-
pact rehab facilities have on their communities. We hope to use this framework to not
only compare rehab facilities with others, but to compare the practice of rehab facilities
with other methods of drug intervention.

2 Methods

We consider a mathematical model that describes the behaviour of the population of a
city composed by people with no addiction and that will not have it, people with addic-
tion that can relapse, and then recovered in the community A or B. We assume that once
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the people recover they can became again addicted or not. The variables of the model
are denoted by: H people with no addictions (and that will never have one); S people
with addictions or that can become it; RA people in the community of rehabilitation A;
RB people in the community of rehabilitation B. N = H + S+RA +RB is the total hu-
man population. The mathematical model describes an hypothetical situation where the
people can be distinguished well in four categories (people with no addiction, people
with addiction, people recovered in community A and B, respectively). Notice that we
assume to have two different rehab communities and three different environments, H
and S live in the same place while RA and RB in other two different places (no relapse is
considered). We introduce a model using ordinary differential equations. It means that
every equation of the system give’s us the behavior of the considered ”population” in
time. The model reads:

dH
dt

= Λ +φγARA +ψγBRB−µNH, (1)

dS
dt

= Ω −β (H,S)S+(1−φ)γARA +(1−ψ)γBRB−µNS,

dRA

dt
= δβ (H,S)S− γARA−µNRA,

dRB

dt
= (1−δ )β (H,S)S− γBRB−µNRB, with β (H,S) =

1+S
1+H

.

First equation: describes the evolution of people without addictions. There is an
immigration rate Λ of people with no addictions. While a part of the people that recover
from community A (rate φγA) and/or B (rate ψγB) can be strong enough to be introduced
in this class. φ and ψ assume values in [0,1], while γA is recovery rate in community A
and γB in community B, respectively. We assume that people in class H dies naturally
at rate µN . Second equation: we have the evolution of the addicted people, or those that
can become it. Ω is the immigration rate of people with addictions. The people of this
group can relapse at a rate β (H,S). The proportion of the recovered people from A and
B are (1−φ) and (1−ψ), respectively. Third and fourth equations: are describing the
populations in community A and B respectively. Once they relapse they are recovered
in A or B, they recover at rates γA and γB, respectively. Both RA and RB dyes at a rate
µN . δ ∈ [0,1]. We assume that the parameters values are non-negative.

3 Results

The numerical simulations are made with Matlab. In particular we focus our attention
on how the densities of the four populations at equilibrium change changing the values
of two parameter values at the same time. Here we work with a rescaled version of
model (1).

In Figure 1 are represented h, people without addictions, s, people with addictions,
rA, people recovered in community A, and rB, people recovered in community B, re-
spectively, at the equilibrium for values of per capita recovery rate in A, γA, and per
capita recovery rate in B, γB, taking values in the intervals [0,0.005]× [0,0.005] and
the remaining parameters values fixed. Notice that γA = 0.005 days−1 is equivalent to
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saying that in community A it takes 200 days to recover. The right way to read two
strain parameter plots is looking at the density of the considered population fixing a
value of the parameter on x axes and see what happens when the value of the parameter
on y axes is increased/decreased, and viceversa. In this way we know which role has the
parameter values on the output of the system. We have done the two strain parameter
analysis for (γA,δ ), (γA,φ), (γA,ψ), (γA,δ ) too, (results note reported here).

Summary. From Figure 1 we can conclude that for recovery rates 0.0015 days−1 (667
days) the density of people in h remain constant at its maximum value, and the density
of people in rA and rB at their minimum values, respectively, while for values smaller
than this threshold, e.g. 0.001 days−1 (1000 days) the density of people in h remain
constant at its maximum value if the recovery rate of one community is the double
of the recovery rate of the second community. This means that if the recovery rate it
is not fast enough (assume values in (0.001,0.0015) days−1 ' (1000,667) days), the
densities of the communities A and B increase with increasing γB and γA respectively,
while for recovery rates 667 days, rA and rB remain constants. If the communities A and
B collaborate to maintain a recovery rate higher than 0.0015 days−1 then the density of
people without addictions, h, will be at its maximum value.

Fig. 1. On the first row: people without addictions (left), people that can have addictions (suscepti-
ble) (right); Second row: people recovered in community A (left), people recovered in community
B (right); varying both γA and γB. Notice that the color scale is different in each panel.
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1 Introduction

Several infectious diseases display oscillations in the incidence through time. In a vari-
ety of cases, the subsequent outbreaks are caused by seasonal, exogenous events, such
as the increase of influenza cases in winter, or the increase of vector-borne diseases dur-
ing rainy seasons. However, there are diseases like syphilis which display non-seasonal
periodic oscillations with a period of 8-11 years [1]. Different mathematical models aim
to capture these non seasonal oscillations, either by considering models with temporary
immunization [1, 2], or by allowing link rewiring in contact networks [3–5]. The aim
of the latter is to incorporate the behavioral response of individuals, which eventually
leads to sustained oscillations in the disease incidence.
In this work, we present a stochastic, yet analytically tractable, epidemic spreading
model coupled with a two-strategy evolutionary game, which reflects the individuals
decision on whether to take preventive measures. In this sense, agents can choose be-
tween two strategies protected (P) and not protected (NP). In general, the decision on
prophylaxis is a trade off between the cost/effort of the prophylactic measures and their
efficacy coupled with the severity of the disease. To describe this in a game theoret-
ical framework, we introduce a protection cost c and an infection cost T . Addition-
ally, agents have information about the global extent of the disease, which serves as
an assessment of their infection risk. In this sense, we define the payoffs Pp and Pnp
associated to the two strategies P and NP as:

Pp =−c−T
Ip

Sp + Ip
and Pnp =−T

Inp

Snp + Inp
. (1)

The variables Ip and Sp represent the fraction of protected agents which are infected and
susceptible, respectively. The same for Inp and Snp. Accordingly, the fractions Ip/(Sp +
Ip) and Inp/(Snp+ Inp) describe the infection risk of a protected and not protected agent,
respectively. In the temporal evolution, as the disease is spreading, agents adopt more
successful strategies. We describe the disease spreading with an SIS model evolving on
a synthetic network.
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2 Results

As a first step, we will analyze the dynamics of our model with regard to the time av-
eraged fraction of protected and infected individuals, which we show in Fig. 1 (a) and
(b), respectively. We see that there are two critical values of the transmission probabil-
ity, λ , in order to have a non zero fraction of protected individuals. For low values of
λ , protection emerges as the disease is sufficiently infectious such that the reduced in-
fection probability of protected individuals can actually compensate for the protection
cost. Similarly, for high values of λ , protection vanishes as the quality of the prophy-
lactic measures cannot balance the infectivity of the disease anymore. Furthermore, a
mean field analysis of the system allows us to get an analytical approximation of the
protection thresholds showing good agreement with the numerical solution. Regard-
ing the epidemic incidence we observe that the epidemic threshold is not altered by
the possibility of adopting prophylactic measures. As a matter of fact, at the epidemic
threshold, the infection risk can still be considered zero. Accordingly, there is no incen-
tive for individuals to adopt prophylactic measures and therefore the epidemic threshold
is simply determined by the disease dynamics. In other words, the voluntary adoption
of prophylactic measures allows to contain the disease but not to eradicate it.
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Fig. 1. Risk-driven epidemic spreading model. Numerical results of the risk–driven epidemic
spreading model on a power-law network of size N = 2000 and exponent 2.5. Default parameters
are c = 1, µ = 0.1, T = 10. Phase-space diagrams for the transmission probability, λ , and pro-
tection quality, γ , of the incidence on the fraction of protected (a) and infected individuals (b).
Full protection is represented by γ = 0, while γ = 1 means that the prophylactic measures do not
reduce the infection risk at all. The red line denotes the epidemic threshold of our model. The
blue line is the protection threshold as obtained analytically from the mean field approximation.
(c) Fraction of protected (P = Sp + Ip) and infected (I = Ip + Inp) individuals as a function of
time. We observe an oscillatory behavior that is sustained in time. (d) Detail of the oscillations.
The red and blue lines indicate the fraction of infected and protected individuals, respectively.
The black dashed line plots the payoff of the strategy not protected (Pnp) while the solid black
line is the payoff of the protected strategy (Pp).
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The second part of the results focuses on the temporal evolution of the system. Fig. 1(c)
presents a trajectory of the system and we observe that the incidence of the epidemics,
I, as well as the number of protected individuals, P, oscillates in time in a sustained
way. In Fig. 1(d) we unveil the mechanism behind the oscillations: If the disease in-
cidence is low, prophylactic measures are not beneficial and individuals stop adopting
them. Therefore, the incidence increases before individuals eventually start adopting
prophylactic measures again. At this point, the incidence will decrease and a new cycle
can start. Additionally, we find that there is a critical value of the protection quality for
oscillations to be sustained over time. If the protection quality is too low, the influence
of the protection level on the epidemic incidence is not sufficient for having sustained
oscillations. Instead, oscillations are damped and eventually vanish.
Finally, we propose plausible and efficient mechanisms to damp the oscillations. We
show that targeted interventions, which are triggered as the disease incidence starts in-
creasing, are much more effective than constant interventions of the same amplitude.
In this sense, our study adds to the design of prevention campaigns, which do not only
focus on perceived but real risks, in order to ameliorate human prophylactic behavior
and contain future outbreaks as for example of sexually transmitted diseases.

In this work we present an analytically tractable epidemic spreading model in which
individuals decide whether to take preventive measures or not depending on the global
extent of the disease, being this an assessment of their infection risk. We show that
the combined feedback between the human decision on prophylaxis, and the perceived
epidemic risk, are sufficient conditions for the emergence of self-sustained oscillations
in diseases well-described by the Susceptible-Infected-Susceptible (SIS) compartmental
model. Finally, we propose plausible mechanisms to damp out the oscillations. Our
study prompts to the design of persistent prevention campaigns, substantiated on not
only perceived but real risks, to improve human prophylactic behavior and contain the
recently reported raise of sexually transmitted diseases [6].
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1 Introduction

In [1], the authors argue that, in highly heterogeneous sexual contact networks, it is
unrealistic to assume that the transmission risk per partnership is equal. Rather, an in-
dividual with numerous contacts does not transmit the infection to each partner with
the same probability as an individual with few contacts. More generally, one would not
expect infection transmission probabilities in an epidemic process to be uniform in a
heterogeneous network.

Most studies of Susceptible-Infected-Recovered epidemic models on networks [2–
4] assume that the infection begins with a vanishing fraction of the network, but not a
finite number of sites. This essentially removes fluctuations with regard to the initial
growth of the infection, and allows the problem to be mapped to a undirected bond-
percolation on the same network [2]. This allows the calculation of the epidemic thresh-
old (above which a finite fraction of the population is infected), expected epidemic size,
and other statistics. In this construction, heterogeneity in infection probabilities has no
effect, and subsequent works generally assumed a uniform infection rate when examin-
ing heterogeneous networks. Studies of epidemic models on networks have examined
the effect of degree distributions and other network structure [3, 4] and neighbor degree
correlations [5].

A few works [6–8], however, have considered epidemics originating with a single
initial infection. In this case, one must consider not only the epidemic size but also the
probability that it occurs. The bond percolation mapping is not sufficient, and instead
a generalised directed percolation method must be used [7, 6]. The total expected epi-
demic outbreak is the product of two quantities: the probability that a single infection
leades to a (giant) infection, and the expected size of the resulting epidemic (the prob-
ability that a random site receives the infection). These can be viewed as the giant IN-
and giant OUT-components, respectively, of a specific directed network construction.

Here we use such an analysis to examine a compartmental epidemic model in which
the transmission probability may depend on both the source and destination degrees.
We consider a population of agents who may be in a susceptible (able to be infected),
infected, or recovered (no longer infected and not able to be re-infected) state. Infected
agents may pass the infection to susceptible neighbors, and the rate of transmission
depends on the degree of both the infected and susceptible agents. We show that this
heterogeneity can have a significant effect.
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2 Results

We show that the epidemic threshold is strongly affected by degree-dependent trans-
mission rate heterogeneity. Interestingly, the effect of dependence only on the source
degree or only on the destination degree, is the same.

Aggregation process

Balanced process

Dissemination process

Gin Gout

Gin Gout

Gin Gout

Fig. 1. Three different types of asymmetric spreading processes. The transmission probabilities
and the degree distribution together determine what category a given process falls into. Symmetric
processes (e.g., the standard SIR model) are perfectly balanced processes.

In the classical SIR model, the giant IN- and OUT- components are of equal size, but
in the presence of heterogeneous transmission rates, they may be of different sizes, even
when their product is the same. This has important implications: a infection that rarely
produces a very large epidemic must be treated very differently to one that regularly
produces a moderate epidemic. We therefore classify epidemics by the ratio of the IN-
and OUT-component sizes (we quantify this by considering their ratio just above the
epidemic threshold), Figure 1.

We give a general analysis of the problem for large locally tree like networks, when
the transmission rate is an arbitrary function λ f (k,k′) of the source, k, and destination,
k′, degree (λ is used as a control parameter). We further give exact closed form solutions
in the case of dependence only on source or on destination degree, and find approximate
solutions in the case of dependence on both, valid for large mean degree or when the
dependence on source and destination degrees is not far from symmetric.

We find a complex dependence of the process classification on the degree dependent
transmission rate, which may be positively or negatively correlated with degree, Figure
2. Balanced, disseminating or aggregation processes variously occur according to the
specific dependence.
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Fig. 2. Ratio Gin/Gout of the probability that a randomly selected site gives rise to an epidemic
to the probability that a random selected node is infected in an epidemic (which gives the mean
outbreak size), for transmission rates of the form λkα

i kβ
j , where ki is the degree of the infecting

node, and k j the degree of the potentially infected node.

Summary. We examine the effect of heterogeneous transmission rates, specifically rates
depending on site degree, in a generalised SIR epidemic model on complex networks.
We analyse the problem through a mapping to a generalised directed percolation prob-
lem. We classify processes as disseminating, aggregating or balanced, according to the
ratio between the probability that a single infection leads to an epidemic and the prob-
ability that a site participates in the epidemic. We find a complex dependence on the
transmission rate function.
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1 Introduction

The introduction of online social media platforms such as Twitter and Facebook, have
changed completely the ways the modern civilization consumes and share information.
If from one side they can facilitate the interaction between people from different parts
of the globe, they also provide the perfect ground for the spreading of low-quality in-
formation such as fake news and misinformation (i.e., information that is misleading or
inaccurate) that can be very harmful to our society. Traditionally, models of information
diffusion are based on tools borrowed from theoretical epidemiology where suscepti-
ble agents became infected by interaction with infected agents and, in spite of their
simplicity, they were able to reproduce several empirical observations. In situation in
which quality is not easily quantified, other metrics - such as ratings, number of views,
likes, number of downloads, etc - can be used the enhance the exposure of certain con-
tent to people. In principle, such an approach would allow high-quality information to
prevail. However, such a popularity-based approach can create bias since the systems
can be easily manipulated by social bots, for example. Another disadvantage of such
approach was proposed by Sunstein and Pariser. They have argued that the reliance on
personalization and social media can lead people to being exposed to a narrow set of
point of views and one’s existing beliefs would be reinforced because they are locked
inside so-called filter bubbles or echo chambers, which prevent the users from engaging
with ideas different from their own. Such selective exposure could facilitate confirma-
tion bias and possibly create a fertile ground for polarization and misinformed opinions.
Although several other works have been done trying to address to the crucial importance
for the problem of competition for attention, there still a lack of a better understanding
of how memes behave in on-line social network. In this work, we investigate how the
way information is presented to the users will affect the system’s quality, diversity and
discriminative power. Here, we assume that each piece of information carries a nu-
merical proxy representing its quality or truthfulness. We anticipate that by sorting the
memes, we increase the exposure of high-quality information, therefore, increasing the
overall system’s quality. However, it is still unknown how it will affect other character-
istics of the systems such as diversity of information and discriminative power.
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2 Results

In this work we consider an agent-based model inspired by the long tradition of repre-
senting the spread of memes as an epidemic process. The model consists of a network
where each agent is equipped with a memory containing α memes. Additionally, every
meme has a quality represented by numerical value drawn from an uniform distribution.
Furthermore, in contrast with classical epidemiological models, new memes are contin-
uously introduced into the system in an exogenous way.

Fig. 1. Behaviour of the average qual-
ity as a function of time for the model
(a) without sorting and (b) with sort-
ing according to the meme’s popular-
ity. The insets show the behaviour of
the average quality at the steady state
for different values of the information
load µ . The parameters used in all
plots were and α = 14.

We assume that at time t = t0 the system is in
its state of higher diversity where each node has
α unique memes. At every time step a node i is
selected at random and with probability µ it in-
troduces a new meme in the system by adding it
to its memory and sharing it with all its neigh-
bors. On the other hand, with probability 1−µ the
selected node chooses a meme from its memory
and, than, transmits it to all its neighbors. Once
all neighbors receive the meme, we consider two
situations, namely (a) the memes are organized
as they are received in a first-in-first-out manner
or (ii) in order to investigate the effects of qual-
ity bias, we assume that the user’s memories are
sorted according to the meme’s popularity with
more popular information on the top and less pop-
ular memes on the bottom of the node’s lists. In
both cases, the memes at the very bottom of the
user’s memories are removed or forgotten to make
space for the incoming meme if the node does not
have the meme already in its memory. Addition-
ally, the probability that an agent selects a specific
meme m from its list to transmit is proportional
to the meme’s quality f (m) and it is giving by
Pi(k) =

f (mk)

∑α
j=1 fi(m j)

. Figure 1 shows the behaviour

if the average system’s quality as a function of
time. Observe that, for long enough time, the sys-
tem quality decreases significantly as the informa-
tion load increases (Fig. 1 (a)). On the other hand,
once sorting is introduce, high quality information prevails.

Next, to measure the amount of diversity in the system at the steady state, we start
from the entropy H = −∑m P(m) logP(m) where P(m) is the portion of attention re-
ceived by meme m, i.e., the fraction of messages with m across all of the user feeds. The
sum runs over all memes present at a given time and is averaged over a long period after
stationarity has been achieved.
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Fig. 2. The Diversity H (color scale bar) as a function of
intensity of information load and attention for (a) the base-
line model and (b) the model with sorted attention list ac-
cording to the meme’s popularity. The Kendall Tau(color
scale bar) as a function of intensity of information load
and attention for the (d) baseline model and the model
with memes sorted according to (e) the meme’s popular-
ity. Figures (c) and (e) shows the difference in percentage
between the two models.

Figure 2(a) shows the behav-
ior of the diversity (system’s en-
tropy) for (a) the baseline model
and (b) the models with sorted
attention list according to the
meme’s popularity for different
values of α and µ . Observe that
the information load does not
affect significantly the system’s
diversity in any significant way
as shown in Fig. 2(c). On the
other hand, as we will show
next, the it does decreases con-
siderably the system’s ability
to distinguish between memes.
To measure the system’s dis-
criminative power, we employ
the Kendall rank correlation be-
tween popularity and quality,
which is computed by ranking memes according to the two criteria and then count-
ing the number of meme pairs for which the two rankings are concordant or discordant,
properly accounting for ties. The extreme case τ = 1 indicates a perfect correlation be-
tween quality and popularity and fitter memes are more likely to go viral. On the other
hand, if τ =−1, the two rankings are completely discordant. Figure 2(a)and (b) show in
color the Kendall correlation rank for the two models considered for different values of
α and µ . We observed that in general the rank correlation decreases as the information
load increases and a comparison between the models review that in reality the intro-
duction of sorting in reality hinders the system’s discriminative power with differences
between models being as high as 82.5% as shown in Fig. 2(f) [1].

Summary. We considered the problem of competition for limited attention. We investi-
gated how message sorting affect the overall system’s quality, diversity and discrimina-
tive power. Our results indicate that while the quality of information increases, the dis-
criminative power decreases significantly. No significant change was observed for the
diversity of information. We would like to thank the financial support by ARL through
ARO Grant W911NF-16-1-0524. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on.
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Abstract

We construct and study the Google matrix [4] of Bitcoin transactions during the time
period from the very beginning in 2009 till April 2013 . Google matrix of the Bitcoin
Network given by G(α) = αS+(1−α) 1

N eeT [1] built from data obtained from [2]

Fig. 1. Left panels show frequency histograms of Bitcoin Network (from January 11th 2009 to
April 10th 2013) of transaction from user a (with red circles) to user b (with blue circles) and of
given a to a given b (with black circles). Right panels show PageRank and CheiRank distributions
ordered by indices K and K∗ on top and bottom panel respectively. The bitcoin networks are
taken by quarters of years (halfs in the case of 2009) for 2009 (yellow), 2010 (red), 2011 (black),
2012 (blue) and 2013 (orange) whith lines corresponding to Q1 (solid line), Q2 (dotted line), Q3
(dashed line) and Q4 (dot-dashed line).

The Bitcoin network has up to a few millions of bitcoin users and we present its
main characteristics including some topology measures, the PageRank and CheiRank
probability distributions, the spectrum of eigenvalues of Google matrix and related
eigenvectors. We find that the spectrum has an unusual circle-type structure which we
attribute to existing hidden communities of nodes linked between their members.

We show that the Gini coefficient of the transactions for the whole period is close to
unity showing that the main part of wealth of the network is captured by a small fraction
of users.
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Fig. 2. Gini coefficient evolution for PageRank and CheiRank of BCN for quarter of years (halfs
for 2009)..

We determine the dimensionless trade balance of each user and model the contagion
propagation on the network assuming that a user goes bankrupt if its balance exceeds a
certain dimensionless threshold κ .

Fig. 3. Fraction Nu/N of BC13Q1 users in bankruptcy as a function of κ and τ .

We find that the phase transition takes place for κ < κc ' 0.1 with almost all users
going bankrupt. For κ > 0.55 almost all users remain safe. We find that even on a dis-
tance from the critical threshold κc the top PageRank and CheiRank users, as a house of
cards, rapidly drop to the bankruptcy. We attribute this effect to strong interconnections
between these top users which we determine with the reduced Google matrix algorithm.
This algorithm allows to establish efficiently the direct and indirect interactions between
top PageRank users.
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5. Célestin Coquidé, José Lages, and Dima L. Shepelyansky, Contagion in Bitcoin networks,

arXiv:1906.01293.

117

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Effect of interaction bias on spreading dynamic
in social networks

Matteo Neri1 and János Kertész1 Gerardo Iñiguez1,2,3
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1 Introduction

While some types of algorithmic biases have already been explored [1,2], a general
framework to describe the effect of bias in social spreading is still lacking. We formalize
the concept of bias in dynamical social systems in a general way by extending the well-
known approximate master equation formalism [3,4,5,7,8,9]. In a stochastic binary-
state dynamics, a node in the network can be in one of two possible states [x(t) = 0,1] at
any time t and updates its status via infection and recovery rates (Fk,m, Rk,m) that depend
on the degree k of the updating node and on the number of its infected neighbors m. The
transition rates Fk,m and Rk,m fully characterize the temporal evolution of the node class
(k,m). Our extended framework allows us to compute, in the presence of a bias with
arbitrary functional form, effective transition rates both analytically and numerically,
by means of approximations for several of the most studied binary dynamics of social
spreading in networks (voter model, majority rule model, threshold model of complex
contagion, etc.).

2 Results

As a concrete test, we implement algorithmic bias minimally to reflect the tailoring
of information based on personal preferences on social networks. In order to filter the
increasing amount of information produced on the web, one of the major biases in-
troduced by online media platforms is a personalization of content according to the
preferences of the user itself [6]. In order to do that, at the time of state-switching, we
let a node disregard some of its neighbours in the opposite state with probability b (due
to, e.g., an algorithmic bias to connect similar people in an online media platform): If
x = 0, the node ignores m− i of its m infected neighbours (each with probability b), and
only considers i of them (each with probability 1−b).

We find that the introduction of bias in the selection process of interacting neighbors
modifies the transition rates of several models of social spreading in non-trivial ways.
The effective transition rates of a binary dynamics under the effect of bias are, instead,

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



expected values of the original transition rates over appropriate binomial distributions,
{

F∗k,m = 〈Fk−m+i,i〉Bm,i(1−b)

R∗k,m = 〈Rm+s,m〉Bk−m,s(1−b)
, (1)

with i= 0, . . . ,m and s= 0, . . . ,k−m dummy variables over the number of infected/susceptible
neighbours the node interacts with. We characterize the models according to the effect
that the presence of bias induces on the dynamics, by observing how bias influences the
time required to reach consensus, as well as by how bias amplification is related to the
degree heterogeneity of the network or its mesoscopic (i.e. community) structure.

We observe that the combination of bias with sources of noise can induce new
phases of behavior. In the case of the majority rule model [10], for example, noise
indicates the probability that a user is not switching state even if the majority of its
neighbors have the opposite opinion. The presence of algorithmic bias introduces a new
phase of opinion polarization, as opposed to the known consensus phases where an ini-
tial majority dominates opinion (Figs. 1–2). Moreover, we investigate the microscopic
effect of bias in inducing fragmentation and echo chambers in the system by observing
how the auto-correlation and spatial correlation functions of the dynamics depend on
bias.

Fig. 1: Temporal evolution of the fraction of infected
nodes ρ(t) for an initially susceptible network with dif-
ferent initial conditions in the majority rule model with
transition rates

Fk,m =





Q if m < k/2
1/2 if m = k/2
1−Q if m > k/2

and Rk,m = 1−Fk,m. As the bias b increases, the system
abandons the consensus equilibrium (ρ = Q = 0.2) with
transient states of polarization that end up in a fully po-
larized network (ρ = 1/2).
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Fig. 2: Phase diagram of the fraction of infected nodes
ρ(t) (averaged over 50 realizations at Monte Carlo time
t = 60) for the majority rule model over a regular ran-
dom graph of size N = 104, as a function of bias b and
initial condition ρ0. For non-zero bias a phase transition
appears, delineating a new regime of asymptotic opin-
ion polarization (green), as opposed to the two known
regimes of consensus (blue and yellow).

Summary. Our framework provides a principled way of exploring the generic effect
algorithmic bias may have on any spreading dynamics in social networks. It shows that
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some dynamics are robust against bias (notably, epidemic spreading and simple con-
tagion such as the SIS and Bass models), while some others (opinion formation like
the voter and majority rule models) show new phases of large-scale behaviour solely
due to bias. By pinpointing common aspects among the diversity of biases and social
interactions present in online environments, we identify idealized mechanisms to poten-
tially tackle some of the most harmful effects of algorithmic bias, such as information
bottlenecks, echo chambers, and opinion radicalization.
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1 Introduction

The random graph approach is a tool for systemic risk modeling when uncertainty stems
from missing information on linkages. Such is the case for financial networks, see e.g.
[1], [2]. Instead of who is connected to whom, only aggregated information at the level
of each node is available. One can think of these as node characteristics, and exam-
ples include capital, asset or liability size, degree of connectivity. The random graph
approach allows one to compute the limit (when the size of the network is large) of
the fraction of nodes that fail when a shock propagates. The assumption is that one can
categorize nodes according to some of their characteristics, and within each category,
nodes are exchangeable. Along this direction, [3] assume that connectivity of each node
is known and that the underlying graph is the configuration model, chosen uniformly
over all graphs with the prescribed degree sequence. Their exchangeability assumptions
on the linkage weights ensure that a limit exists for the fraction of nodes with an initial
threshold to contagion. The final fraction of affected nodes is given in closed form for
all values of degrees and initial thresholds.

Our main contribution in this paper is to extend the threshold contagion on the con-
figuration model to the case when nodes’ thresholds receive growth from the linkages.
Because loss from the linkages and growth are intertwined, we call this the recovery
feature of the threshold. We are motivated by the application to financial and insurance-
reinsurance networks. Indeed, in financial networks thresholds represent –depending
on the context – either capital or liquidity. An initial set of nodes fail exogenously and
affect the nodes connected to them as they default on financial obligations. If those
nodes’ capital or liquidity is insufficient to absorb the losses, they will fail in turn. In
other terms, if the number of failed neighbors reaches a node’s threshold, then this node
will fail as well, and so on. Since contagion takes time, there is the potential for the
capital to recover before the next failure. It is therefore important to introduce a notion
of growth.

The model we consider in this paper can be seen as a set of Cramér-Lundberg pro-
cesses living on the nodes of a graph and which interact through the graph links. The
capital grows linearly over time. In contrast to the Cramér-Lundberg process, losses
do not arrive according to an exogenous Poisson process. Nodes have downward jumps
when there is a failure of a neighboring node. When a node’s capital or liquidity reaches
zero, the node fails and it leads to downward jumps to its own neighbors. The notion
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of time is also important. Calendar time governs the growth of capital. On the other
hand, jumps are governed by the interaction between nodes (specifically between a
failed one and one of its neighbors, chosen according to a probability law dictated by
the random graph model). There is a natural notion of interaction time and the link
revealing filtration. Consequently, jump arrival times have to be translated from inter-
action time to calendar time. We assume that inter-arrival times are exponentials with
mean inversly proportional to the size of the network. We assume that in each time unit,
nodes’ growth is proportional to nodes’ number of linkages. The linear growth as in
the Cramér-Lundberg is also consistent with models in the wider network literature that
attribute a fixed reward (respectively cost in some models) to each link as a tradeoff to
more contagion risk (respectively network rewards), see [4], [5] and references therein.

2 Results

Let µ(n)
λ+,λ−,θ be the fraction of nodes with in-degree λ+, out-degree λ− and threshold θ .

Assume the following regularity conditions µ(n)
λ+,λ−,θ → µλ+,λ−,θ , as n→ ∞, for some

distribution µ : N3→ [0,1]. We also assume that the average connectivity converges to
a finite limit

λ̄ (n) := ∑
λ+,λ−,θ

λ+µ(n)
λ+,λ−,θ = ∑

λ+,λ−,θ
λ−µ(n)

λ+,λ−,θ → ∑
λ+,λ−,θ

λ+µλ+,λ−,θ =: λ̄ ∈ (0,∞).

(1)
We assume that the duration in calendar time between the two successive interac-

tions is given by a random variable ∆ (n)
k follows an exponential distribution of parameter

n, i.e.,
∆ (n)

k = T (n)
k −T (n)

k−1 ∼ Exp(n).

Suppose that growth benefits arrive uniformly over time according to the “growth pa-
rameter“ α and both the in- and out-degrees. Given a growth function g, g(α,λ+,λ−),
one can define the minimal time when the node could survive ` failed neighbors

t` = tλ+,λ−,θ ,` =
(`−θ)λ̄

g(α,λ+,λ−)
. (2)

Let Uπ
1 ,U

π
2 , . . . ,U

π
` be i.i.d. uniform distribution on [0,π] and the order statistics be

Uπ
(1) ≤Uπ

(2) ≤ ·· · ≤Uπ
(`).

Let us denote by

Pλ ,θ ,`(π) := P
(

Uπ
(θ+1) > tθ+1,Uπ

(θ+2) > tθ+2, . . . ,Uπ
(`) > t`

)
, (3)

for `= θ +1, . . . ,λ and Pλ ,θ ,`(π) = 1 for `= 0,1, . . . ,θ .

Theorem 1. Let π∗ be the relaxed fixed point of the map Jα defined as

π∗ := min{π ∈ [0,1] | Jα(π)≤ π},
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where

Jα(π) := ∑
λ+,λ−,θ

λ−µλ+,λ−,θ

λ̄
·Bα

λ+,λ−,θ (π),

and

Bα
λ+,λ−,θ (π) := 1−

min{dθ+g(α,λ+,λ−)πe−1,λ+}
∑̀
=0

(
λ+

`

)
π`(1−π)λ−`Pλ+,λ−,θ ,`(π).

We have:

(i) If π∗ = 1, i.e., if Jα(π)> π for all π ∈ [0,1), then asymptotically (as n→∞) almost
all nodes fail during the cascade.

(ii) If π∗< 1 and π∗ is a stable fixed point of Jα , i.e., Jα ′(π∗)< 1, then the final fraction
of failed nodes converges in probability to

|D (n)
f |

n
p−→ ∑

λ+,λ−,θ
µλ+,λ−,θ Bα

λ+,θ (π
∗). (4)

Our results show that a higher heterogeneity in the initial distribution of the thresh-
old (as captured by its standard deviation) implies a lower default probability in equilib-
rium even as it leads to a larger average connectivity in equilibrium. More importantly,
systems with higher growth/recovery rates can have equilibria with higher failure prob-
ability as well as higher final fraction of failed agents. The fact that bailouts lead to
moral hazard problems is a known fact. Our results point to the fact that even in systems
where threshold growth happens over time (as opposed to equity or liquidity infusions)
strategic agents will adapt and potentially take more risks in equilibrium as captured by
increased connectivity. This result is surprising. In anticipation of future growth agents
take higher exposure to systemic risk and therefore the growth effect is hindered by
higher exposures. To counteract this effect, the most interconnected agents should have
higher thresholds in proportion to their interconnectedness, and this proportion should
be even higher in environments with large growth. The effect of threshold growth over
time would then allow them to play a role as shock absorbers in the system.
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Part IV

Dynamics on/of Networks
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1 Introduction

In many spreading processes a spreading agent may have a limited lifetime δ t: like
in case of transportation networks with a maximum acceptable transfer time; in so-
cial networks where information may become outdated or forgotten; or in case of dis-
eases where the infectious period ends after a certain amount of time. These problems,
concerning limited (δ t < ∞) waiting time processes, have been previously studied in
temporal networks by simulating the process from a sample of initial nodes and time
instances. This approach limits the analysis to either very small networks, or average
statistics (as opposed to event-level statistics or statistics of the tails of distributions) [3].
To alleviate this problem, recently the event graph representation has been proposed [4,
6], with weakly connected components giving an upper bound on the number of events
(resp. nodes) what a spreading process can follow (resp. reach) [4]. However, as weakly
connected components of event graphs cannot determine the exact reachable set from
a node at a given time, the detection of out-components appeared as an open challenge
so far.

In this contribution, we present a set of algorithms based on probabilistic cardinality
estimation [1, 2] that allows us to simultaneously measure the number of nodes and
events that can be reached from all different starting points and times in a temporal
network. In its most basic form it consists of scanning through each node of the event
graph (corresponding to events of the temporal network) in reverse topological order
and constructing an out-component set for each node based on its successors.

Our work has several advantages as compared to the conventional initial condition
sampling approach. It can be used to accurately calculate the tails of the reachability
and spreading distributions and it can answer completely new questions on temporal
network data, such as, what is the exact maximum number of nodes that can be infected
via a spreading process. It can also be used to calculate node/event level statistics, which
may lead to new kinds of importance and centrality measures. Further, it opens up a way
to analyse percolation phenomena in temporal networks. For example, instead of resort-
ing to upper-bounds via weakly connected components calculations (and lower bounds
via sampling), we can now exactly measure the critical parameters of the temporal net-
work unfolding as a directed percolation, or a spreading process evolving on the top of
it.
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Further, our method can find the event, which reaches the largest fraction of the
network (the largest out-component in the event graph) with high adjustable probability.
Note that the reachability without limited waiting time (δ t = ∞) appears as a special
case here and can be solved as well with our algorithms.

2 Results

Our method works accurately for very large networks, which we demonstrate via the
estimation of reachable set of nodes and events from all possible initial conditions in a
large mobile phone call network with∼ 325M events [4] and a Twitter mention network
of ∼ 258M interactions [7]. It can also be applied to directed temporal networks and
networks with a delay between the start of the event and the time it takes effect. To
demonstrate this, we applied the same method to the public transportation network of
Helsinki with ∼ 664K events [5] and air transportation network of the United States of
America with ∼ 180K events. Fig. 1 and Table 2 compare results and runtime of the
estimation algorithm on the real-world networks mentioned above.

Table 1. Runtime for real-world networks when calculating the reachability (number of unique
reachable events, nodes and lifetime) from all events in the network. δ t∗ corresponds to a waiting
time around the time at which there is a jump in the largest out-component size and corresponds
to the grey vertical line in Fig. 1. Baseline algorithm scans events in order of time and marks each
event/node that would be reachable from a specific starting event. This is repeated for each event
in the network as the starting event.

Runtime Baseline
Name Events Error δ t = ∞ δ t = δ t∗ δ t = ∞ δ t = δ t∗

Mobile 325M 3.3% 106 minutes 85 minutes 1695 years 21 years
Twitter 258M 3.3% 90 minutes 77 minutes 2409 years 243 years
Public transport 664K 0.81% 59 minutes 60 seconds 19 hours 13 minutes
Air transport 180K 0.81% 235 minutes 17 seconds 138 minutes 60 seconds
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Fig. 1. Maximum out-component sizes (top row) based on number of events (ρo,e) number of
unique nodes (ρo,g) and lifetime of the out-component (ρo,lt ) and corresponding median runtime
(bottom row) for different value of δ t. The vertical line in each plot corresponds to the δ t∗ value
in Table 2.
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The consensus problem is defined as a network of dynamical systems which coordi-
nate toward a common state following a distributed algorithm. In view of its broad range
of applications, encompassing opinion formation, distributed estimation, and multi-
vehicle coordination, the consensus problem has received an ample attention in the
last decades [1, 2]. However, most of the literature focuses on static networks, chal-
lenging our understanding of phenomena that are typically modeled by time-varying
networks [3].

Here, we study the discrete-time consensus problem over time-varying, stochas-
tic networks, by using the activity driven network (ADN) modeling framework [4, 5].
Within the paradigm of ADNs, each node is characterized by a fixed parameter, called
activity potential, which encapsulates its propensity to communicate and exchange in-
formation with its peers. In plain worlds, the activity potential measures the probability
that a node is activated in a time unit. The distribution of the activity potentials across
the nodes models heterogeneity in individuals’ behavior. ADNs are a powerful tool to
study dynamical systems on networks. In fact, i) they allow for representing networks
with a desired level of heterogeneity in the nodes’ propensity do generate connections,
in contrast with existing models of time-varying, stochastic networks [6], and ii) they
beget mathematical models that are analytically tractable and amenable to fast simula-
tions [4, 5].

Some preliminary endeavors toward a mathematical treatment of consensus prob-
lems over ADNs can be found in [7, 8]. Therein, results are mostly based on numerical
simulations and on the assumption of a time-scale separation between the evolution of
the network and the nodes’ dynamics. Here, we build on these first endeavors toward
a rigorous treatment of consensus over ADNs. Our technical contributions are twofold:
i) we study mean-square convergence of the dynamical process to estimate the speed
of convergence of the self-coordination process, and ii) we characterize the consensus
state, that is, the expected common state reached by the dynamical systems [9].

To achieve the first result, we leverage methods from stochastic stability theory and
we utilize a second-order eigenvalue perturbation argument. Specifically, building on
the claims in [6], we derive closed-form results for the rate of convergence of the mean-
square error dynamics as a function of the model parameters. We establish that the
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the numerical estimations performed over 100 independent runs (red circles, error bars are 95%
confidence intervals) confirm our analytical prediction (blue curve).

20 40 60 80

0.5

1

0
0

k

x(k)

(a) Sample path

0.55 0.6 0.65 0.7 0.75

2%

4%

x̄

frequency

(b) Estimated consensus state

Fig. 2. Numerical simulations of the consensus dynamics on a network with 50 nodes. Activity
potentials are distributed according to a power-law. Panel (a) illustrates a sample path of the
process and compares the evolution of the state variables with the predicted consensus state (red
dashed line) and the average of the initial conditions (blue dotted line). Panel (b) illustrates the
empirical distribution of the consensus values for set of Monte Carlo simulations over 50,000
independent runs from the same initial condition of the state variables. The distribution seems to
be centered in correspondence of our analytical prediction (red line).

convergence factor increases with the square of the standard deviation of the activity
distribution. The larger is the convergence factor, the slower is the convergence to the
consensus state. Hence, we suggest that the speed of convergence could be hindered by
the heterogeneity of the nodes’ activities, at least for moderate levels of heterogeneity.
Figure 1 illustrates the results of a campaign of Monte Carlo numerical simulations,
which confirms our analytical predictions.

The second result is attained using stochastic stability theory, whereby we charac-
terize the expected value of the consensus state reached by the network nodes. Different
from homogeneous systems, where the expected consensus state coincides with the av-
erage of the initial conditions, our analytical findings lead us to conclude that the con-
sensus state is dominated by low-activity nodes. Figure 2 shows numerical simulations
of the evolution of the network of dynamical systems, supporting our analytical results.
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Toward the application of our modeling framework in real-world large-scale prob-
lems, we derive a set of asymptotic results in the limit of large networks, both for the
rate of convergence and the consensus state.

Finally, we discuss the scenario where some of the network nodes act as leaders,
steering the state of the whole network to their own state. Utilizing a first-order eigen-
value perturbation argument, we show that, in the presence of leaders, heterogeneity
among the nodes could be beneficial to group decision-making. In fact, in [10] we
prove that moderate levels of heterogeneity decrease the convergence factor, speeding
up the convergence process to consensus.
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1 Introduction

Signs of hierarchical organisation can be often observed in complex networks, sup-
ported by various studies with subjects ranging from flocks of various species [1]
through social interactions [2] to scientific journals [3] and on-line news content [4].
In most of the cases, real networks are constantly evolving in time, and some relevant
aspects of the laws forming the structure of these systems have already been uncovered
in the scientific literature. One of the most well known example is the preferential at-
tachment rule for growing scale-free networks, corresponding to the key concept of the
Barabasi-Albert model [5], which was also detected by empirical studies of network
data [6, 7]. In a very recent work, along a similar line, we have examined the statistical
features of the restructuring mechanisms in networks with a hierarchical structure [8],
where the main goal was to detect preference or anti-preference during the different
attachment and detachment events over the time evolution.

The networks we studied correspond to the hierarchies between the Medical Subject
Headings (MeSH terms) provided by the NCBI to help searching in the PubMed pub-
lication database (comprising more than 29 million citations for biomedical literature)
at various levels of specificity. The MeSH terms are sorted into 16 hierarchies (labelled
A, B, C, etc.), and at the top of the hierarchies we find very broad headings such as
“Organisms” or “Information Science”, whereas more specific headings are found at
deeper levels. Due to the rapidly developing nature of the medical-, biochemical- and
biological sciences, the set of available MeSH terms are yearly updated by the curators
of PubMed.

2 Methods

In order to briefly describe our method for detecting preference with regard to some
node property x, let us consider first only two consecutive time steps. We denote the
probability distribution of x at the initial state by p(x), and the complementary cumula-
tive distribution of x as Q(x) = ∑

x′≥x
p(x′). By taking the ratio between w(x), correspond-

ing to the number of chosen nodes by the considered attachment procedure for which
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the property value is at least as large as x and Q(x) resulting in W (x) = w(x)/Q(x), we
obtain a function that is constant if the attachment is uniform in x, since in this case w(x)
and Q(x) are simply proportional to each other for any x. In contrast, if larger values of
x are preferred, the shape of W (x) becomes increasing as a function of x, whereas in the
opposite case, when the attachment/detachment prefers lower values of x, the shape of
W (x) becomes decreasing. Due to its simple construct, the expected value and variance
of W (x) under uniform random choice (where the attachment is independent of x) can
be calculated analytically, for details see Ref.[8].

To measure the preference of the attachment procedure over the whole period of
time steps in the empirical data, for every time step t (except for the last) we can measure
the complementary cumulative distribution Qt(x), and compare it to wt(x), denoting the
number of nodes having a property value at least as large as x selected by the given
attachment mechanism between t and t +1. By aggregating their ratio, we can define

Wemp(x) =
tmax−1

∑
t=1

wt(x)
Qt(x)

. (1)

The obtained curve can be then compared to the expected value of the random variable
corresponding to the sum of the supposed W (x) under the assumption of independence
from x, which we can denote by Wrand(x).

3 Results

We applied the method outlined in the previous section to study the time evolution of the
MeSH hierarchies with a system size exceeding 1000 nodes during the whole recorded
time period, focusing on the following properties: number of children (out degree),
number of parents (in degree), total number of descendants, total number of ancestors.
What makes the problem non-trivial is the rather high number of different possible
attachment and detachment event types that can occur during the time evolution. In
terms of the changing links we have two large categories: added (new) links and deleted
links. When examining the endpoints of added links, both the source and the target
can be either an already existing (old) node, or a new node, thus, there are altogether
4 types of added links. The case of deleted links is much simpler in this respect, as
both endpoints must correspond to old nodes. Therefore, there are in total 5 different
possibilities for changes in the connections. However, when examining the possible
effect of a given node property on the likelihood that the node is going to take part in an
attachment/detachment event, we also have to specify whether the node is the source or
the target of the involved link. Thus, for any node property of interest we can examine
10 different scenarios over the time evolution of the hierarchies.

As an illustration of the obtained results, in Fig.1 we show the measured Wemp(x)
and corresponding Wrand(x) curves for two cases. According to Fig.1a, the attachment
of new links pointing from old nodes to new comers shows a strong preference with
respect to the total number of descendants of the source node in case of hierarchies D
and C. In contrast, Fig.1b indicates that the attachment of new links appearing between
old nodes shows anti-preference with respect to the number of ancestors of the source
node.
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Fig. 1. Measuring preference under restructuring events. In both panels we compare Wemp(x)
defined in (1) to the mean and standard deviation of W (x) for random events, indicated by dashed
lines in shaded areas. a) Results for the total number of descendants of source nodes in attach-
ments of new links pointing from old nodes to new nodes in hierarchies D (orange) and C (blue).
b) Wemp(x) for the number of ancestors of source nodes on new links appearing between old
nodes for the same hierarchies as in panel a).

The results for the further attachment types and the other hierarchies are given in
Ref.[8]. Based on those, we could observe strong signs of preference with respect to
the number of children of the source node for both the addition of new links pointing
from old nodes to new ones, and for the deletion of already existing links between old
nodes. In parallel, we saw anti-preference with respect to the number of ancestors of
the source node for all possible link change types. Interestingly, if the node acts as the
target of the changing link, we could observe both preference and anti-preference with
respect to the number of ancestors for the different link change types [8]. In conclusion,
our results indicate that time evolution of these systems is far more complex compared
to simple preferential attachment models, providing very interesting future challenges
for modelling and further statistical analysis.
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1 Introduction

Many temporal networks exhibit non-stationary dynamics, such as cyclical patterns due
to daily, weekly, seasonal or yearly cycles, increase or decrease in population size or
drastic change of dynamical regime. Several works have generalized existing commu-
nity detection methods for static networks to temporal networks (e.g. [1–5]), but they
usually rely on the assumption of an underlying stationary process, or sequences of dif-
ferent stationary epochs, and a null model corresponding to the stationary state of the
process. Here, we propose a first-principle method allowing to take into account con-
tinuous time temporal networks, interactions that may have a duration and systems that
non-necessarily reach a steady state, or follow a sequence of stationary states.

2 Results

Our approach is based on the concept of the stability of a network partition [6, 7] gen-
eralized to temporal networks with non-Markovian and non-stationary dynamics.

Given a temporal network with a fixed number of nodes N and a set of directed
edges e = (vs,vt , ts,∆ t) where vs and vt are the source and target vertices, respectively,
ts is the time at which the edge becomes active and ∆ t is the duration of the edge,
we compute the matrix of transition probabilities with element Ti j(t1, t2) equal to the
probability of going from node i at t1 to node j at t2 by considering a continuous time
random walk with rate λ that is constrained by the activation of the edges. Communities
are then defined as groups of nodes that retain the flow of walkers the most over a given
time span (t1 to t2). They are found by optimizing the quality function that we call the
flow stability:

rflow(t1, t2;H) = trace
[
HT S(t1, t2)H

]
, (1)

where, S(t1, t2) = diag(p(t1))T(t1, t2)−p(t1)T p(t2) is the autocovariance matrix of
the process, p(t) is the probability density vector of the random walk at time t and
H is an indicator matrix that encodes which node belong to which community. The
optimization can be performed, for example, with the Louvain algorithm [8]. The rate
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of the random walk, λ , plays the role of a resolution parameter, allowing to detect
communities at all scales. Interestingly, in the case of static undirected networks, this
expression evaluated at stationarity reduces to the static Markov Stability [6, 9] which
is equal to the classic Newman-Girvan Modularity [10] for a Markov time (resolution
parameter) equal to one. In the case of directed static network, considering one step of
a discrete-time random walk, the flow stability reduces to a standard generalization of
modularity to directed network (Qd. = 1

m ∑i j

(
Ai j− (kout

i kin
j )/m

)
δ (ci,c j)).

We show how the autocovariance matrix is asymmetric in general, whether the
edges of the temporal networks have a direction or not. Indeed, the time ordering of
events can result in different probabilities for going from a particular node i at t1 to
a node j at t2 than going from j at t1 to i at t2 [11], even if each event allows walk-
ers to travel in both directions. To capture this asymmetry, we propose to describe the
communities in temporal networks with two partitions: the source and target partitions.
clustering the rows and columns of the autocovariance matrix separately (see Fig. 1).

Fig. 1. Temporal flow clustering. (A) We consider a toy model made of three groups of 5 nodes.
Nodes activations follow a Poisson process and edges durations are drawn from an exponential
distribution. The system follows two types of successive interactions: I1) during ∆ t1 each ver-
tex interacts with other vertices of its own group with the largest probability; I2) during ∆ t2 the
vertices of two of the groups interact with one another with the largest probability. (B) The au-
tocovariance matrix we derive allows to put into evidence the temporal communities structure
and reveals the asymmetry of the system arising from the specific time ordering of events. (C)
Clustering found by our approach showing how the time-asymmetric flow of walkers is clustered
in source communities and target communities.
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Summary. Our method generalizes the concept of modularity [10] of a network partition
for general temporal networks [5], over a given temporal interval, by taking into account
time respecting paths, capturing the asymmetry created by the time ordering of events
and allowing to consider multiple scales of the system. We consider applications of our
method to a toy model and several real-world examples, such as an extensive contact
network of free-living wild mice [12].
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Constant State of Change: Engagement Inequality in
Temporal Dynamic Networks (Extended Abstract)

Hadar Miller and Osnat Mokryn

University of Haifa, Israel

1 Introduction
Temporal measures of engagement are of interest as they give a measure of member
participation, interest, influence, dominance, and more [1]. In organizations, where fre-
quent changes were found to be the norm [2], following the temporal intensity and
dominance of the interactions can help in identifying fluctuations in involvement and
engagement prior, during, and after a planned organizational change, as well as assess
the reactions to a shock. These temporal measures are of interest also in the case of on-
line social networks engagement, where participation was found to be dominated by a
few. Yet, participants change their active role in the network and their engagement over
time [3]. Currently, it is unclear whether these changes affect the temporal measures
of network activity. Hence, we set to understand the change in the average intensity of
interactions and the variance in them. The distribution of the intensity of interactions,
also referred to as ties’ strength, has long been recognized as a fundamental property [4,
5]. We continue to define indices of average connection intensity and nodal dominance
inequality in temporal networks. A measure of average intensity of the edge interactions
in a network differs from average nodes’ strength, as the measure should not favor the
number of active connections a node has.
Temporal Intensity Level index: Centrality measure in weighted networks is defined
in [5] as follows: Cwα

D (i) = k(1−α)
i · sα

i , where α ∈ [0,1] is the tuning parameter, ki is
the number of nodes the focal node i is connected to, and si is its weighted degree. si
is computed by: si = ∑N

i wi j, where N is the total number of nodes in this network, and
wi j is a non-zero value for the strength of edges that disseminate from the focal node i.
Taking a network-wide approach, we define the weighted sum as follows:

φα =
N

∑
i=1

Cwα
D (i) =

N

∑
i=1

k(1−α)
i · sα

i (1)

The metric φα=0 corresponds to the number of edges in the graph; Alternatively, the
metric φα=1 corresponds to the sum of all edge weights in the network, that is, the
overall intensity of interactions in a network. The Temporal Network Intensity index for
networks is the ratio between the overall intensity of edge interactions in the network
and the binary number of edges, over a predefined window of time1:

ψ(Gτ) =
φα=1(Gτ)

φα=0(Gτ)
(2)

Where Gτ ,τ ∈ [1..T ] is a sequence of graphs representing consecutive network snap-
shots in a period T . ψ ≥ 1 holds for all graphs.

1A discussion on the length of the time window is outside the scope of this abstract.
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Temporal Dominance Inequality: In organizations, when a change is introduced,
high interactions can be found among its supporters and opposers, but there might be a
silent majority. Understanding the level of inequality in the intensity of the participation
can aid in understanding the balance between change-involved members versus those
who are not [2]. We measure the inequality in nodal interactions dominance utilizing
the Gini inequality index [6] for measuring income inequality.

2 Results
We gathered the temporal interactions from six real world networks 2. For each of the
datasets we calculate the weekly temporal network intensity, as defined in Equation 2.
The results, as appear in Figure 1 are surprising. All networks exhibit a rather stable
temporal behavior in their intensity, regardless of the fluctuations in size. It is also in-
teresting to note that although the Intensity is not bounded in value, in all these networks
the average intensity is low. For example, the Facebook network, on the lower left panel,
show a steady increase in network size from several hundreds up to more than 10000
weekly participants. (minimal intensity is calculated from zero as explained above). We
get similar results when measuring the temporal dominance (Gini index) in these net-
works. The measured values are in the range of [0.4,0.7] for all datasets. Intuitively,
an Erdös-Rényi (ER) random network would yield very low inequality values, as all
nodes have a similar chance for communicating, and a pure Preferential Attachment
(PA) network would give a very high inequality value. Figure 2 denotes the cumulative

Fig. 1. Temporal average intensity for the six datasets, denoted by the blue line with the values
on the left y-axis. The light grey dashed line corresponds to the temporal size of the network,
denoted by the right y-axis.

distribution of the relative change in the measured indices between every two consecu-
tive weeks for each dataset. In all networks but Enron more than 80% of the changes are

2The datasets are: AskUbuntu forum (198 weeks); Facebook Wall Posts (124 weeks);
Wikipedia Conflict (156 weeks); Wikipedia Talk (132 weeks); Manufacturing Emails (38 weeks);
EU Research Institutional Emails (74 weeks).
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of less than 15%. the Enron network, used often for change point detection, is different
from the other networks examined in terms of the range of Temporal Network Intensity
index and the percentage of changes measured in the index. The network displays Tem-
poral Network Intensity in the range of 3.0− 12.0, well above the index range for the
other networks. In addition, the index volatility is very high and the changes between
weekly measurements are high. The Temporal Dominance Inequality, as presented in
Figure 2(B), while is similar in range to that of other networks, also shows high volatil-
ity compared to the other networks. Our results determine that networks differ by the

(a) CDF of weekly change in average intensity (b) CDF of weekly change in Dominance

Fig. 2. The cumulative distribution of the weekly relative change for each dataset in the measured.
((a)) Temporal Network Intensity and ((b)) Temporal Dominance Inequality.

engagement indices we defined. To further verify this result, we ran a classification ex-
periment over the weekly indices, and find that the classifier can classify the indices
tuples to their corresponding network with high validity.

Summary. Our surprising results are that for most emails and forum networks checked,
the indices introduced were stationary, implying a steady state. The robustness of the
indices regardless of significant size changes of the underlying network in time, is in-
triguing. For example, when the size of the network decreases, in a process of preferen-
tial detachment it is expected that the level of engagement and hence the indices would
be also effected. Lastly, our result show that the indices we devised fluctuated signif-
icantly in a network that was dealing with a shaky situation that let to the company’s
disintegration.
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1 Introduction

The study of dynamical processes running on top of complex networks has become
a key problem in many research fields, ranging from the microscopic realm of genes
and neurones to the large realm of technological and social systems [1]. However, in
many practical situations, there is a lack of precision in the measurements and also in-
trinsic fluctuations may be present in the interactions of the network. These sources of
uncertainty in the structure affect dramatically the dynamical properties (as the critical
threshold of a macroscopic phase transition or the stability of the dynamical attractor),
and they should be taken into account when making analytical predictions from the
available data.

Following this line, we study the uncertainty in the critical threshold of a general
dynamical process on top of a complex network, when it is induced by microscopic
noise in the intensity of the connections among the units. Here, we present an analyti-
cal formalism that captures the main statistics of the threshold when affected by white
gaussian noise in the weights of the network. Our theory has a very good agreement
against simulations and the results show how the underlying structure of interactions
plays a central role in the way the microscopic noise is propagated through the macro-
scopic threshold. In particular, the theory predicts the existence of optimal structures
that are able to amplify significantly the critical range only due to small fluctuations in
the weights.

2 Results

We consider a network with a fixed structure of links that capture the presence of con-
nections among units and we let the intensity of the links (the weights) to be affected by
random fluctuations. For simplicity, we assume that the noise is gaussian and uncorre-
lated (white noise) where each weight is drawn from a normal distribution N(µ,σ). The
main goal is to understand how this microscopic noise affects the value of the critical
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point in a dynamical process running on top of the network.

For a variety of dynamical processes running on top of complex networks (includ-
ing synchronization, spreading dynamics and spin models) the critical threshold Kc is
estimated in terms of the inverse of the largest eigenvalue λmax of the adjacency matrix
A [2–4]. In order to study the exact statistics of Kc in the presence of noise with 0 mean,
one should use the tools from Random Matrix Theory [5]. However, for sparse networks
with arbitrary degree distributions, it becomes very challenging to obtain analytical re-
sults in this context. Also, since we are particularly interested in the scenario where the
mean of the interactions is not zero (µ > 0), an alternative approach is required.

We tackle this problem by applying an error propagation method to the mean-field
approximation of the threshold [6]. This method, although being approximate, gives
surprisingly accurate results and provides closed form expressions that facilitate our
understanding on the problem. We are able to derive closed-form expressions for the
mean and the variance of the critical threshold depending on the noise parameters and
the moment of the degree distribution of the underlying network [7]. In Fig.(1), we
show the accuracy of the mean-field approximation in capturing the distribution of the
critical threshold (left) and the performance of the theoretical expressions for a fixed
Erdös-Rényi network (right). The results are also tested in many empirical networks
showing good agreement against simulations (not shown in the abstract).
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Fig. 1. Left: Empirical (areas) and MF (lines) histograms for the distribution of the Kc in a fixed
Erdös-Rényi network with N = 200, p = 0.3, K0 = 1, µ = 1 for two different noise intensities
σ with 1000 realizations. The statistics are indeed affected by the noise and the MF approx.
accurately estimates the whole distribution of Kc. Right: Numeric vs theory: mean and standard
deviation of the critical threshold depending on the noise intensity σ for a fixed Erdös-Rényi
network with N = 200, p = 0.3, µ = 1 and 1000 independent realizations.

Furthermore, our theoretical results show that the fluctuations in the critical point
depend non-linearly on the moments of the degree distribution and the noise param-
eters. We were able to find which are the structures that maximize or minimize the
critical fluctuations, for a given amount of noise. This result finds implications also in
the context of adaptation and evolution of many biological systems [8]: some structures
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are able to increase their critical range (and therefore the variety of macrostates) only
by small fluctuations of the weights, without altering the underlying structure of links.

We propose an error propagation method to analytically quantify the macroscopic un-
certainty on the critical threshold of a dynamical process when induced by white noise
on the coupling weights of a network. The method is tested with good accuracy in syn-
thetic and empirical data. The results unveil several interesting noise-amplifying prop-
erties of the networks and the method can be used in practical situations, to quantify
the error made by theoretical predictions due to uncertain measurements.
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Complex networks are known to profoundly affect the processes they support. Some
of the most complex processes investigated to date on networks are related with be-
havioural dynamics and decision-making. These are often abstracted by means of social
dilemmas of cooperation, such as the Prisoners Dilemma (PD). In that context, despite
the higher returns of mutual cooperation, rational agents are paradoxically expected to
mutually defect, thus the dilemma. An evolutionary population dynamics approach to
game theory, where agents revise their behaviour based on the perceived success of oth-
ers, provides one of the most sophisticated examples of complex dynamics in which the
role of the underlying network topology proves key to determine the evolutionary out-
come of a population. For instance, when cooperation is modeled as a PD, cooperation
may emerge (or not) depending on how the population structure [9].

However, the precise link between the local self-regarding actions and the population-
wide dynamics that might lead to a collective cooperative scenario on structured pop-
ulations has been hard to establish. Indeed, past studies have mostly focused on the
analysis of the evolutionary outcome of cooperation – either by means of the numerical
analysis of steady states or by the analytical determination of the conditions that lead to
fixation – thus lacking a characterization of the self-organization process by which one
of the strategies out competes the other. Here we report on a numerical approach [5, 9,
10, 4, 7] that unveils the link between individual and collective behavior in evolutionary
games on structured populations.

To that end we define a time-dependent variable – the Average Gradient of Se-
lection (AGoS) – and use it to track the self-organization of cooperators when co-
evolving with defectors. In finite well-mixed populations the gradient of selection,
G(k) = T+(k)− T−(k), can be computed analytically as the difference between the
probabilities of increasing (T+(k)) and decreasing (T−(k)) the number of cooperators
by one, for a population with k cooperators. It is impossible to compute G(k) analyti-
cally for arbitrary network structures [2], in that sense, the AGoS provides a numerical
account of the same variables, offering the change in time of the frequency of coop-
erative traits under selection. The AGoS can be computed for arbitrary intensity of
selection, arbitrary population structure, and arbitrary game parameterization.

Overall, we show how behavioral dynamics of individuals facing a cooperation
dilemma in structured populations can be understood as though individuals face a dif-
ferent dilemma in a well-mixed (i.e.structured-less) population. As illustrated in Fig. 1,
homogeneous networks promote a coexistence dynamics between cooperators and de-
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Fig. 1. The Average Gradient of Selection (AGoS) provides a characterization of the change in
time of the fraction of cooperators under natural selection, being positive (negative) when the
fraction of cooperators tends to increase (decrease). While in well-mixed populations, the tragedy
of the commons (xC = 0) emerges as the only stable fixed point, homogeneous networks favor
the co-existence of cooperators and defectors, whereas degree heterogeneous networks creates
two basins of attraction, as if agents would be locally facing a coordination dilemma. Adaptive
network structures lead to the emergence of a two interior fixed points, a dynamical fingerprint
of N-Person games that involve group social dilemmas.

fectors – akin to a Snowdrift game – whereas strongly heterogeneous networks prompt a
coordination between them, similar to the Stag-hunt game. In other words, while agents
locally perceive and play a PD, globally the dynamics of the population resembles the
one obtained from a completely different game, as if, individuals would be locally fac-
ing a different dilemma.

In [6] use the AGoS to show that contrary to what happens in heterogeneous pop-
ulations that generate a coordination dynamics for a broad range of selection pressure
values, on homogeneous networks the population-wide dynamics depends on the in-
tensity of selection: under strong selection they favour a co-existence like dynamics
while under weak selection we recover the well-mixed scenario of a PD-like dynam-
ics which leads to the demise of cooperation (Fig. 1). [4] have shown the existence of
an optimal range of network heterogeneity that optimizes the evolutionary cooperative
outcome of a population, reinforcing the idea of the sensitivity of evolutionary games to
the underlying features of population structure. Moreover, we were able to identify the
existence (on several types of networks) of an optimum level of selection pressure for
which cooperation is maximised. The underlying process that leads to this result differs
from homogeneous to heterogenous networks. In the first class of networks the opti-
mal selection pressure is associated with the ability of cooperators to form and sustain
clusters, while on the second class it is the result of a decoupling in the distribution of
intensities of selection between pairs of agents that is present from the natural diversity
of fitness values [10] in the population.

When the co-evolution of both strategies and network structure is considered, the
range of social dilemmas where cooperation can thrive expands. In [7] we show that,
when individuals engage locally in PD games, we observe that adaptive networks give
rise to the emergence of population-wide dynamics that is akin to what we find in lo-
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cal games that involve group interactions (N-Person Games) with non-linear returns
[3]. Interestingly, such results means that adaptive social structures entwine individuals
decisions in scenarios that extend their dyadic relationships.

Underlying these emergent phenomena are the natural build up of peer-influenced
correlations between individuals behaviors along nodes of the network. We have shown
that such correlations emerge from the pairwise learning dynamics in populations with
network mediated interactions [8]. These patterns are characterized by positive corre-
lations among the strategies of individuals up to two or three links of separation. Our
results nicely match and extend our understanding of previous empirical studies that
found similar peer-influence patterns in social networks [1].

The application of the AGoS is not limited to 2-person games. In fact, as discussed
in [10], heterogeneous network structures create multiple internal equilibria when indi-
viduals face public goods dilemmas, departing significantly from the reference scenario
of a well-mixed populations. Finally, we would like to stress that the scope and impor-
tance of this methodology goes beyond the present application to evolutionary games
on graphs. The principles can be used to extract any dynamical quantity that describes
a process (as long as it is a Markov process) taking place on a network such as the
outbreak of epidemics or the opinion diffusion.
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1 Introduction

Network theory has played a crucial role in enhancing our understanding of polariza-
tion, segregation, fragmentation, hierarchical stratification, and other phenomena re-
lated to opinion formation and propagation[1]. The underlying paradigm is the formal
represention of social systems by networks in which the nodes correspond to agents
and the links to binary relations amongst them. Recently, higher-order relations have
started to appear as a new focus in the analysis of complex network data sets [2]. Such
inherently social phenomena as peer groups, contracts, institutionalisation and state for-
mation demand for an inclusion of these higher-order interactions into models and theo-
retical descriptions. One may even argue that their omission fails to capture the essence
of social systems in the same way the linear models fail to capture the essence of natural
processes.

Here we consider one of the classical models of opinion formation which exhibits
fragmentation, the co-evolving voter model[3], and propose an extension to higher-
order interactions[4]. We recall the classical co-evolving voter model in which agents
are endowed with one of two possible opinions, say +1 or -1. They are connected via
links, forming a network. Both the opinion states and the network itself evolve, account-
ing for an adaptation and thus giving rise to the co-evolutionary nature of the model.
Two connected nodes with opposing opinions either homogenize their opinion with
probability 1− p or they rewire their connection with probability p. The persuading or
rewiring node is chosen at random. One observes that either one of the opinions wins in
the long run or the network fragments into two disjoint communities of opposing opin-
ions. There is a critical rewiring probability pc above which the network fragments.

We propose to model peer groups by simplices and extend the classical co-evolving
voter model by a majority rule that models peer pressure [4]. Here we describe a min-
imal version in which peer groups are 2-simplices, but extensions to n-simplices are
straightforward. A 2-simplex is a triadic relation of three nodes that requires binary re-
lations amongst each of its vertices. One may think of it as a filled out triangle. Typically
in a peer group all members are also friends with each other, justifying our modeling
assumption. A system consisting of nodes, edges and 2-simplices is called a simplicial
2-complex.
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Fig. 1. We show a) the order parameter ξp of the co-evolving voter model on simplicial complexes
and b) the average inverse depletion time of triangles 〈1/τ〉, respectively for various rewiring
probabilities and peer pressures. The simplicial complex are randomly generated for N = 500
nodes, a mean degree µ = 8 and 2-simplex-per-edge degree s = 0.2.

The majority rule states that the majority opinion convinces the minority opinion
when an active edge inside a simplex is chosen. The majority rule is applied with prob-
ability q, thus q = 0 corresponds to the classical co-evolving case. In summary the
model is described by the following update rule: At each time step an edge e is chosen.
If this edge connects the same opinions nothing happens. If it connects opposing opin-
ions, either the classical rules apply with probability 1−q or the majority rule applies
with probability q. If the majority rule applies, then one of the simplices attached to
that edge is chosen for the persuasion and if none is present, i.e. in the absense of a peer
group, the classical update rule applies. Whenever a simplex is destroyed by a rewiring
event a randomly chosen triangle is converted into a simplex.

This minimal extension allows us to study the effect of peer pressure in voter pro-
cesses. It also serves the purpose of studying evolving simplical complexes as such by
means of a simple model.

2 Results

We conduct numerical simulations supported by calculations. First we find that higher
peer pressures accelerate the fragmentation process and the fragmentation itself already
occurs at lower rewiring probabilities. In Figure 1a) we show the order parameter ξp for
various peer pressures q ∈ {0,1/4,2/4,3/4}, where ξp is the maximal quasi-stationary
density of inhomogeneous (sometimes called active) links [3]. The simulations are ini-
tialized by random simplicial complexes with N = 500 nodes, a mean degree of µ = 8
and a low simplex-per-edge density of s = 0.2. Simplices are distributed uniformly at
random over the set of vertex-triplets. Despite the low simplex density one may see
clearly the effect of an earlier fragmentation for higher peer pressures. Apart from the
early fragmentation transition one may look at the depletion rate of active edges and
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also – for values of p below pc – at the drift velocity towards one of the single-opinion
states. In both cases we find that the peer pressure increases the respective velocities.

Secondly, we find that there is a multiscale hierarchy of time scales that corre-
spond to the order of the simplex. The evolution and depletion rates of triangles and
2-simplices is the highest due their destruction by rewirings and their enhanced conver-
sion rate via the peer pressure. They evolve faster than the edges, i.e. 1-simplices, also
because any event on the edge has an effect on all the simplices that are attached to it.
The node states evolve slowly to one of the single-opinion states at a quasi-stationary
rate. The fast dynamics of triangles in the system is particularly important. In some
parameter regimes rewiring events destroy triangles at a higher rate than it produces
them. It then happens that all triangles deplete and a rewiring event can start to destroy
simplices without converting triangles into simplices for simplex-conservation. We are
interested in the depletion time of triangles τ . In Figure 1b) we show the average in-
verse depletion time 〈1/τ〉. It can be seen rather unsurprisingly that triangles don’t
deplete in the absense of rewirings. Further it can be seen that depletion rates increase
as the rewiring probability increases, but less so for higher peer pressures. One may
also see that τ diverges as the fragmentation transition is approached. We can explain
these curves heuristically: The stronger the fragmentation, i.e. the lower the density of
active links ρ , the larger become the mean degrees µ̃ of the respective communities

µ̃ ≈ µ(1−ρ) .

Thus, rewired active links are more likely to create new triangles in any of the commu-
nities and more unlikely to destroy them due to the few inhomogeneous triangles.

Summary. We have shown, how to naturally (from the viewpoint of applications) and
minimally (from the mathematical perspective) extend the co-evolving voter model to
a model on simplicial complexes. It seems now plausible as further steps to also extend
other adaptive contact processes to simplicial complexes, e.g., epidemic spreading mod-
els. We demonstrated that the model still yields a fragmentation transition upon varying
the re-wiring rate. Yet, the quantitative properties are changed and we observe faster
transitions to a single-opinion absorbing state or towards a fragmented two-opinion
state. Furthermore, we found that the simplicial adaptive voter model often displays
multiple time scales.
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1 Introduction

Social micro-blogging networks, like Twitter, are designed to allow their users to dis-
seminate information and opinions with their digital peers. The information dissemi-
nated over the network characterizes the initiator but also influences it’s peers perspec-
tive over them, resulting in changes in the ego network of both the initiator and the
receiver. In this study, we explore how the user’s activity, occupation and interests in-
fluence the evolution of her ego network. We continuously monitor individual Twitter
users for a period of one month and observe how their online activity and their general
characteristics, affect their ego-network in a day-to-day basis.

Over the years, significant research has shown that the total interactions between
individuals in society lead to the development of complex community structures in a
social network [3, 5, 7, 17, 18], composed of well-connected circles of friends, fami-
lies or professional cliques [11, 13, 15] Additionally, because of the frequent changes
in the patterns of activity and communication of individuals, the relevant social and
communication networks are constantly under development [4, 6, 8, 16]

In recent decades, interdisciplinary network research has explored the structural
and evolutionary qualities of online social graphs and the communities they include,
revealing universal patterns of their dynamics. [2, 9, 12, 14, 19]

Research into the development of the ego network proves a person’s connectivity,
and activity is widely distributed [12], The number of edges in a social network grows
as the number of nodes increases, and the average path length is shrunk by the addition
of new nodes [10] after an initial extension phase [1].

In this study we examine how the characteristics and activity of the ego affect her
ego network evolution. To investigate the ego network evolution in social networks, we
followed 1,000 Twitter users for a period of 30 days, collecting a snapshot of their ego
network every day. We categorized the users in nine professional classes 3, according to
the users stated profession, as well as a random sample class. For each class we selected

†This project has received funding for the European Unions Horizon 2020 research and in-
novation programme under grant agreement No 739578 and the Government of the Republic of
Cyprus through the Directorate General for European Programmes, Coordination and Develop-
ment.

3The classes we studied were: Athletes, Politicians, Doctors, Journalists, Lawyers, Business
Owners, Actors, Models and Singers
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Fig. 1. Ego exhibited Sentiment, Affect and Discussion Topic effect on ego-network evolution

10 users with pre-specified initial network sizes (from 100 to 10,000 followers/friends
each class). For the whole dataset, each professional class but also each initial network
size we then examine the critical factors that affect the user’s ego network evolution.

Our research examines how the user’s ego-network changes over time but also how
the characteristics of that ego-network (i.e. clustering coefficient and number of com-
munities) evolve over the observation time period. Additionally, for each of these char-
acteristic we examine how the activity of the user (i.e. the sentiment, opinion topics and
affective tone observed in her tweets) but also the profession and initial network size
affect the evolution of the ego network.

2 Results

Our initial results support our hypothesis for the role of ego characteristics, online be-
havior and interests in the evolution of the ego-network. Our temporal study shows daily
fluctuations in the users ego-network in the range of±2%, equally split in increases and
decreases. More than 60% of the users experience an increase in their ego-network over
the period of one month, with increase rates going up to 4%. Doctors exhibit the most
growth, with 90% of the category members to show increase in their network during
the observation period. Additionally, we also observe a rich-get-richer phenomenon,
where users with the biggest initial network (i.e. 9000-10000 followers) are the ones
that observe the highest and more constant increase in their ego-network over time.

Furthermore, as depicted in 1 Twitter user’s tone and subject of information dissem-
inated plays an important role in her ego network evolution. In the upper left figure we
can observe that positive sentiment (averaged over all tweets of the user in the observa-
tion period) results in an increase of the ego-network in 90% of the times, while negative
sentiment results in the network decreasing 87% of the time. The upper right figure sim-
ilarly shows that positive affect (i.e. Joy) can result in a ego network increase in 67% of
the time. Negative affects, such as disgust, fear and sadness result in a decrease of the
ego-network. Finally, the low figure shows how different topics of discussion affect the
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evolution of the social network. It shows that Twitter users that mostly discuss family,
hobbies and entertainment issues experience the most increase in their ego network.

Summary. Our initial analysis depicts the degree in which ego characteristics, such as
sentiment, affective tone, profession, as well as the topic mostly exhibited by the user
during her social networking activity, affects the evolution of her ego network topology.
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1 Introduction

The main approaches to cluster temporal networks include two steps: they first slice the
temporal network into a sequence of static networks, then apply a clustering algorithm
for multi-slice networks. However, while several methods to cluster multi-slice net-
works exist, assuming that the number of slices leading to a good clustering is known
is typically an unrealistic assumption.

In this paper we focus on one of the best-known methods to cluster multi-slice
networks: generalized Louvain [3]. Being this method based on an objective function of
cluster quality (modularity), to find an optimal number of slices we might be tempted to
run the generalized Louvain optimization algorithm for different numbers of slices and
pick the result with the highest modularity. Unfortunately, we cannot use modularity to
compare the clusterings of different slicings.

Figure 1a shows the modularity of the clusterings discovered by the generalized
Louvain algorithm on four real temporal networks varying the number of slices. We can
see that the more slices we have, the higher the modularity we get from the algorithm.
This suggests that raising values of modularity for different numbers of slices are not
necessarily an indication of better clusterings, but just a by-product of the increased
size of the input networks. This is confirmed by executing the method against synthetic
data where the same edges4 are replicated on all slices. Despite introducing no new
information, the modularity increases because of the addition of new edges, following
a pattern that can be expressed analytically as shown in Figure 1b.

2 Method

This work is based on the assumption that multi-slice modularity has two components:
one that increases with better clusterings, and one that increases just because the data

4Zachary’s karate network
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Fig. 1: Modularity of the partitions returned by the generalized Louvain algorithm vary-
ing the number of slices for different temporal networks; the value increases with the
number of slices, following a predictable pattern.

size increases, e.g., if we duplicate a slice, the same cluster extended across two slices
will contain additional inter-slice edges. Therefore, to identify an optimal number of
slices we can try to isolate the first component in the modularity and use it to compare
clusterings computed using different numbers of slices.

To remove the effect of data size we use an edge reshuffling process that destroys the
clusters in the network without affecting the degree distribution [2, 1]. For each number
of slices, the Louvain algorithm is run both on the original data and on the reshuffled
data where the clusters have been destroyed. The modularity on the dataset without
clusters indicates the effect of the number of slices on modularity, and the difference
between the two indicates the part of modularity due to the presence of clusters. We call
this difference normalized multi-slice modularity.

3 Results

To test our approach we built different synthetic networks where the optimal number of
slices is known in advance. Here we only show one of these cases, for space reasons.
This example consists of two cliques separated by random noise (20% density), with
this pattern repeated five times. The network is shown in Figures 2a-Figure 2c, split
into different numbers of slices. When we only have one slice, the combination of the
noise present throughout the existence of the network hides the clusters. When we use
five slices (Figure 2b), the cliques are easily visible in all slices. In time, the cliques
disappear from some of the slices, and ultimately from all of them, because their edges
get spread across several sparser and sparser slices.

With this dataset, we know that the clusters are the most visible when we have five
slices. Figure 2d shows the original modularity, the randomized modularity and our
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normalized multi-slice modularity. While the first two increase when the number of
slices increases, the normalized multi-slice modularity has a peak at five slices.

Figure 2d also shows the normalized mutual information (NMI) between the ground
truth clusters and the clusters found by the algorithm, for different numbers of slices.
A higher value of NMI corresponds to more similar clusterings. We notice how the
number of slices identified by our approach corresponds to the highest NMI, but the
generalized Louvain algorithm would still be able to reach the same NMI with other
numbers of slices (up to fifteen with this data).

(a) one slice (b) five slices (c) eight slices
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1.00
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(d) modularity

Fig. 2: Best number of slices: controlled experiment

Summary. We propose and evaluate a method to identify an optimal number of slices
based on modularity. Our work includes additional results and discussions not presented
here for space reasons: Practical details on how to correctly perform edge shuffling. The
application of the method to several real datasets for which no ground truth is available.
A critical analysis of the method, identifying aspects that require further validation.
A critical analysis of modularity-based approaches in the context of temporal network
clustering, identifying scenarios such as recurrent temporal clusters that are not cap-
tured by this objective function.
Acknowledgments This work was partly funded by STINT project IB2017-6990.
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1 Introduction

Networks constitute a paradigm of complexity in real life systems by assembling
the structure of the interactions of their elementary constituents [1, 2]. They are found
at every level of biological organisation, from genes inside the cells [3] to the trophic
relations between species in large ecosystems [4]. Nowadays, with the enormous de-
velopment of data science, there is a huge interest related to the network inference,
namely detecting the interacting structure from external measurements or observations.
For example, reconstructing the structure of brain networks from the activity of neu-
ronal patches has been a major goal in computational neuroscience [5]. The dynamics
that takes place on networked systems can, in some cases, strongly influence the percep-
tion that we have regarding local topological features such as the degree [6] or global
ones such as network non-normality [7].

In this work, we focus specifically on the problem of measuring network centralities
from the dynamical point of view. We show that the inference of networks’ structural
properties depends heavily on the competition between the node-based dynamics on
one hand and the interactions between the nodes on the other. In particular, we illus-
trate such a phenomenon based on the communicability centrality [8], considered as a
reliable measure for dynamical inference [9]. We show that when the local intra-nodes
dynamics is slower than the inter-nodes one then the ranking of the nodes according
to the standard definition of the communicability, becomes inadequate. Such ranking
can be enhanced if further information regarding the nature of the dynamics occurring
on the network is available. As an example, we show that for networks with different
time-scale structures such as strong modularity, the existence of fast global dynamics
can imply that precise inference of the community structure is impossible.
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2 Results

To illustrate our analysis we will consider the SI model for epidemic spreading in a
metapopulation network [10, 11]. Such a formulation of the spreading processes has
been employed to model, for example, the propagation of misfolded proteins in neu-
rodegenerative diseases [12]. The mean-field dynamics reads:

Ṡi = −αSiIi +(1−α)∑
j

Li jS j

İi = αSiIi +(1−α)∑
j

Li jI j , (1)

where S, I are the concentrations, respectively, of the susceptible and the infected in-
dividuals, α is the infection rate, 1−α the diffusion constant and L is the Laplacian
matrix defined as Li j = Ai j − ki where ki is the degree of node i [2]. Starting from
this model, we will compare the effectiveness of measuring the nodes’ centrality from
the dynamical observables and compare it to different structural definitions (commu-
nicability, modularity etc). To do so we first select the most central node of the graph
(e.g., the one with the highest betweenness) as the observation node and then take the
time needed for the infection to reach such node as the dynamical observable. We will
indicate the observable as RTi and will refer to it as the corresponding reaching time
for the starting node i. We prove that if the dynamics of the network outcompetes that
of the nodes, α < 1/2 then the range of values taken by the reaching time RTi over all
nodes i is small. This means in the presence of noise in the experimental data (due to the
stochastic nature of the process and measurements) it is not possible to distinguish the
nodes anymore. To emphasize this point, we consider a strongly modular topology [2],
a feature of crucial importance in modern computational neuroscience [5]. In Fig. 1 we
show that in a general system which dynamics depends on both the network connections
and the node dynamics as in eqs. (1) is not possible to infer the structural properties as
e.g. the modularity in a correct way. Moreover, the accuracy of the resolution depends
on the competition between these two dynamical components of the system.

Summary: In order to determine the role that each node has inside a complex network,
several centrality measures have been developed so far in the literature. In this paper,
we show that when the dynamics taking place at the local level of the node is slower
than the global one between the nodes, then the system may lose track of the structural
features. On the contrary, when that ratio is reversed only global properties such as
the shortest distances can be recovered. In this sense, our results constitute an uncer-
tainty principle where inferring the structural properties of a network at a global level
(e.g. modularity) means sacrificing resolution of the local dynamics of the nodes, and
vice-versa. For illustration purposes, we show that for strong modular networks, the
existence of fast global dynamics can imply that precise inference of the community
structure is impossible, particularly in the presence of noise.
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Fig. 1. a) We plot the normalised reaching time RTi variable of the four modules (indicated by
roman numbers) showing that for decreasing values of the α parameter (as in the legend) the
ranges of the dynamical variables for different modules overlap. b) The correlation variable for
each couple of modules (with the exception of the first) as a function of α . c) We show how the
resolution of a given reconstruction method can be affected by different choices of the tuning
parameter (for the same values as in panel a)). c) A representative visualisation of the networks
reconstruction where it is shown the gradual deformation perceived in the network modularity
from: c1) (α = 0.65) the original 4 modules topology, c2 (α = 0.2) modules II and III have
merged and c3 (α = 0.05) where module IV is now merging with the union of the modules
II− III. The modular network has 100 nodes and has been generated through a Stochastic Block
Model with total link density p = 0.2 and probability 0.01 for an inter-module link.
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1 Introduction

The understanding of the variability and susceptibility of individuals’ attitudes and
opinions, when exposed to random influences from their milieu, is a central question
in the social sciences. We here address this question by a spin-model of agent opin-
ions that are coevolving with their social network. We show how groups of agents with
opposing opinions form in the low exposure regime, while groups disappear above a
critical level of exposure. Within the presented approach, the effect of ”social balance”
– a concept first introduced by Heider [1], is explicitly taken into account with a new
term in the model Hamiltonian. The dynamics can be understood by the phase diagrams
of the model.

2 Results

In Heider’s social balance theory, a group of three individuals forms a balanced triangle,
if either all the three are mutual friends or two of them are friends who both have the
same enemy as the third. They form an unbalanced triad, if either all three are mutually
hostile, or one of them has two friends who detest each other (see Figure. 1). If such
a situation occurs, agents strive to reduce the tension in their unbalanced triangles by
flipping one of the three links, so that balanced triangles tend to remain in the network.
Assuming that this fact, as well as the tendency of agents to avoid contention with their
neighbours, are key driving forces in social dynamics, we arrive at the Hamiltonian:

H =−∑
(i, j)

Ji jsis j−g ∑
(i, j,k)

Ji jJ jkJki , (1)

where both the opinion si of individual i and the links Ji j between individuals i and j can
take values {−1,1}. That is, opinions si can be yes/no answers to a political question,
while links Ji j represent friendship and enmity relationships, respectively. In Eq. (1),
the first term biases friends to be of the same opinion and enemies to be of opposing
opinions, while the second term, which takes into account the effect of triangles on
the system dynamics, biases triads towards ”social balance”. The parameter g ∈ (0,1),
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allows us to continuously control the relative weight of the topological effect. Based
on this Hamiltonian, the coevolution of opinions and network links is implemented by
using the Metropolis algorithm [2]. Here, at every time step, both an opinion and a tie,
are chosen at random to be independently and subsequently flipped if this decreases the
Hamiltonian energy H or with a probability e−H/T if this is not the case, where T is
the social temperature which represents random influences from the individual milieu.
For simplicity, we consider only fully-connected undirected networks, where every one
knows everyone else.

Fig. 1. Balanced and unbalanced triangles.

The network structure that is relevant to our purpose can be characterised by a topo-
logical variable f , which measures the difference of the fractions of balanced and un-
balance triangles in the network:

f =
n∆+ −n∆−

M
, (2)

where M = n∆+ +n∆− and n∆+ (n∆−) are the total number of triangles and the number
of balanced (unbalanced) triangles in the network of social ties. For fully-connected
networks of size N, M =

(N
3

)
. Thus, f = 1, if all the triangles are balanced and f < 1 if

on or more unbalanced triangle are present. We call f the “net balance”.

When there is no unbalanced triangle in the network, it has a special structural prop-
erty. According to Harary’s theorem [3], the set of nodes is partitioned into two disjoint
subsets B1 and B2, one of which may be empty, such that all links between nodes
of the same subset are positive and all links between nodes of the two different sub-
sets are negative. The existence of these two clusters suggests the definition of another
measure, that we call the group difference, which characterizes the final distribution of
agent opinions between them,

mg =
1
N

〈∣∣∣∣∣ ∑
i∈B1

si− ∑
i∈B2

si

∣∣∣∣∣

〉
. (3)

By definition, mg ∈ [0,1]. mg takes its maximum value 1 if and only if each of the two
clusters B1 and B2 consist of like-minded agents but the opinions are contradictory
between agents belonging to different groups. This picture is analogous to what happens
if two clusters of classical Ising-spins are coupled to each other by anti-ferromagnetic
interactions. At low temperature, due to the ferromagnetic interactions between spins
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inside a cluster, they are aligned in the same direction, but spins in different clusters
must have opposite directions as their interactions are anti-ferromagnetic.

In figure 2, we show that by Heider’s structural balance, the society can eventually
reach a balanced state in which opinions are split into two disjoint groups respecting
this principle (yellow region in the figure). The stronger the effect of triangles is (i.e.,
the larger g), the more stable this bi-partition is against the destructive effect of the
social temperature T . However, for fixed g, as long as the temperature increases, these
clusters disappear and opinions become randomly distributed amongst agents (the dark
blue region in the figure), marking a continuous phase transition in both the net balance,
f , and the group difference, mg.

f
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0  

0.2
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m
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Fig. 2. The net balance f (left) and the group difference mg (right), as a function of the social
temperature T and the relative strength of the triangle effect compared to the agent pair-wise
interaction g. Results averaged over 103 realizations of the model (1) by the Metropolis algorithm
with 104 time steps for fully-connected networks with N = 10 nodes.

3 Summary.

We investigated the role of social balance in the coevolution of individual opinions and
their social network. In particular, we have shown how this effect can lead to a sim-
ple understanding of the polarization of society that is observed today. Within the new
framework, the question about the stability of this polarization under social perturba-
tions can also be fully addressed.
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1 Introduction

Understanding the dynamics of face-to-face interaction networks is essential for ex-
panding our knowledge of how diseases spread, how information is exchanged or how
communities form and evolve [1]. However, it has been difficult to find simple processes
that reproduce the structural and dynamical properties of these networks including the
recurrent formation of groups of the same people, which originate from human motion
patterns that are far from random [2]. For this reason, models like the attractiveness
model [3] that are based on mobile interacting agents that perform random walks are
unable to reproduce the abundance of recurrent components found in real systems, even
thought they can reproduce a variety of other important properties.

In this extended abstract we present the Force-directed Motion model (FDM), which
has been recently published in PRL [4]. The model suggests that hidden similarity dis-
tances between the agents act as forces that direct their motion towards each other in the
physical space where they move, and determine the duration of their interactions. The
FDM reproduces a wide range of properties of real systems, including the formation of
recurrent components.

2 Model description

The FDM assumes that the agents move and interact in a closed two-dimensional Eu-
clidean space (an L×L square), and that they also reside in a hidden similarity space.
Our choice for the similarity space is the simplest metric space, a circle of radius
R = N/2π where each agent i = 1,2, ...,N is assigned a random angular coordinate
θi ∈ [0,2π]. Thus, the similarity distance between two agents i, j is si j = R∆θi j, where
∆θi j = π−|π−|θi−θ j|| is the angular distance between them.

Time in the model is slotted and at the beginning of each slot t = 1,2, . . . ,T the
agents can be either inactive or interacting. Then:

1. Each inactive agent i is activated with a preassigned probability ri.
2. Each interacting agent i escapes (i.e., quits) its interactions with probability:

Pe
i (t) = 1− 1

|Ni(t)| ∑
j∈Ni(t)

e−si j/µ1 , (1)
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where Ni(t) is the set of agents that are interacting with i in slot t, while parameter
µ1 is the decay constant allowing us to control the average contact duration.

3. Each agent i that becomes active or escapes its interactions updates its position
qt

i = (xt
i ,y

t
i) according to the following motion equation:

qt+1
i = qt

i + ∑
j∈S (t)

Fi j
(qt

j−qt
i)

||qt
j−qt

i||
+vi, (2)

where S (t) is the set of all moving and interacting agents in the slot, vi = (vcosφi,
vsinφi) is the random motion component, where φi is sampled uniformly at random
from [0,2π] and v ≥ 0 is the random displacement magnitude. Fi j = F0e−si j/µ2 is
the magnitude of the attractive force between agents i and j. Parameters F0 and
µ2 control the rate at which recurrent components form as well as the size of the
largest component.

4. All agents that updated their positions transition to the interacting state if they are
within interaction range d from other non-inactive agents. Otherwise, they transi-
tion to the inactive state.

3 Results and discussion

As an illustrative example here, we use the FDM to model the face-to-face interaction
network of a Primary School in Lyon, France [5]. This temporal network consists of
the interactions between 242 individuals over 2 days for approximately 8.5 hours in
each day. Interactions were registered every 20 seconds if the individuals were facing
each other within a range of 1-1.5 meters. The total number of non-empty snapshots
of 20 seconds in the data is 3100. However, we remove the snapshots corresponding to
the lunch break period in each day when some students go home to eat and the others
interact in the common grounds of the school. This leaves us with 2378 snapshots.

We generate an FDM temporal network with parameters: N = 242, T = 2378,
L = 98, µ1 = 0.35, F0 = 0.2, µ2 = 0.78, v = d = 1 and ri = 0.5 for each agent i (details
of how to tune the model parameters in the modeled counterparts of real systems can be
found in [4]). For comparison we also generate a temporal network with the attractive-
ness model [3], with parameters N = 242, T = 2378, L = 50, v = d = 1 and ri = 0.5 for
each agent i.

Fig. 1a shows the recurrent components observed during the first day in the Pri-
mary School with the observation period (x-axis) binned into intervals of 30 minutes.
Figs. 1b,c correspond to the recurrent components observed in simulated networks with
the attractiveness model and the FDM. To generate these plots, we have extracted the
unique components found in the respective network and assigned them IDs in order of
appearance. In the plots, the recurrent components, i.e., the components that appeared
at least once in a previous time interval are marked with blue lines. The recurrent com-
ponents in the FDM are as abundant as in the real network. In stark contrast, they are
scarce in the attractiveness model. In Figs. 1d,e we also see that the FDM reproduces
other important properties of the real network, like the distributions of the contact and
intercontact durations. Finally, Fig. 1f shows the probability that two agents are con-
nected in a slot as a function of their similarity distance si j in the FDM. Remarkably,
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without enforcing it into the model, this probability resembles the Fermi-Dirac connec-
tion probability in the S1 model of non-mobile complex networks [6]. We explore this
connection in [7].
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Fig. 1. Top row: Unique and recurrent components in the Primary School (a), a simulated net-
work with the attractiveness model (b), and a simulated network with the FDM (c). Bottom row:
distributions of contact (d) and intercontact (e) durations in the Primary School and the FDM.
(f) Probability that two agents are connected in a slot as a function of their similarity distance si j
in the FDM.

We report similar results for other face-to-face interaction networks and illustrate
a similar behavior of spreading processes in real and FDM-simulated networks in [4].
Our results pave the way towards simple yet realistic models of face-to-face interaction
networks.
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1 Introduction

Social media platforms record a multitude of information pertaining to the behavior and
language of billions of individuals. Emotions play a crucial role in these phenomena but
are rarely explicitly expressed [2]. They must therefore be assessed from text content
by sentiment analysis algorithms. However, the high frequencies of common terms in
a language can obscure actual expressions of sentiment. For example, the positive sen-
timent values of holiday greetings (e.g. ”happy holidays”) will bias many sentiment
analysis tools towards positive assessment regardless of actual sentiment fluctuations.
This same effect may obscure the diverging emotional responses of sub-populations,
e.g. in the case of significant sports events or elections (e.g. ”win” vs ”lose”). A sim-
ilar issue may occur in the case where individual sentiment fluctuates simultaneously
along different dimensions or instances of mood, such as Valence and Arousal, or Acti-
vation [3, 6, 1].

2 Results

Following [8], we leverage the Singular Value Decomposition (SVD) [4] of a sentiment-
time matrix to separate actual changes in user sentiment from sentiment observations
resulting from default term frequencies in a language. In effect, we show that the SVD
reveals “eigenmood” from sentiment analysis data by their decomposition into singular
value approximations.

We demonstrate this approach using a sample of 3,624 Twitter users that mentioned
a mental health issue such as depression in at least 1 tweet. We obtained their individ-
ual timelines, i.e. a longitudinal record of their most recent 3,200 messages, from the
Twitter API. We estimate a tweet’s Valence, Arousal, and Dominance sentiment from
the average CRR ANEW lexicon [5] ratings of its terms. From these scores, we create
a time-series of weekly averaged sentiment scores for each individual user.

Aggregating these time-series for all users we obtain a probability distribution of
mean sentiment values for each week in our data. This results in a matrix of weekly
sentiment distributions which we use as the basis of our analysis. For all users we con-
sider sentiment values for a time span of 80 weeks, i.e. January 2nd 2017 through July
15th 2018. The resulting matrices are visualized in Fig. 1 A and E as heat maps in which
the color intensity of each cell indicates the number of tweets whose sentiment value
falls in a given sentiment bin.
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The SVD factorizes a matrix M in three matrices U ·Σ ·V where the matrix Σ con-
tains the singular values of the matrix M. Our approach isolates distinct eigenmoods
from these singular values, the distribution of which is shown in Fig. 1 D. The largest
singular value has a disproportionate magnitude earlier shown to correspond to the base
sentiment distribution of the English language [8, 7].

We can construct different approximations of M or remove noise by retaining sin-
gular vectors of interest. For instance, if we only retain the first singular value in the
top-left spot of a matrix Σ̃ (by setting every other entry in the diagonal matrix to 0) and
compute U · Σ̃ ·V , we obtain an approximation M̃1 of M shown in Fig. 1 B and F. These
reconstructed matrices capture the expected stable sentiment distribution of the English
language. In contrast, if we remove the first singular vector, by calculating M− M̃1, we
obtain the matrices shown in Fig. 1 C and G. In Fig. 1 we observe a bi-modal sentiment
distribution in our sample group (two yellow bands in Fig. 1 C), ending approximately
at week 50, which was previously hidden in the overall sentiment distribution captured
by M̃1. We obtain similar but visually less pronounced effects when applying this tech-
nique to the longitudinal sentiment of single individuals (an example shown in Fig. 1 E,
F and G).

The detection of eigenmoods in aggregate or individual social media sentiment may
enable the characterization of change points by projecting the sentiment distribution of
individual weeks along different singular vectors of our decomposition as previously
demonstrated by [8]. This approach may have applications to the detection of changes
in individual sentiment related to the dynamics of mood disorders.
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Fig. 1: Eigenmood analysis of Twitter sentiment distributions. A and E: mood matrix (M) for
a group of users and a randomly chosen individual respectively. B and F: first singular value
approximation (M̃1). C and G: remaining sentiment signal after removal of first singular value
approximation from original M− M̃1). D: spectrum of singular values for group sentiment-time
matrix.
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Fig. 1. Left: Classifier performance with different feature sets: word count, sentiment, syntactic
features (in blue), vocabulary-based features (in orange), and combinations of them (in green).
Vocabulary plus POS Tags is the best performing approach. The red line shows the random baseline.
Right: Average IC of texts in the three subreddits considered, binned by text length (log of the
number of words). Depression-related posts and comments have higher IC compared to texts of
comparable length from the other two subreddits.

Social networks are heavily polarized [5,3], which calls for technological solutions
that can effectively bridge conflicting communities. In the past, researchers have studied
conflict on social media and its effect on the network structure as well as on the use of
language [4,9]; however, it is still unclear what are the best strategies to resolve conflict.
We propose a computational social science solution to the problem of conflict resolution
by operationalizing the concept of Integrative Complexity.

Integrative Complexity (IC) is a psychometric that measures the ability of a person to
recognize multiple perspectives on a particular issue and connect them, thus identifying
paths for conflict resolution [13]. The lowest end of the IC spectrum is associated with
inflexible, fixed perspective thinking and the highest end with integrating groups of
perspectives in an elaborate, hierarchical fashion [2]. IC has been applied to a wide
range of source materials, including diplomatic communications, political speeches,
personal correspondence and legal judgments [13]. As a result, it has been presented
as a powerful predictor for a variety of outcomes, such as international conflict [12],
aggression [14] and political preferences [7]. However, scoring the IC of a text is a
manual, time-consuming task to be carried out by trained experts. Previous efforts have
attempted to automatizing IC scoring with simple vocabulary-based classifiers [6,1].
However, in its original definition, IC is concerned not with what we say, but how we
say it. In this work [10], we show that syntactic information is crucial to generalize
automated IC scoring.
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From an extensive corpus of text manually labeled with IC scores [6], we extract
several families of textual features (text length, POS Tags, Dependency subtrees, LIWC,
sentiment) and use them to classify the level of IC in documents. The combination
between vocabulary features and syntax features (POS Tags) outperforms all previous
approaches and other feature combinations (Figure 1 left).

We run for the first time a large-scale analysis of Integrative Complexity expressed
in social media by applying our model to 400k+ Reddit posts, with the goal of build-
ing evidence about our method’s external validity. We based our analysis on previous
literature [11] that showed that the level of IC tends to increase during periods of
severe personal distress (e.g., following the death of a loved one or a betrayal). We
therefore compare texts from /r/depression, a forum intended for sharing negative expe-
riences and providing social support, with other two communities, /r/AskScience and
/r/AskHistorians, which are focused on knowledge exchange. In agreement with the
theory, we find that posts in the /r/depression subreddit, where users write about their
experience of depression often triggered by difficult personal circumstances, grief, and
other traumas [8], exhibit higher IC than what is measured in the discussions about
non-dysphoric experiences of the other two fora (Figure 1 right). We provide extensive
quantitative and qualitative analysis of the posts to support our findings.

From the theoretical standpoint, this work reinforces the evidence that IC can be
effectively operationalized and that it can be done most effectively when language syntax
is brought into the equation. By opening our method to the research community, we
hope to encourage its application to a wider range of domains; in particular, we believe
it can enable important practical applications in social media analytics. Since previous
research has shown that Integrative Complexity is a good predictor of the richness of
dialogue [7], we believe that automatic measurement of IC will have an important role
in tackling the resolution of conflicts in an increasingly polarized social media space.
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Assortative mixing in networks is the tendency for nodes with the same attributes,
or metadata, to link to each other. It is a property often found in social networks man-
ifesting as a higher tendency of links occurring between people with the same age,
race, or political belief. Assortativity by gender has often found to be weak or non-
existent (e.g. [7]) when measuring it as a global average across a population. However,
recent work has demonstrated that more specific gender mixing preferences may be
more prevalent at more localised scales [1, 6]. It is reasonable to suggest then that the
gender mixing preferences may vary between groups or organisations, each of which
may be represented as a distinct social network. However, making comparisons across
networks can be non-trivial and is a problem that has thus far received little attention [3].
Here we address this issue by developing a method for making meaningful comparisons
of mixing preferences across networks.

Quantifying the level of assortativity or disassortativity (the preference of linking to
nodes with different attributes) can shed light on the organisation of complex networks.
It is common practice to measure the level of assortativity according to the Newman’s
assortativity coefficient [5], the network analogy of Pearson’s correlations for attributes
across edges. Accordingly, the assortativity coefficient is normalised to lie in the range
r ∈ [−1,1], where r = 1 indicates perfect assortativity with only links between nodes
of the same type and r =−1 indicates perfect disassortativity in which links only con-
nect nodes of different types. However, when applied to categorical attributes, such as
gender, we find that properties of the network imposes more restrictive bounds on the
possible range of assortativity values such that the extremal values of 1 or −1 are no
longer attainable [2]. Differences in the relative group size are an important factor in
this effect. This presents a problem when comparing assortativity across networks as
changes in assortativity are confounded with differences in the network structure.

The difficulty associated with comparing gender assortativity across networks is
exacerbated when the group sizes are imbalanced. This is of particular concern because
the level of assortativity has recently been shown to have an effect on the visibility of
a minority group in a network [4]. In science, where women are under-represented, it
becomes difficult to compare different organisations (represented by different networks)
or to evaluate the impact of policy changes when the groups sizes and connectivity are
changing.

Here we propose a solution (details omitted for space reasons) based on normal-
ising the marginal link distribution incident on each gender group. Figure 1 displays
a comparison between Newman’s assortativity and our proposed normalised variant.
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Fig. 1. (A) Two examples of normalized assortativity. When the proportion of edges incident on
each group is balanced (a0 = a1 = 0.5) the original Newman’s assortativity and normalised as-
sortativity coincide. When they are imbalanced (e.g. a0 = 0.1), the normalised assortativity is no
longer linear, but instead a smooth function that permits the full range of assortativity (r̃ ∈ [−1,1])
and preserves the same definition of random mixing (r = 0). (B) The normalized assortativity as
a function of the ratio of within group edges to across group edges. We see a consistent definition
of assortativity as a function of the ratio, irrespective of the group sizes.
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Consequently we are able to capture and qualitatively evaluate the distribution of mix-
ing patterns across different networks in a population (see Fig. 2).

Fig. 2. The gender assortativity of the APS collaboration network over time.
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Introduction

Social relationships are among the most important things in our life. They determine
and relate to who we marry, where we work, and what we make. They take center
stage in our digital lives too. Social-networking sites are made of relationships, and the
act of maintaining them results into bridging and bonding forms of social capital and,
ultimately, into well-being. Researchers have tried to capture the nuances of relationships
by measuring them in terms of tie strength. Yet not all ties of the same strength are
created equal. Many social factors are too intertwined to consider tie strength a complete
or even a distinctive characterization of a relationship. In this study, we set out to 1)
study how people perceive the richness of their relationships beyond tie strength by
identifying the main dimensions that define social interactions and 2) develop machine
learning tools that are able to infer those interaction types from conversational text.

The 10 dimensions of social exchange

We reviewed the relevant literature in sociology and social psychology and obtained eight
tentative dimensions along which relationships could be classified. Independently, we
asked 100 crowd-sourcing users to describe their relationships with words and obtained
1,352 terms, 220 of which were unique. We then asked another set of 100 crowd-sourcing
users to validate each of these 220 terms through a structured survey. As a result of the
crowdsourcing, each word has been characterized by a 100-dimensional rating vector
that allowed us to compute the relatedness of words and extract cohesive groups of terms.
The groups we found overlap to a large extent with the eight dimensions we found in the
social pyschology literature and add two new dimensions. The final list [5] consists of
10 dimensions: similarity [10], social support [8], trust [14], romance [3], identity [12],
respect [7], knowledge [8], power [2], fun [11], and conflict.

Descriptive and predictive power of social dimensions

To show how this nuanced classification can be used to enchance network science
applications, we run a study using a dataset [1] of textual conversations between linked
individuals in an online social network. Each dimension is associated to a set of terms
from the crowdsourcing; therefore, for each social tie, we were able to match the terms
that reflect each of the 10 dimensions, with the words occurring in the conversation. We
label each edge with the dimension having the highest number of matching words. We
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selected 100k connected pairs (positives) and 100k disconnected ones at 2 hops away
(negatives) to run a link prediction experiment in two scenarios. In the first, we predict
the presence of a link from A to B based on their common neighbors count CN. In the
latter, we use a feature vector whose entries count the number of common neighbors
who are connected to A with a link of a given type (e.g., “support”). In a supervised
learning setting with 10-fold cross validation, the latter scenario brings an improvement
of 9% in AUC compared to pure CN. Decomposing the tie strength (number of common
friends) into its components improves our ability to predict the network structure. The
improvement is significant; in link recommendation a +1% in AUC, on a large scale,
leads to a large increase in the number of links created.

In addition, when analyzing the sub-graph induced by links of a given type, we
find that network properties vary as one would expect from social psychology theories.
For example, the network of knowledge exchange tends to be assortative whereas the
network of respect is disassortative (people who have high “reputation” are given status
mostly by less-respected members of the same community).

Learning the 10 dimensions from text

Finally, to go beyond simple word-matching strategies, we trained a classifier that is able
to label conversational text according to the 10 sociological dimensions we identified.
To perform the training in a supervised fashion, we collected labeled data using two
approaches.

First, we collected 10k comments from reddit.com extracted at random from all the
reddit comments posted in 2017 and trained Mechanichal Turk workers to label these
comments with any of the 10 dimensions. Each comment was labeled by at least three
workers and we considered positive examples those labeled with the same dimension by
at least two workers.

In the second approach, we have developed an online platform (www.tinghy.org)
where users login to play through Twitter, their timeline data is accessed and they are
sequentially presented with 10 of their actual friends. For each friend, they rate the
extent to which that relationship is described by our 10 blocks. The user interface is
“gamified” so that the experience is fun and rewarding. This platform allowed us to collect
conversational data (i.e., mentions) that are implicitly labeled with the 10 fundamental
dimensions. So far, we collected data from 500+ users.

Using the data collected and a variety of classifiers (XGBoost [4] trained on a number
of NLP features; LSTM [9] and BERT [6] trained of word and sentence embeddings [13]),
we achieved very encouraging prediction results in terms of AUC (up to 0.85) when
training independent binary classifiers for each individual dimension . In the future,
we plan to make the crowdsourcing data and the prediction model available to the
community to enable network scientists to study the nuances of social exchange in
conversation networks.
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Summary. In online platforms, recommender systems are responsible for directing
users to relevant contents. In order to enhance the users’ engagement, recommenders
adapt their output to the reactions of the users, who are in turn affected by the recom-
mended contents. The aim of this work is to make explicit the feedback loop between
the evolution of the user’s opinion and the personalised recommendation of contents.
While our work – described fully in [8] – does not consider a social network for the
sake of analytical tractability, similar ideas can be applied to more complex situations
where recommender systems mediate social interactions.

1 Introduction

Recommendation systems are ubiquitous in all kinds of web services, such as search
engines, social networking service, e-commerce platforms. Their purpose is sieving the
information available to them and provide the user with the most relevant items. As
online activities become more prominent in the lives of the people, questions are asked
about the effects (if any) of recommendation systems on the online and offline behaviors
of the users. Our investigation specifically questions the role of personalization.

The issue of personalization is specially perceived as relevant when it comes to the
access to news. While on one side personalization enhances user experience, on the
other side political activists and scholars have raised concerns that excessive personal-
isation narrows down the positions available to users about specific issues, effectively
enclosing users into so-called “filter bubbles” that favour the emergence of opinion
polarisation and radicalisation [5, 6]. Even though this concern has been downplayed
by subsequent research [1], it is clear that personalization has at least the potential to
reinforce the user’s idiosyncrasies and biases, like the confirmation bias.

We propose a tractable mathematical model of the interplay between a user and a
learning system that provides her with personalized recommendations, and quantify the
reciprocal reinforcement of confirmation bias and personalized curation. Our work –
described fully in [8] – is related to several recent papers that have tried to incorporate
some models of online platforms in models of opinion dynamics [2, 3, 7]. For the sake of
analytical tractability, our model neglects the network effects induced by the interaction
of multiple users connected via social ties: we indeed believe that our model is a step
toward the investigation of such more complex scenario.
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2 Model

We model the opinion formation process of a user that reads news from a news ag-
gregator that provides personalized recommendations, see Figure 1. We restrict our-
selves to news that bear implications for one specific issue, say, highlighting the ben-
efits/drawbacks of immigration. News articles are characterized by a (binary) attribute
that defines their positive or negative position part(t) on the given issue. The opinion
of the user ousr(t) evolves as an affine system that integrates the received news (actu-
ally, their positions) along time. Owing to the confirmation bias, i.e. the unintentional
tendency to acquire and process evidence that confirms one’s beliefs, news items are
clicked upon clk(t) with a probability that is larger when their position is closer to
the current user opinion. The recommender system has the objective of improving the
engagement of the users, measured as the number of clicks. In order to achieve this
purpose, the recommender tracks the number of times that a specific position has been
recommended (r+(t), r−(t)) and clicked upon (a+(t), a−(t)). The recommender follows
a randomized strategy that, based on these counts, balances “exploration”, that is, iden-
tifying which position is more appreciated by the user, with “exploitation”, that is, pro-
viding the user with news that are most likely to be clicked on. Hence, the recommender
systems responds to user behavior.

Recommender System counters r+(t), a+(t), r−(t), a−(t)

User opinion ousr(t)

part(t)
clk(t)

Fig. 1. The closed loop between the user and the news aggregator. The diagram includes the
variables exchanged by the two interacting dynamical systems, and their internal state variables.

3 Results and Conclusion

We observe that typical trajectories of the dynamical model are characterized by a def-
inite majority of either positive or negative recommendations, see e.g. Figure 2. Such
observation supports the analysis of the expected dynamics conditioned upon a given
majority: these conditional expectations can be derived in closed-form and turn out to
describe the stochastic dynamics very accurately. Statistically, we observe that recom-
mendations produce a significant polarizing effect on the opinions and that this effect is
closely entangled with their effectiveness in terms of increasing the click-through rate.
Hence, our analysis suggests that mitigating the impact of the recommender system on
the opinions has a price in terms of the achievable click-through rate.

While we believe that our model is relevant to the heating debate on the impact
of machine learning on our societies, we are well aware of its limitations. Indeed, our
model describes the behavior of a single user, but real recommender systems deal with
large numbers of users that can have social ties and shared interests. Our recommender
system is not allowed to exploit neither of them while real recommender do [4]. More-
over, recommendations are the only drive to the opinion dynamics in our model. Instead,
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Fig. 2. A simulation of our model where the majority of recommended articles has negative posi-
tion (top plot). Consequently, the user opinion becomes negative regardless of its initial positive
prejudice (middle plot). Subject to the confirmation bias, this user favours articles with negative
position. The recommender recognizes that by computing the acceptance rates of the different po-
sitions (lower plot) and in this case continues to recommend mostly article with negative position,
to exploit the user preference and maximize the clickthrough rate ctr(t) := (a+(t)+ a−(t))/t.

opinion dynamics are also driven by a network of social interactions (both directly and
through the recommender system), creating a complex entanglement of effects.

On this matter, experimental studies on Facebook have reported that ideological
contents are primarily filtered by user’s social connections rather than by the curation
algorithms, suggesting that user preferences may have stronger impact than algorith-
mic personalisation [1]. A future model that includes both social and recommendation
effects, like in the recent paper [7], could shed more light on this issue.
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1 Introduction 

Several complex tasks require some form of coordinated collective action to produce 
non-rival goods such as music, cinema, national defense etc. The relationships rooted 
in collective action for production of these non-rival goods are based on emotional and 
cognitive ties [13]. One such example is making of films wherein film performance is 
not only dependent on individual creative talent but also on direct or indirect 
relationships among the film professionals (i.e. their network structure). This network 
structure of professionals working on a film is revealed through their prior film 
collaborations. Surprisingly, India produces more films and accounts for the largest 
number of cinema goers compared to any other country in the world. However, in terms 
of performance which can be assessed either on the basis of the quality of content as 
assessed by legitimate users or on the basis of its box-office earnings, American 
(US/Canada) and Chinese film industries are far ahead of India [5]. Intrigued by this 
observation and in our quest to understand the relational configurations that effect 
performance of movies released in India, we curate the year-wise network data of 
professional collaborations in movies during two decades (2000 – 2019) from Internet 
Movie Database (IMDb) and study the properties and mesoscopic structures within 
these networks.  
We pose following research questions so as to emphasize the focus of our work.  

1) What are the temporal network characteristics of collaboration network of 
movies released in India? 

2) On what basis are communities organized in film collaboration network and 
is there any correspondence between community structure and film perfor-
mance? To this end, we propose a new fuzzy-rough set based community de-
tection algorithm for weighted networks. 

3) What is the relative performance of proposed approach as compared to state-
of-the-art methods for community detected in weighted networks? 

Addressing these questions, we expand the past research which has mainly focused on 
box office performance as a function of variables related to value chain of movie such 
as genre, screen count, advertising etc. [2,3,5]. 

2 Proposed Methodology 

First we form weighted networks for each year starting from 2000 to 2019 as there was 
a marked improvement in the quality of production of Indian cinema in 2000 due to  
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Table 1: Summary of Twenty Collaboration Networks 

Movie Released 
(Year Window) 

Movies in 
Network 

# of Movie 
Professionals 

# of  
Links 

# of  
Communities Detected 

     1997-2000      1694      5193      44648      721 
1998-2001 1828 5640 46467 814 
1999-2002 1957 6135 49313 784 
2000-2003 2062 6600 52735 939 
2001-2004 2156 7118 57482 1080 
2002-2005 2213 7592 62118 982 
2003-2006 2171 7980 65247 1131 
2004-2007 2142 8371 67204 1186 
2005-2008 2145 8937 69947 1291 
2006-2009 2148 9564 72947 1245 
2007-2010 2367 10768 80222 1608 
2008-2011 2569 11845 86253 1792 
2009-2012 2765 12960 92491 1937 
2010-2013 3092 14537 102119 2197 
2011-2014 3367 15853 108780 2083 
2012-2015 3730 17597 119384 2641 
2013-2016 4117 19547 131135 2957 
2014-2017 4292 20753 136119 3080 
2015-2018 3852 19429 125740 2876 
2016-2019 3099 16766 104185 2467 

technological advancements in cinematography, story line, special effects and anima-
tion. Given that collaboration in film industry is characterised by rapid construction and 
disintegration on project by project basis [10], we control for relationship decay using 
a three year moving window [1]. As shown in Table 1, for a given year (say 2004), its 
collaboration network consists of all the film collaborations that took place during last 
three years and that year (2001-2004). We use the resulting twenty time-varying 
weighted networks to compute network properties and reveal community structure. 
To account for bias in edge weights due to popularity of film professionals, we follow 
a two-step normalization process [15]. First, we normalize an edge weight between two 
professionals vi and vj by setting the weight as  

                                                             𝑤𝑖𝑗
′ =  

𝑤𝑖𝑗

𝑚𝑖 ∗ 𝑚𝑗

                                                            (1) 

where 𝑤𝑖𝑗 is the total number of movies in which vi and vj have collaborated, 𝑚𝑖 and 
𝑚𝑗 are the total number of movies on which vi and vj have worked. In the second step, 
we normalize all 𝑤𝑖𝑗

′  by dividing each edge weight with the maximum edge weight 
obtained from first step. Thus normalized adjacency matrix of a network is given as: 

𝐴𝑖𝑗 =  {
𝑤𝑖𝑗

′

𝑚𝑎𝑥∀(𝑖,𝑗)
⁄

0     otherwise
{𝑤𝑖𝑗

′ }        if node 𝑣𝑖  connects to node 𝑣𝑗                      (2)    

An example of edge normalization using our two-step normalization process is shown 
in Figure 1. Once, normalized network is obtained, weighted neighborhood subset 
(WNS) of each node in the network is formed. Subsequently, constrained connected-
ness upper approximation subsets based on a concept related to rough set theory [11]   
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    Figure 1. (a) Weighted Toy Network                  (b) Toy Network with Normalized Weights 

are computed by iterating until convergence. The concept of weighted relative connect-
edness (WRC) (as shown in Eq. 3) is used to constrain and merge the sets during each 
iteration. This notion of WRC is used to compute similarity between every pair of nodes 
and filter out the nodes for which WRC ≤  δ in each iteration (where δ is a user-defined 
threshold and δ = 1 for toy network). 

𝑊𝑅𝐶(𝑣𝑖 , 𝑣𝑗) =  
|𝑊𝑁𝑆(𝑣𝑖) ∩ 𝑊𝑁𝑆(𝑣𝑗)|

min(|𝑊𝑁𝑆(𝑣𝑖) − 𝑊𝑁𝑆(𝑣𝑗)|, |𝑊𝑁𝑆(𝑣𝑗) − 𝑊𝑁𝑆(𝑣𝑖)|)
                (3) 

For better understanding, we illustrate the computation of weighted relative connected-
ness between nodes v7 and v9 of a toy network shown in Figure 1. The weighted neigh-
borhood subsets of v7 and v9 can be denoted as 𝑊𝑁𝑆(𝑣7) =
 {(5,0.70), (8,0.25), (9,0.76), (10,0.69)} and 𝑊𝑁𝑆(𝑣9) =
 {(6,0.97), (7,0.76), (8,0.45), (10,1)} respectively. Now, using the concepts of fuzzy 
set theory [14], weighted relative connectedness between v7 and v9 can be calculated as 
follows: 

|𝑊𝑁𝑆(𝑣7) ∩ 𝑊𝑁𝑆(𝑣9)| =  |{(8,0.25), (10,0.69)} | =  0.94 
|𝑊𝑁𝑆(𝑣7) − 𝑊𝑁𝑆(𝑣9)| =  |𝑊𝑁𝑆(𝑣7) ∩ 𝑊𝑁𝑆(𝑣9)𝑐|=  

|(5,0.70)(8,0.25)(9,0.76)| =  1.71 
|𝑊𝑁𝑆(𝑣9) − 𝑊𝑁𝑆(𝑣7)| = |𝑊𝑁𝑆(𝑣9) ∩ 𝑊𝑁𝑆(𝑣7)𝑐| =
                                     |(6,0.97)(7,0.76)(8,0.45), (10,0.31)| =  2.49  
𝑊𝑅𝐶(𝑣7, 𝑣9) =  0.94/(min(1.71,2.49))  =  0.94/1.71 =  0.549  

The synergistic use of WRC and upper approximation identifies meaningful communi-
ties in a weighted network. As expected, two overlapping communities viz. 
(1,2,3,4,5,6) and (6,7,8,9,10) were identified in toy network by the proposed method. 
To further evaluate the proposed method, we conducted experiments on benchmark 
weighted networks viz. Karate club network, SFI collaboration network, Les Misera-
bles, C. elegans neural network and US Air Transportation network [4,6,12]. The de-
tected community structure in these networks is consistent and coherent with the re-
spective ground truth structure. 
We also study structural properties of these weighted networks such as power law de-
gree distribution, local and global clustering coefficients, betweenness and eigenvector 
centralities, average path length, structural holes, embeddedness, community structure 
and rich club effect [8]. For studying these weighted network properties, we use more 
sophisticated measures as compared to traditional measures for unweighted networks 
[7,9]. The examination of year-wise distribution of movies in terms of genre, average 
and variance of year-wise movie ratings also reveals interesting observations. 
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4 

3 Research Findings and Implications 

This research has several findings that can aid producers and movie studios in produc-
ing commercially and/or artistically viable content at the box-office. The findings sug-
gest that group performance surfaces across structural holes and network closure. Cen-
trality analysis reveals that lesser popular actors who appear quite frequently for nega-
tive or comic roles in Indian movies have higher eigenvector centrality. Since, the ei-
genvector centrality connects focal individual to many others (directly and indirectly), 
without being resource intensive in managing focal individual’s network, this finding 
implies that if one is a good character actor, then that person can work with stars, who 
themselves may not work with each other. Further investigation reveals that collabora-
tion networks of movies released in India do not follow weighted rich club effect (Fig-
ure 2). This finding indicates that prominent movie professionals in India do not share 
their strongest ties with other prominent professionals rather with less prominent pro-
fessionals. The proposed community detection approach identifies low-budget, high 
budget, low performing and high performing movie collaborations in the Indian film 
industry. Experiments and comparative analysis with state-of-the-art algorithms con-
ducted on real weighted networks show that proposed approach provides significant 
improvements in identifying communities within weighted networks. This research has 
several managerial implications such as providing guidance to film makers in maxim-
izing revenues through strategic assembly of movie team, predicting the future collab-
oration patterns of film professionals and deriving meaningful insights about the con-
troversial issues such as nepotism in Indian film industry. Further, this research work 
driven by real-world data has instructional value to similar research areas such as fi-
nancial contagion in banking system and brand advertising on social media platforms 
where business networks may be studied.  
 

                                            
 

 

Figure 2. Absence of weighted rich club effect for the collaboration network of movies during 
2014-2017 (Similar effects were observed in collaboration networks of all other year windows) 
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The social brain hypothesis approximates the total number of social relationships
we are able to maintain at 150 [1]. Such a theoretical cognitive limitation emerges in
several other contexts from the patterns of human mobility to the way we communi-
cate. Furthermore, the uptake of social media has radically changed the way we con-
sume content online. Indeed, the way we consume information and the cognitive limits
and algorithmic mechanisms underpinning them have a bearing on foundational issues
concerning our news consumption patterns. Recent studies targeting Facebook [2] have
shown that content consumption is dominated by selective exposure – i.e. the tendency
of users to ignore dissenting information and to interact with information adhering to
their preferred narrative –

and that individual choices more than algorithms [3] also characterise the consump-
tion patterns of users and their friends [4].

In such a vein, we perform a thorough quantitative analysis to characterise users’
attention dynamics on news outlets on Facebook. In particular, we study how 14 mil-
lion Facebook users distribute their activity among 50000 posts, clustered by topics,
produced by 583 pages listed by the Europe Media Monitor over a six-year time span.

We find that users, independently of their activity and of the time they spend on-
line, show a tendency to interact with a very limited number of news outlets. To test
the presence of selective exposure, for which evidence emerges from users focusing
their attention on a set of preferred news sources (as shown in the top panels of Fig-
ure 1), we analyse how homogeneously users distribute their activity across pages and
topics. More precisely, the concentration of the distribution of likes towards a certain
page or topic signals the presence of selective exposure, while the heterogeneity of such
a distribution determines the strength of selective exposure. Such heterogeneity in the
distribution of users’ likes is quantified by means of the Gini index [5], a classic ex-
ample of a synthetic indicator used for measuring inequality of social and economic
conditions, that we renormalise for being applied to sparse data [6].

We find that highly engaged users tend to concentrate their activity on few pages
while being less selective of the topics presented by the pages. In general, we observe
that selective exposure increases in strength when the activity of users (i.e. the number
of likes) grows but is not affected by users’ lifetime (i.e. the time span between the first
and the last like).

Our results suggest that the tendency of users to limit their attention to a smaller
number of news sources might be one of the factors behind the emergence of echo
chambers online. Such an outcome still underlines the tendency of users towards seg-
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regation, partly because of their attitude and cognitive limits, and partly because of the
features of the social media in which they operate.

Fig. 1. Top-left panel: relationship between the average number of pages that received likes by
users with respect to their activity (quantified by the number of likes). We observe that the average
number of pages reaches a plateau of ∼ 10 pages for users with an activity of more than ∼ 300
likes. Top-right panel: relationship between the average number of pages that received likes by
users with respect to their lifetime (quantified by the time between the first and the last like). We
observe that the average number of pages grows slowly and reaches a value of∼ 3 pages for most
lifelong users. Bottom-right panel: the distribution of selective exposure to pages with respect to
users’ activity shows that increasing activity levels correspond to higher selective exposure, i.e.
users concentrate on fewer pages. Bottom-right panel: the distribution of selective exposure to
topics with respect to users activity shows that increasing activity levels correspond to lower
selective exposure, i.e. users concentrate on a higher number of topics. Topics are obtained by
processing posts using a state-of-the-art topic modeling algorithm.
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1 Introduction

As noted by Kardar and Kaufman: “The study of competing short-range and long-range
interactions is relevant to a variety of problems in statistical mechanics”. Indeed, one
can easily indicate a number of natural processes in which elements interact both lo-
cally and globally [1]. Such competing interactions are frequently responsible for the
universality of many self-organized patterns observed in condensed matter physics [2,
3]. However, the mutual existence of forces with different length-scales is not only lim-
ited to physical or biological systems. In fact, more and more empirical studies are
pointing out that the overall social influence results from such a composition of local
and global interactions [4–6]. In the era of omnipresent mass media and online social
networking, people’s interactions are certainly no longer restricted to physical contacts.
Their range, in fact, extends easily even beyond geographical borders. This rises a justi-
fied question about the significance of these interactions in shaping trends and opinions.
Do such forces lead to characteristic macroscopic patterns as their counterparts in con-
densed matter physics? Can we observe some universal features of social systems with
competing social influences? Finally, what is the impact of a social structure in all of
this?

Our research builds upon a recent correlation study on social influence in online
movie ratings [5]. Having analyzed tendencies among reviewers to conform to already
existing comments, the authors reached a conclusion that opinions expressed by friends
and strangers cause different social responses. It turned out that those shared by the
friends only led to conformity in issued reviews, whereas those of strangers might
also excite anticonformity depending on the movie popularity. These findings suggest
that some types of social responses may be associated with specific interaction lengths.
Concerning a friendship network in this particular study, local interactions with nearest
neighbors manifested only conforming nature, whereas those global ones with strangers
also displayed anticonforming properties.

Our work is directly inspired by this observation. We have picked one of the prime
models in the field that already incorporates these two types of social responses, and we
have checked how different constraints on the interaction ranges impact its behavior in a
stationary state. We have examined the model on different complex networks generated
by Watts and Strogatz’s algorithm [7], hoping to also determine the role of the social
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structure in such systems. Monte Carlo simulations are backed up with mean-field and
pair approximations.

2 Model description

This study focuses entirely on the q-voter model with anticonformity and conformity
introduced in Ref. [8]. In the original model, interactions occur exclusively between
voters that are direct neighbors. In the friendship network, it translates to forces be-
tween friends. We call such interactions local. In the current study, we also consider
global interactions. These are not limited by the network structure, and they can extend
throughout the system, reaching also strangers. Although the empirical study suggests
which of the social interactions is long-range, we can imagine that it is the social con-
text that dictates the range of forces. Therefore, we compare four q-voter models with
different combinations of local and global sources of conformity and anticonformity.
In all cases, social influence originates from a unanimous group of q distinctive vot-
ers. However, depending on a considered interaction range, members of this group are
randomly selected at the local or global level.

3 Results

The parameters of studied systems have been chosen to accord with psychological the-
ories of social responses, and they reflect properties of real structures. In systems with
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Fig. 1. Phase diagrams for dynamics with (a) global anticonformity and local conformity and (b)
local anticonformity and global conformity on Watts-Strogatz networks with N = 28160 nodes,
the average node degree 〈k〉 = 50, and different values of rewiring probability β . The group of
influence consists of q = 4 members for all cases. The concentration of voters with one of two
possible opinions is denoted by c, whereas the control parameter, which represents the level of
anticonformity in the system, by p. Solid thick and thin lines illustrate mean-field (MA) and pair
(PA) approximations, respectively. Marks correspond to Monte Carlo simulations.
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global anticonformity and local conformity, the majority opinion is the most sensitive to
structural changes in the friendship network (see Fig. 1a), and its formation is possible
on the smallest interval in the parameter space. A system that exhibits such interactions
is reported in the cited study on movie ratings. In contrast, combining local anticon-
formity with global conformity makes the majority opinion more resistant to structural
changes (see Fig. 1b). In fact, the influence of the network structure on the final opin-
ion is negligible for the parameters that characterize many real social systems. In these
cases, only the average number of friends in the population impacts the outcome. Al-
though the limiting behavior of all the dynamics is the same, the differences between
them are noticeable for the typical values of the average node degree found in real-
world structures. Thus, if the models of opinion dynamics intend to properly capture
the collective human behavior, it is important to accurately determine the ranges of
social interactions since they can completely change the system properties.
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1 Introduction

Homophily plays a significant role in shaping social structure and in influenc-
ing dynamics on social networks. Recently, researchers have traced a link be-
tween homophily and minorities, revealing that homophily accentuates under-
representation in rankings of social networks with minority groups. In this paper,
we study the impact of such dynamics on face-to-face interactions. Precisely, we
characterize discrepancies in the interactions of minorities and majorities, and
subsequently develop a model to explain them. First, we expose some charac-
teristics of the networks that emerge from face-to-face interactions: degree dis-
tribution, strength distribution, and contact duration distribution. In line with
previous studies, we find degree inequality emerging as a consequence of social
interactions. We argue that besides attractiveness, homophily plays a significant
role in these differences. We evaluate attribute assortativity and the connectivity
between classes. Finally, we propose a network model of face-to-face interactions
based on attractiveness and homophily. We show that the discrepancies in the
data can be explained by the addition of homophily in the model.

2 Results

We studied the social networks of schools and conferences that used sociopattern
proximity sensors to collect face-to-face interactions[1, 2]. With these data sets,
we built the social networks in which a node is a person, and an edge indicates
interaction between two people. In these networks, the degree distributions are
well behaved around a center tendency. The data also contains the gender in-
formation. In all considered cases, there exist less female students than male
students.

Degree inequality and mixing in social networks

We first characterized the group connectivity patterns in the social networks. For
this, we measured the average degree of each group in the networks (Fig. 2A).
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Fig. 2. Degree inequality and mixing in face-to-face social networks. The
empirical average degree of the minority and majority is compared with the model

We found a systematic degree inequality among groups. The minorities exhibit
lower average degree than the majorities in all classes but School 5, in which the
opposite occurs. The previous model of face-to-face interactions in space with
intrinsic attractiveness of the individuals fails to explain this observation[3] as
it neglects relational attributes in social dynamics.

Here, we present a social network model of physical proximity that incorpo-
rates (i) intrinsic attributes of individuals and (ii) relational attributes between
groups. We show that these ingredients are sufficient to explain degree inequal-
ity observed in social dynamics with minorities. In this model, each individual
has an intrinsic attractiveness that is drawn from a uniform distribution. The
members of a group share the same mixing pattern, which tunes how individuals
interact with others. In general, individuals move across the space depending on
their label and the composition of their surroundings (see Fig. 1). While the
previous intrinsic-attractiveness model proposes that individuals are more likely
to interact with high intrinsically attractive individuals, here we argue that this
likelihood also depends on the mixing dynamics between the groups.

In the attractiveness–mixing model, each individual has three attributes: a
label bi ∈ [0, B−1], where B is the number of groups; an intrinsic attractiveness
ηi ∈ [0, 1]; and an activation probability ri ∈ [0, 1]. The mixing patterns in this
system are encoded in the B × B mixing matrix h. Each row of h can be seen
as a probability mass function that weighs the likelihood of group interaction.
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In the model, N individuals perform random walks in a two-dimensional L× L
periodic space and move based on the composition of their vicinity. For this, we
define Ni(t) as the set of individuals who are within radius d from the individual
i at time t. The individuals move only probabilistically. At each time step t, each
individual i moves with probability

pi(t) = 1− max
j∈Ni(t)

{ηjhbibj}, (1)

In this model, an individual interacts with others depending on their perceived
attractiveness—as perceived by the group of this individual. Each individual
moves with a step of length v along a random direction of angle ξ ∈ [0, 2π).
Finally, individuals can be active or inactive; they only move and interact with
others if they are active. An inactive individual i becomes active with probability
ri, whereas an active but isolated individual i becomes inactive with probability
1 − ri. In this study, we assume that the intrinsic attractiveness ηi and the
activation probability ri come from a continuous uniform distribution in [0, 1].

Our results suggest that in order to have more accurate models of social
interactions in physical proximity it is crucial to account for mixing patterns
between the groups. In addition, we show how these mixing patterns result in
surprising degree ranking inequalities for minorities and majorities.
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1 Introduction

Climate change awareness plays an important role in behavior change towards a more
sustainable future [3]. Social media such as Twitter reflects public awareness as more
people are taking on to social platforms to express their opinion [4]. Several efforts
have been made to analyze public sentiment based on crowd sourced information. Most
of these efforts are in the health care sector and focus on disease awareness and epi-
demiological spread [1]. There has, however, been less research combining sentiment
analysis and social media on the ways information on climate change or sustainabil-
ity issues spreads. In this paper, we address this gap by relating the awareness about
sustainability issues to socially created norms, thereby discussing the roles of hubs and
peripherals.

2 Methodology

In order to understand what factors influence consumer sentiment on sustainable coffee,
we scraped Twitter as the crowd source for ‘psychological wisdom’[6]. We used 5M
tweets in the last 10 years from 4,000 users who recently tweeted about coffee in the
Netherlands (1M tweets in English).

Each tweet is analyzed for its content and sentiment. First, the tweets are tagged
by their content. Tweets containing ‘sustainability’, ‘climate change’, etc. are tagged as
sustainable tweets; tweets containing ‘coffee’ are tagged as coffee tweets; within this
set of coffee tweets, any mention of ‘sustainable’, ‘organic’, ‘certified’ is tagged as a
sustainable coffee tweet. Secondly, we applied sentiment analysis to the tweets based
on Syuzhet’s sentiment algorithm [7]. Each resulting sentiment score is in the inter-
val [−1,1], with negative sentiment receiving the score of −1 and positive sentiment
having a score of 1. The sustainability or sustainable coffee sentiment is then normal-
ized to the user’s average sentiment score. Thirdly, a network is created with users as
nodes and mentions, including retweets and replies, as edges. Such edges are preferred
over a friendship network as they are dynamic and potentially change every month.
Fourthly, we run a regression on the sentiment score to understand which factors influ-
ence consumer sentiments on sustainable coffee. Then, we divide the data into two sets,
hub and peripheral. This discrimination is made based on both network topology and
the users’ tweeting patterns. The latter of these two factors is important in the context of
this paper because it incorporates information about the way Twitter users interact. The
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same regression as before is run again on both sets in order to compare the behavior
between the hubs and peripherals.

According to the Theory of Reasoned Action [2], intention is influenced by attitude
and social norms. Here, intention is understood as sentiment/awareness about sustain-
able coffee, while attitude is sentiment about sustainability issues in general. As neigh-
boring users can have influence on one’s sentiment, their sentiment is considered here
to be a ‘social norm’. To understand the contribution of each of these factors, we ran
several regressions: ordinary least square (OLS), random effect and fixed effect. OLS
and random effect both perform worse than fixed effect, based on the Hausman test.

We are looking for ways to explain the monthly sentiment score scu,t about sustain-
able coffee (with respect to a user u at time t) in terms of the sentiment score su,t about
sustainability (independent of the coffee), as well as both sentiment scores aggregated
over the neighborhood N(u, t). Here Twitter is treated as e-word of mouth [5], which is
why the neighborhood has a social influence to the user u and thus potentially opposes
Social Norms to u. The final regression thus takes the following format:

scu,t
!
= βs · su,t + β̄s ·

1
|N(u, t)| ∑

u′∈N(u,t)
su′,t + β̄sc ·

1
|N(u, t)| ∑

u′∈N(u,t)
scu′,t + ε =: ŝcu,t (1)

In addition, we explored whether the current sentiment towards sustainable coffee scu,t
can be explained by the corresponding past sentiment scu,t−1. Equation 1 thus trans-
forms to

scu,t
!
= ŝcu,t +αsc · scu,t−1 (2)

In both cases, we divide the Twitter users into hubs and peripherals, based on the
count of followers, status and favorites. The former is defined as Twitter users who
have a high number of followers tweeting frequently and highly-liked content. Hubs
have thus the potential to steer the direction of the discussion based on the ability to
spread large information over the network. It can be expected to see a difference in
information diffusion behavior based on the different network topology.

Similar to the case of the sentiment score, a corresponding regression can be made
for the awareness about sustainability. Awareness about sustainability is simply a value
of 0 or 1, with 1 mentioning the term and 0 otherwise.

3 Results and Discussion

The fixed effect regression shows that social norms, created by the neighborhoods, have
a more significant predictive power toward the sentiment of sustainable coffee than

Table 1. Fixed Effect Regression for Sustainable Coffee Sentiment

Coefficient Whole network Hub Peripheral

βs 0.005±0.002 0.034±0.013* 0.002±0.003
β̄s 0.002±0.002 −0.009±0.000 0.004±0.002
β̄sc 0.762±0.011*** 0.984±0.030*** 0.729±0.011***

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table 2. Fixed Effect Regression for Sustainable Coffee Sentiment

Coefficient Whole network Hub Peripheral

βs 0.000±0.002 0.002±0.004 −0.002±0.003
β̄s 0.014±0.001*** −0.001±0.004 0.015±0.003***
β̄sc 0.554±0.011*** 0.999±0.010*** 0.532±0.012***
αsc 0.093±0.013*** 0.000±0.022 0.096±0.014***

the user’s own sentiment of sustainability (Table 1). That is network influence is more
important than intrinsic attributes. Further, there is a difference in the behavior of hub
and peripherals. Based on the definition given above, we refer to 154 Twitter users as
hubs, making up 3.7% of the data set. The hubs correlate almost perfectly with the
sentiment of their neighbors, which reflects their role to spread information, whereas
for peripherals, this correlation is not as strong.

Based on our analysis incorporating the past sentiment (Table 2), only an insignifi-
cant relationship between the lagged term and the sentiment score of tweets containing
sustainable coffee could be observed. A possible explanation is the diversity of mes-
sages being tweeted or the temporal scale being too granular.

The study shows that the ways a user is able to influence other users’ sustainable
coffee sentiments depends on the topology of the social network. In fact, we were able
to demonstrate that the sentiments about sustainable coffee of users within the neigh-
borhood is far more important than the sentiment of sustainability alone. In case of
communication about sustainability issues, it could be traced that hubs are thus very
effective (and influential) in affecting other users’ sentiments.

We were not able to fully explore the ways past and present sentiments are linked
through time. Future research could explore different temporal aggregations, thus as-
suming another scale of analysis. Further, we would like to include different time lag
with respect to Equation 2. These considerations may lead to an improved understand-
ing of how sentiments are influenced through social networks.
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Models of opinion dynamics that show discontinuous phase transition are one of
the most desirable. One of the main reasons for this may be the existence of so-called
social hysteresis in many societies, animal as well as human. Thus we ask a question
about the possibility of discontinuous phase transition within threshold models. It was
checked for some type of majority vote model [1], but we want to check if discontinuous
phase transition is possible, when we introduce non-absolute majority type.

Hence, we analyze two variants of the modified Watts threshold model with a noise
[2][3]. Models are analyzed analytically using the Mean-Field Approximation, Pair Ap-
proximation method [4] and numerically by Monte Carlo simulations. All models are
considered on the complete graph, random regular graph and Watts-Strogatz graph.
Agents are affected by two forces, conformity and nonconformity (independence or
anticonformity), which can order or disorder the system. Here conformity acts as an
ordering force and anticonformity acts in the opposite way, i.e. disorders the system.
As an order parameter, we use magnetization which is defined as the mean across all
states of agents in the system.

We consider a system of N agents, which are described by the binary variables
S =±1. Agents are placed in the nodes of an arbitrary graph. At each elementary time
step, we pick one agent randomly and decide which of two types of behavior she/he will
perform in a given time step: with probability p an agent will nonconform (anticonforms
or acts independently) and with probability 1− p conform to the major opinion. In
both cases, we check if the concentration of agents with opinion S = ±1 across all
neighbors is bigger than a set threshold r > 0.5, i.e. we check which opinion is major
in the neighborhood. In case of conformity a voter will take the same state as the major
opinion and in the case of anticonformity the state opposite to the major one. In case of
independence, an agent acts independently, i.e. with probability 1

2 flips to the opposite
state.

We investigate the model via the mean-field approach, which gives the exact result
in the case of a complete graph, as well as via Monte Carlo simulations. General results
for the model with independence [3]:

p =
cstB1−cst − (1− cst)Bcst

1
2 − cst − (1− cst)Bcst + cstB1−cst

, (1)

whereas for the model with anticonformity:

p =
Bcst − cst(Bcst +B1−cst )

Bcst −B1−cst

, (2)
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where

Bc = P(X1 > br(N−1)c),
B1−c = P(X2 > br(N−1)c), (3)

where X1 is a binomially distributed random variable with N− 1 number of trials and
success probability in each trial equal to c, and X2 is a binomially distributed random
variable with N−1 number of trials and success probability in each trial 1− c.

We show that indeed if the threshold r = 0.5, which corresponds to the majority-vote
model, an order-disorder transition is continuous. Moreover, results obtained for both
versions of the model (one with independence and the second one with anticonformity)
give the same results, only rescaled by the factor of 2. However, for r > 0.5 the jump
of the order parameter and the hysteresis is observed for the model with independence,
and both versions of the model give qualitatively different results, see Fig. 1

Moreover, similar tendencies were observed on a random regular graph and Watts-
Strogatz graph. We observe exactly the same behavior as before for parameter k=N−1,
what corresponds to the complete graph (k describes degree for all nodes in the net-
work). But additionally we observe some interesting behavior for other values of k, for
example, parameter k seems to be responsible for discontinuity of the order parame-
ter in the independence case. In the Watts-Strogatz graph case, parameter β (rewiring
probability) seems to change position of tipping point. We check also if we can observe
the 1st order phase transition in the anticonformity case on the complete graph. For all
networks we derive an analytical solution using Mean-Field and Pair Approximation
approach. And as before we have validated them by Monte Carlo simulations.
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Fig. 1. Phase diagrams for the model with independence for different values of the threshold r.
Lines indicate the analytical prediction from MFA and dots represent results of MCS from the
initial fully ordered state (c(0) = 1) for the system of size N = 5 ·104 [3].
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Many people hold beliefs about scientific issues that are not in line with the sci-
entific consensus. Even though 86% of scientists who are members of AAAS think
that parents should be required to vaccinate their healthy children and 88% think ge-
netically modified (GM) food is safe to eat, only 68% of the U.S. public think that
all healthy children should be vaccinated and 37% think it is safe to eat GM food [8].
Erroneous beliefs about scientific issues can have important societal consequences, in-
cluding measles outbreaks [7] and precarious farming economies [6].

Beliefs about scientific issues are often related to various moral considerations in
complex semantic networks [1]. For instance, beliefs about vaccines and GM food can
be connected to the perceived unfairness of the practices of pharmaceutical and biotech
companies, which in turn might be related to environmental concerns. Using these indi-
rect moral arguments could be more effective at changing minds than solely providing
facts [9]. In other words, when there is a strong relationship between a scientific belief
and a moral consideration, it might be necessary to first change the moral consideration
in order to change the scientific belief. However, if this moral consideration is itself
tightly associated with other moral considerations in one’s semantic network, or struc-
turally embedded [3], it might be difficult to change it and, consequently, to change the
related scientific belief [5].

We explore how structural embeddedness of moral considerations related to beliefs
about vaccines and GM food affects the likelihood of belief change about the safety of
these technologies. We hypothesize that 1) beliefs about a moral consideration related
to vaccines and GM food will be less likely to change if that consideration is strongly
connected to other moral considerations within one’s semantic network, and 2) beliefs
about the safety of vaccines and GM food will change most after interventions targeting
considerations that are well connected to safety concerns but, at the same time, less
connected to other moral considerations.

1 Methods

We collected data within a longitudinal experimental survey with Mechanical Turk par-
ticipants whose beliefs were not aligned with the scientific consensus about the safety
of childhood vaccination (N = 409) or GM food (N = 406).

In three survey waves, we measured participants’ beliefs about safety of vaccines
and GM food (safety beliefs), as well as their related moral considerations belonging to

This work is supported by award no. 2018-67023-27677 from the USDA National Institute
of Food and Agriculture. The funder had no role in study design or interpretation of the results.
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six different moral domains [4]: whether they benefit children and environment (Care),
are part of one’s tradition and approved by appropriate agencies (Authority/Respect),
are natural and in line with God (Purity/Sanctity), positively affect one’s family and
country (Loyalty), are fair to different actors, such as big corporations, patients, and
farmers (Fairness), and whether one is free to choose these technologies and has access
to all important information (Freedom). For each consideration, we also measured how
important it is for one’s safety beliefs. In the second wave, participants received edu-
cational interventions including scientific facts about the safety of these technologies
combined with messages targeting one moral consideration, either harm to children,
naturalness, or fairness regarding the profit of big companies vs. patients (vaccines) or
large vs. small farmers (GM food). The study also included questions and interventions
regarding social norms, which will be reported elsewhere.

We constructed a network of moral considerations where edges represented partial
correlations of each consideration with others [2]. We calculated correlations between
each moral consideration and safety beliefs. We approximated structural embeddedness
with two measures: 1) closeness, reflecting the average of each consideration’s par-
tial correlations with all other considerations (the network is fully connected); and 2)
weighted closeness, where each partial correlation was weighted by the consideration’s
reported importance for beliefs about safety. The resulting coefficients for closeness
ranged from .7 to .9, and for weighted closeness from .38 to .64 for vaccines and GM
food, respectively. For each moral consideration, we also computed the ratio of its cor-
relation with the belief about safety over its structural embeddedness. For closeness
(weighted closeness), this ratio ranged from .68 to .88 (10 to 21) for vaccines, and from
.34 to .70 (7 to 11) for GM food. Finally, we calculated the change in beliefs about
safety after educational intervention, as the absolute proportional difference in beliefs
reported in Wave 1 and immediately after the intervention in Wave 2, as well as a week
later in Wave 3. These changes ranged from 11 and 24 percentage points.

2 Results

Figure 1 shows network of moral considerations related to safety beliefs about vaccina-
tion and GM food. In line with our first hypothesis, we find that changes in beliefs about
the moral considerations targeted by our educational interventions are strongly nega-
tively correlated with their structural embeddedness for both beliefs about vaccines and
GM food, when measured as simple closeness (r = −.53 and r = −.97, respectively).
For weighted closeness, the same relationship holds for GM food (r =−.86), but not for
vaccines (r = .69), where a moral value with high weighted closeness (the profit of big
companies) did experience significant changes. In line with our second hypothesis, we
find that changes in beliefs about safety are positively correlated with more correlated
yet less embedded target considerations. The results hold for structural embeddedness
measured both as closeness (r = .43 and r = .35) and weighted closeness (r = .48 and
r = .75, for vaccines and GM food, respectively).

In sum, we show that structural embeddedness of moral considerations strongly
affects the likelihood of changing beliefs about the safety of vaccines and GM food
after educational interventions. While the best educational interventions for each scien-
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Fig. 1. Relationship of different moral considerations with beliefs about the safety of A. vac-
cination and B. GM food. Thicker lines indicate stronger partial correlations, nodes in orange
represent targeted educational interventions, the yellow node represents the outcome.

tific issue differ in content, for both vaccines and GM the intervention producing most
change has one of the highest ratios of its correlation with safety beliefs over structural
embeddedness. Our results suggest that to change scientific beliefs, one should first
attempt to change underlying moral considerations, focusing on those that are impor-
tant for the scientific beliefs but not tightly interconnected with other considerations. In
further research, we will explore other measures of structural embeddedness, such as
betweenness, and study the accuracy of estimated networks of moral considerations.

References
1. Dalege, J., Borsboom, D., Van Harreveld, F., et al.: Toward a formalized account of attitudes:

The Causal Attitude Network (CAN) Model. Psychol. Rev. 123(1), 2–22 (2016)
2. Epskamp, S.,Cramer, A.O., Waldorp, L.J., et al.: qgraph: Network visualizations of relation-

ships in psychometric data. Journal of Statistical Software, 48(4), 1-18 (2012).
3. Granovetter, M.: Economic Action and Social Structure: The Problem of Embeddedness.

Am. J. Sociol. 91(3), 481–510 (1985)
4. Haidt, J., Kesebir, S.: Morality. In Fiske, S., Gilbert, D., Lindzey, G. (eds.): Handbook of

Social Psychology, pp. 797–832. 5th edn. Wiley, Hobeken, N.J. (2010)
5. Kahan, D. M., JenkinsSmith, H., Braman, D.: Cultural cognition of scientific consensus.

Journal of risk research, 14(2), 147-174 (2011).
6. Lucht, J. M.: Public acceptance of plant biotechnology and GM crops. Viruses 7(8), 4254–

4281 (2015)
7. Patel, M., Lee, A. D., Redd, S. B., et al.: Increase in Measles Cases - United States, January

1-April 26, 2019. US Department of Health and Human Services/Centers for Disease Control
and Prevention Morbidity and Mortality Weekly Report. 68(17), 402–404 (2019)

8. Pew Research Center: Americans, Politics and Science Issues. pp. 1–175 (2015)
9. Steele, C. M., Ostrom, T. M.: Perspective-mediated attitude change: When is indirect per-

suasion more effective than direct persuasion? Journal of Personality and Social Psychology
29(6), 737–741 (1974)

203

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Part VI

Link Analysis and Ranking
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1 Introduction

PageRank, introduced over 20 years ago by Page et al. [5], is one of the standard tools
for network analysis. While nowadays PageRank is used in various settings, initially it
was developed for measuring the importance of webpages on the Internet. Using graph
terminology, Internet network is a directed multigraph, were webpages are nodes and
links between them—edges. Additionally, the node weights can be understood as a
baseline importance of a webpage coming from predefined preferences of the user [5],
its relevance to a specific topic [4], or another source.

PageRank belongs to a class of feedback centrality measures. These centralities
are defined through a recursive formula that links the centrality of a node with the
centralities of its direct predecessors. More in detail, PageRank of a node is the sum of
two parts: the first one is proportional to the sum of PageRanks of its direct predecessors
divided by the number of their outgoing edges; the second one is the weight of this node,
i.e., constant bv. Formally,

PRv(G) = a ·
(

∑
(u,v)∈E

PRu(G)

out-degree(u)

)
+bv.

In this paper, we analyse PageRank by providing its axiomatic characterisation—a
set of simple, intuitive properties that uniquely characterise a centrality measure. This
approach allows to highlight similarities and differences between centrality measures
and in recent years has gained popularity in the literature, e.g.: to emphasise the useful-
ness of the Harmonic Centrality [3] or to find common patterns in the behaviour of dif-
ferent centrality measures [2, 7]. In our work, we capture the intuition behind PageRank
with six simple axioms namely: Foreseeability, Outgoing Homogeneity, Edge Swap,
Sink Merging, Twin Sources, and Dummy Node, and we prove that PageRank is the
only centrality measure that satisfies all six of them.

This is the first axiomatic characterisation of the PageRank centrality in its original,
general form. So far, only simplified version of PageRank (without constant bv) has
been axiomatized: Palacios-Huerta and Volij [6] axiomatized Invariance Method which
is equivalent to a simplified PageRank in a setting of a scientific journal citation net-
work; In turn, Altman and Tennenholtz [1] focused on the ranking that results from the
simplified PageRank.
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2 Results

Let us present our six axioms and explain the intuition behind them. Five of them de-
fine graph operations under which the centrality should be invariant. The sixth axiom,
namely Dummy Node, determines the exact centrality of a node in the borderline case.

Our first axiom, Foreseeability, states that the importance of a webpage depends
mostly on its backlinks, not its links. Hence, if we remove the part of a network, from
which we cannot reach our webpage by a sequence of links, then the importance of our
webpage should still be the same.

Foreseeability: For every graph G = (V,E) and node v ∈ V , removing every-
thing but a subgraph consisted of v, all its predecessors and their outgoing
edges does not affect the centrality of v.

Observe that since the importance of a link on a webpage depends on the total number
of its links, the outgoing edges of all predecessors of v have to be preserved.

Outgoing Homogeneity, our next axiom, states that the absolute number of links on
a webpage does not impact the importance of any webpage. Since creating a link has
practically zero cost, this property is important to prevent ranking manipulations and
laid at the foundation of PageRank.

Outgoing Homogeneity: For every graph G = (V,E) and constant k ∈ N,
adding k copies of all outgoing edges of node v ∈ V does not affect any cen-
trality in the graph.

For the next axiom, Edge Swap, consider the case when there are two equally im-
portant webpages with equal number of links. Then, the axiom states that the links from
these webpages have equal impact—it does not matter for the importance of any web-
page from which of these two webpages it has a backlink. This property is characteristic
for feedback centralities.

Edge Swap: For every graph G = (V,E), if nodes u,v ∈V have equal centrali-
ties and equal number of outgoing edges, then replacing edges (u,u′),(v,v′) ∈
E for edges (u,v′),(v,u′) does not affect any centrality in the graph.

In our next axiom, Sink Merging, we focus on a situation, where two webpages are
merged into one, preserving their backlinks. If there are no links on both webpages,
then after this operation the importance of a merged webpage is a sum of the original
importance of both webpages.

Sink Merging: For every graph G = (V,E), merging two sinks u,v ∈ V does
not affect the centralities of the remaining nodes in the graph; moreover, the
centrality of the merged node is the sum of the centralities of nodes u and v in
graph G.

Now, imagine that there are two identical webpages without backlinks. In such a
case, our next axiom, Twin Sources, states that if we remove one of them and transfer
its baseline importance to the other webpage, then the importance of webpages in the
rest of the network will not be affected.
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Fig. 1. Six graphs illustrating our axioms. Light grey nodes have weight 1 and dark grey—2.

Twin Sources: For every graph G = (V,E) and two sources u,v ∈V with iden-
tical set of edges, removing u and adding its weight to the weight of v does
not affect the centralities of the remaining nodes in the graph; moreover, the
centrality of v is the sum of the centralities of nodes u and v in graph G.

In our last axiom, we consider a webpage without any links nor backlinks.

Dummy Node: For every graph G = (V,E), if node v ∈ V does not have any
edges (outgoing nor incoming), then its centrality is equal to its weight.

Our main result states that these six axioms uniquely characterise PageRank.

Theorem 1. PageRank centrality is a unique centrality measure satisfying Foreseeabil-
ity, Outgoing Homogeneity, Edge Swap, Sink Merging, Twin Sources and Dummy Node.

The early version of this work was presented at the IJCAI-18 conference [8].
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1 Introduction

Signed networks are a special type of complex networks with both positive and negative
edges. The positive edges represent positive relationships such as “friends” and “trust”,
and are represented by the positive sign “+”. The negative edges represent negative
relationships such as “enemies” and “distrust”, and are represented by the negative sign
“–”. In a signed network, whether two nodes do link each other depends on not only
the number of common neighbors between them, but also the sign and direction of each
edge in their neighborhood.

The most commonly used link prediction algorithm in signed networks is based
on small subgraphs that satisfy status theory, and these subgraphs can be understood
as special cases of motifs [1]. Compared with many global structural features such
as small-world and scale-free, motif (i.e., subgraph) is the most basic structural and
functional unit in complex networks [2]. Link prediction via a motif can be expressed
as: whether two nodes do connect depends on the specific functional units formed by the
edge connecting these two nodes and their neighbors [3]. The motif-based prediction
algorithm considers the connection patterns (including the sign and direction of edges)
between node pairs and their neighbors, so it is applicable to signed networks [4].

The existing motif-based link prediction algorithms for signed networks have fol-
lowing three drawbacks. First, the current methods only focus on motifs that satisfy
status theory [5], but do not consider other types of motifs. Actually, the mechanism by
which the motifs can be employed to link prediction in signed networks is not explained.
At the same time, there is no answer as to explain the mechanism that calculating the
number of motifs on the predicted edge can be used for link prediction. Finally, the
classical algorithms of link prediction are based on only a single motif and do not think
about the relation between different kinds of motifs.

To solve the above mentioned problem, we investigate a novel framework based
on edge-dependent motif for link prediction. In this study, we first use motif theory to
explore the relationship between the number of each motif and its ability for link pre-
diction. Experiments on five empirical signed networks demonstrate that the prediction
ability of a motif depends not on its number in the whole network but on the number
of edge-dependent motifs. Then we explain the edge-dependent motif based link pre-
diction by a naive Bayes model. Secondly, we put forward a signed naive Bayes model
combining two motifs, which has higher prediction performance than a single motif. Fi-
nally, We combine all the types of 3-node motifs to build a machine learning classifier
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based on motif families. The network structure information used by motif families in
link prediction is more comprehensive than status theory and thus gives more accurate
prediction.

2 Results

We combine all the predictors for positive edges to construct motif families. Treat the
scores of edges calculated by 16 predictors as 16-dimensional features, and then use
XGboost for link prediction. The prediction results of the five large-scale signed net-
works based on all the predictors for positive edges are shown in Tables 1. In each
column, the best result and the result based on the motif family (all the motifs) are
highlighted in boldface. From these two tables, link prediction using the motif family is
more accurate than using a single motif, and this conclusion can be drawn from all the
five experimental networks. The motif families not only consider the motifs that satisfy
status theory, but also utilize the motifs that do not satisfy status theory, so they have
higher prediction performance.

Table 1. The results of link prediction by combining multiple positive predictors. Here P repre-
sents the result of Precision.

Motif
Bitcoinalpha Bitcoinotc Wiki-RfA Slashdot Epinions

AUC P AUC P AUC P AUC P AUC P

S1 0.782 0.996 0.775 0.997 0.814 0.988 0.634 0.999 0.838 1.000

S2 0.780 0.993 0.774 0.996 0.775 0.988 0.634 0.998 0.821 1.000

S3 0.786 0.996 0.778 0.997 0.913 0.996 0.655 1.000 0.841 1.000

S4 0.534 0.902 0.533 0.840 0.608 0.874 0.515 0.661 0.543 0.708

S5 0.509 0.605 0.511 0.611 0.515 0.548 0.506 0.562 0.524 0.614

S6 0.509 0.613 0.517 0.679 0.563 0.714 0.533 0.843 0.599 0.974

S7 0.533 0.878 0.529 0.823 0.650 0.972 0.527 0.788 0.582 0.892

S8 0.539 0.951 0.537 0.879 0.641 0.960 0.523 0.739 0.560 0.786

S9 0.548 0.966 0.542 0.937 0.555 0.692 0.510 0.608 0.548 0.731

S10 0.539 0.929 0.533 0.839 0.547 0.662 0.511 0.614 0.564 0.807

S11 0.537 0.916 0.533 0.842 0.624 0.933 0.521 0.718 0.555 0.763

S12 0.550 0.981 0.543 0.945 0.706 0.976 0.522 0.733 0.540 0.692

S13 0.777 0.995 0.766 0.998 0.638 0.935 0.572 0.985 0.736 0.999

S14 0.508 0.585 0.510 0.613 0.554 0.689 0.515 0.663 0.519 0.593

S15 0.533 0.868 0.529 0.810 0.613 0.893 0.518 0.697 0.541 0.697

S16 0.539 0.933 0.536 0.896 0.637 0.962 0.517 0.682 0.530 0.644

All 0.823 0.996 0.825 0.998 0.959 0.998 0.746 1.000 0.899 1.000
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Then, we compare our proposed method (i.e., Motif Family) with two state-of-the-
art methods in signed networks: FriendTNS [6, 7] and Status Theory [5]. The results
of the predictors for positive edges are shown in Fig. 1, as the size of the training set
increases, the predictive performance of all methods is improved. Furthermore, motif-
based methods (i.e., Motif Family and Status Theory) can obtain higher prediction re-
sults than FriendTNS, and the method of Motif Family obtains the best predictive per-
formance because it considers more types of motifs (i.e., motifs that do not satisfy status
theory) than Status Theory.

Fig. 1. The comparison of our proposed method with the existing methods.
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1 Introduction

Network structures are pervasive around us and numerous critical facilities are con-
nected together by various networks. The function and behaviour of networked systems
can be largely influenced by their structural features. In such a framework, network
topology plays an important role. A fundamental issue concerning complex networked
systems is indeed the robustness of the overall system to the failure of its constituent
parts (see [1]). In the recent literature a graph measure called Effective graph resistance,
also known as Kirchhoff index, has gained increasing attention in network robustness
theory. This topological indicator is defined as the accumulated effective resistance be-
tween all pairs of vertices (see [5]) and it has been reformulated as a function of the real
eigenvalues µi of the Laplacian matrix associated to a graph (see [3])

K(G) = n
n−1

∑
i=1

1
µi
. (1)

In order to compare the value of the Kirchhoff index for networks with a different
number of vertices n, we can consider the normalized Kirchhoff index defined as (see
[6]):

KN(G) =
K(G)(n

2

) , (2)

where the denominator considers the maximum number of edges3.
In [2] and [7], the authors showed that the Kirchhoff index is suitable for assessing the
ability of a network to continue performing well when it is subject to failure and/or
attack. In fact, the pairwise effective resistance measures the vulnerability of a connec-
tion between a pair of vertices that considers both the number of paths between the
vertices and their length. A small value of the effective graph resistance therefore in-
dicates a robust network. A very interesting feature of the Kirchhoff index is that it

3As an alternative normalization, for sparse graphs, it is possible to consider the number of
vertices.

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



shows strict monotonicity when edges are added or removed, in particular it strictly
decreases/increases when edges are added/removed. However, it remains a challenge to
identify a specific indicator that displays all the desirable properties usually requested
for a robustness quantifier and that can be functional to evaluate and compare real-world
networks, especially when topological changes in the network structure have been oc-
curred. Moving along this line, we aimed at presenting a novel robustness measure,
which we refer to as Effective Resistance Centrality, based on the Kirchoff index. In
particular the Effective Resistance Centrality of a vertex (or an edge) is defined as the
relative drop of the Kirchhoff index caused by the deactivation of this vertex (edge)
from the network. In this way, we provide a local robustness measure able to catch
which is the effect of either a specific vertex or a specific edge on the network robust-
ness. Since the degree to which a networked system continues to function typically
depends on the integrity of the underlying network, the question of system robustness
is usually addressed by analysing how the network structure changes as vertices (or
edges) are removed. Several works deal with this topic by evaluating the effect on the
network structure of vertices removed either randomly (see, e.g., [1]) or on the basis of
targeting criteria related to specific centrality measures (see, e.g., [4]). To this end, we
provide a new local measure of importance that can be used as a new criterion for node
(or edge) selection when targeted attack strategies are implemented. We further investi-
gate the validness of our proposal on a wide variety of well-known model networks and
on the United States domestic airport network. In particular, we investigate the role and
significance that airports play in maintaining the structure of the entire domestic airport
network.

2 Effective Resistance Centrality

We now provide a definition and a structural description of the edge-based Effective
Resistance Centrality and vertex-based Effective Resistance Centrality, respectively.

2.1 Edge-based Effective Resistance Centrality

Let G = (V,E) be a k-edge-connected graph (with k > 1) of n vertices and m edges and
Gei, j the graph obtained by removing the edge ei, j, connecting vertices i and j, from G.

Lemma 1. If Gei, j is an arbitrary subgraph of a graph G, then K(Gei, j)≥ K(G)

It is noteworthy to say that, if G is a 1-edge-connected graph, then the resulting
subgraph Gei, j can be disconnected. In this case, when ei, j is a bridge, we have that
K(Gei, j) = ∞.

We now introduce a new measure able to capture the relevance of an edge in the
network and we refer to it as Effective Resistance Centrality. It is mainly based on the
idea that the importance (or centrality) of an edge is related to the ability of the network
to continue performing well after the deletion of this edge.

Definition 1. The Effective Resistance Centrality RK(ei, j,G) of the edge ei, j is defined
as

RK(ei, j,G) =
(∆K)ei, j

K(G)
=

K(Gei, j)−K(G)

K(G)
. (3)
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By Lemma 1, (∆K)ei, j = K(Gei, j)−K(G) must be non-negative, therefore, RK(ei, j,G)
displays monotonicity with respect to edge removal.

2.2 Vertex-based Effective Resistance Centrality

Let G = (V,E) be a connected graph of n vertices and m edges and Gvi the graph ob-
tained by removing the vertex vi and all its related connections from G.

Definition 2. The Effective Resistance Centrality RK(vi,G) of the vertex vi is defined
as

RK(vi,G) =
(∆KN)vi

KN(G)
=

KN(Gvi)−KN(G)

KN(G)
. (4)

RK(vi,G) is defined by considering at the numerator the drop of the normalized
Kirchhoff index. This choice is justified by the fact that we want to provide a consistent
comparison between graphs G and Gvi that have different orders. Notice that in Defini-
tion 1 an eventual use of the normalized Kirchhoff index would lead to the same results
as in (3).
The quantity (∆KN)vi is not always positive, depending on the relevance of the specific
vertex vi in the network. On one hand, this measure can be useful in order to detect
strategic nodes, whose failure can affect the resilience of the network. On the other
hand, the measure also allows to identify eventual nodes to be removed in order to
improve the robustness of the network.

3 Main numerical results

In the numerical analysis we exploit how node and edges removals affect network
classes with different underlying mechanism. In the Erdős-Rényi (ER) graphs, we ob-
serve the presence of specific vertices, whose removal can significant improve the ro-
bustness of the network. In general, a lower probability of attachment, and therefore,
a lower density, leads to increase the index, providing a more vulnerable graph. As
well-known, as a random network gets denser, the critical threshold, at which a com-
plex network will lose its giant component, increases, meaning a higher fraction of the
nodes must be removed to disconnect the giant component. Concerning Watts and Stro-
gatz (WS) graphs with higher densities, we derive results in line with the ER random
graphs. Instead, when low densities are considered, the WS graph appears more vul-
nerable than ER to random nodes or edges removal. In the Barabási-Albert model, our
findings validate the results of recent studies. Although, in general, scale-free networks
are extremely resilient to random failures, they are also extremely vulnerable to targeted
attacks.
Finally, we explored the behaviour of our proposal by using the peculiar business net-
work of the U.S. airport, where vertices are the airports and edges are related to the
presence of at least a domestic flight scheduled among them in 2017. Results show the
effectiveness of the measures we propose in catching the peculiar characteristics of dif-
ferent nodes in the airport network. In particular, focusing on large and medium hubs,
we are able to emphasize their strategic role in the airport system. We also provided
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a consistent comparison with several well-known topological measures that assess the
node importance (namely, degree, clustering coefficient, betweenness, closeness, eigen-
vector centrality and number of passengers). On average, we notice a significant pos-
itive dependence between different indicators. For instance, top strategic airports are
also selected by the betweenness. It is easy to understand that these airports are vital to
the network and pose serious risks to the structure if disrupted. On the other hand, we
observe that Effective Resistance Centrality and betweenness rank in a different way
medium airports whose removal does not lead to a disconnected graph.
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1 Introduction

A graph embedding is a mapping of the vertices of a graph into k-dimensional vectors.
Good embeddings should capture the graph topology and vertex-to-vertex relationship.
Several graph embedding algorithms are available and for each algorithm, parameters
need to be set such as the dimension of the embedding space. As a result, selecting the
best embedding is a challenging task and very often requires domain experts.

We propose an unsupervised framework for the computation of divergence scores
to compare the quality of different embeddings for a given graph, where quality is de-
fined as preserving the community structure, as in [2]. The framework relies on two
main ingredients: (i) a good, stable graph clustering algorithm; we use the ECG algo-
rithms detailed in [5], and (ii) a generalization of the Chung-Lu model for graphs which
incorporates the geometry provided by the graph embedding.

In order to validate our framework, we ran a large number of experiments with
synthetic networks as well as real-world networks, using various embedding algorithms.

2 Geometric Chung-Lu Model

In the Chung-Lu model [1], given some degree distribution w = (w1, . . . ,wn) over n
vertices v1, . . . ,vn, edge probabilities of a generated graph are defined such that the
expected degrees for the vertices agree with this distribution.

In our proposed Geometric Chung-Lu model (GCL), we also consider an embedding
of the vertices of G in some k-dimensional space E : V →Rk. In particular, for each pair
of vertices, vi, v j, we know their distance: dist(E (vi),E (v j)). We consider 0≤ di, j ≤ 1,
a normalized version of those distances.

In the GCL model, the probability that vi and v j are adjacent is proportional to
s(di, j), a decreasing function s. For some choice of α ∈ [0,∞), we define s(di, j) :=
(1−di, j)

α for all di, j’s. This choice gives us a good variety of functions to choose from.
Choosing a large value for α makes it less probable to have long edges in embedded
space. With a small value for α , the distance in embedded space has less importance,
and it is completely ignored when α = 0.

The GCL model is the random graph G (w,E ,α) on the vertex set V = {v1, . . . ,vn}
in which each pair of vertices vi,v j, independently of other pairs, forms an edge with
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probability pi, j, where pi, j = xix js(di, j) for some learned weights xi ∈R+. The weights
are such that the expected degree of vi is wi = degG(vi) for all 1≤ i≤ n.

We show in [3] that there exists a unique selection of weights xi, provided that the
maximum degree of G is less than the sum of degrees of all other vertices. Moreover,
we show how to efficiently compute those weights numerically to any desired precision,
which can be made even faster via sampling.

3 The Framework

Given a graph G = (V,E), its degree distribution w on V , and an embedding E : V →Rk

of its vertices in k-dimensional space, we perform the five steps detailed below to obtain
∆E (G), a divergence score for the embedding. We can apply this algorithm to compare
several embeddings E1, . . . ,Em, and select the best one via argmini ∆Ei(G)

Step 1: Run some stable graph clustering algorithm on G to obtain a partition C of the
vertex set V into ` communities C1, . . . ,C`. We use the ensemble clustering algorithm
for graphs (ECG) [5], but any other good algorithm can be used.

Step 2: For each 1 ≤ i ≤ `, let ci be the proportion of edges of G with both endpoints
in Ci. Similarly, for each 1≤ i < j ≤ `, let ci, j be the proportion of edges of G with one
endpoint in Ci and the other one in C j. Let:

c̄ = (c1,2, . . . ,c1,`,c2,3, . . . ,c2,`, . . . ,c`−1,`) ĉ = (c1, . . . ,c`) (1)

be two vectors that sum to one. These graph-based vectors characterize the partition C
from the perspective of G. The embedding E does not affect these vectors.

Step 3: For a given parameter α ∈ R+ and the same vertex partition C, consider
G (w,E ,α), the GCL model. For each 1 ≤ i < j ≤ `, we compute bi, j, the expected
proportion of edges of G (w,E ,α) with one endpoint in Ci and the other one in C j. Sim-
ilarly, for each 1≤ i≤ `, let bi be the expected proportion of edges within Ci. We obtain
two vectors:

b̄E (α) = (b1,2, . . . ,b1,`,b2,3, . . . ,b2,`, . . . ,b`−1,`) b̂E (α) = (b1, . . . ,b`) (2)

that sum to one. These GCL-based vectors characterizes partition C from the perspec-
tive of the embedding E .

Step 4: We use the Jensen-Shannon divergence [4] (JSD) to measure the dissimilarity
between the vectors obtained in (1) and (2). In our implementation, we used a simple
average, that is,

∆α =
1
2
·
(
JSD(c̄, b̄(α))+ JSD(ĉ, b̂(α))

)
. (3)

Step 5: Run steps 3 and 4 for several choices of α; we tried several values on a grid in
the range 0≤α ≤ 10 in our experiments. Let α̂ = argminα ∆α . We define the divergence
score for embedding E on G as: ∆E (G) = ∆α̂ .

To compare several embeddings of the same graph G, we repeat steps 3-5 above
and compare the divergence scores (the lower score, the better). Steps 1-2 are done only
once, so we use the same partition into ` communities for each embedding.

217

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



4 Illustration

We illustrate our framework on the well-known Zachary’s Karate Club graph [6]. We
generated over 600 embeddings in dimension 2 to 128, using several different algo-
rithms. In Figure 1, we display the best and worst embeddings according to our frame-
work. Projection in 2 dimensions is obtained with UMAP1. The different colors and
shapes for the vertices correspond to the two known communities in this graph. We
clearly see that the best embedding does a much better job at keeping the vertices within
each community close. Results over several other real and artificial graphs as well as
using different graph clustering algorithms can be found in [3], all with conclusions
similar to Figure 1.

Fig. 1. The Karate Club Graph. We show the best (left) and worst embeddings according to our
framework given over 600 different choices. Vertex color and shape correspond to the two known
communities. We also display the edges from the graph. We clearly see that the best embedding
does a much better job at keeping the vertices within each community close.
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1 Introduction

The existing link prediction algorithms can be divided into two categories: structural
similarity algorithms in network domain [1] and network embedding algorithms in the
field of machine learning [2]. In the algorithms of structural similarity, local similarity
indices are the most commonly used because of their low computational complexity,
such as Common Neighbor (CN) and Local Path (LP) indices [1].

Recently, the technique of network embedding has been widely applied in link pre-
diction[3]. It aims to map network data into a low dimensional space in which the net-
work neighborhood information is maximumly preserved [2]. By representing nodes
in a network as vectors, a wide variety of machine learning algorithms can be used
to provide a standard, general and effective solution for link prediction [4]. Besides,
network embedding has benefited many applications like network visualization, node
classification and node clustering. However, in the current researches, there is a lack of
systematic comparison of the two algorithms (structural similarity versus network em-
bedding), and few of them study the shortcomings of network embedding algorithms.

2 Results

Table 1 displays the AUC results of these algorithms. In each column, the best result
is highlighted in bold. A short-path network refers to the network where the shortest
path length between most pairs of nodes is short. On the contrary, A long-path network
refers to the network where the shortest path length between most pairs of nodes is
long. It can be seen that for short-path networks (i.e., Ht09 , Email, and WC networks),
structure similarity algorithms (e.g., CN, LP, and CCN) can achieve excellent predic-
tive performance. Furthermore, structure similarity algorithms significantly outperform
network embedding algorithms in short-path networks. Conversely, for long-path net-
works, the best predictive performance is obtained from network embedding algorithms
(e.g., LargeVis and Node2Vec). In other words, network embedding algorithms have a
great deficiency when performing link prediction in short-path networks.

To explain the phenomenon that network embedding algorithms have a pitfall when
performing link prediction in short-path networks, six real networks are embedded into
vector spaces and the Euclidean distances of node pairs are calculated. Figure 1 shows
the distance distributions of existent and nonexistent links in different networks, and
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Table 1. Comparison of the performance measured by AUC, results averaging over 10 systematic
experiments. 〈d〉 denotes the average shortest distance.

AUC Ht09 Email WC Power BP10 MN
CN 0.776 0.932 0.171 0.615 0.600 0.528
LP 0.757 0.920 0.953 0.689 0.695 0.553

CCN 0.760 0.910 0.912 0.872 0.915 0.736
Node2Vec 0.531 0.546 0.667 0.863 0.938 0.801
LargeVis 0.506 0.478 0.556 0.933 0.966 0.842

LINE 0.618 0.730 0.919 0.613 0.466 0.486
GraphWave 0.484 0.627 0.732 0.507 0.541 0.587
〈d〉 1.65 1.96 2.22 18.98 20.85 35.3

three short-path networks with lower average shortest distance and three long-path net-
works with larger average shortest distance are shown in Fig. 1(a)-(c) and Fig. 1(d)-
(f), respectively. It is found that in short-path networks, the distributions of existent
and nonexistent links overlap to a large extent, which can sharply reduce the algorith-
mic performance. Conversely, in long-path networks, the distances of existent links are
mainly between 2 and 6, while the distances of nonexistent links are mainly between 6
and 8. These two types of links are highly distinguishable, thus better predictive perfor-
mance can be obtained in these networks.
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Fig. 1. The Euclidean distance distributions of node pairs in the vector space after network em-
bedding. (a) Ht09, (b) Email, (c) WorldCites, (d) Power, (e) Bcspwr10 and (f) Minnesota.
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Based on the above facts, we propose a novel link prediction method to improve
the performance of network embedding algorithms, namely, Network Embedding Sup-
plement the information in the Network Domain (NESND), which supplements local
structure information with network embedding algorithm and is defined as

SNESND = SNE +λSND, (1)

where SNE denotes the network embedding information represented by the Euclidean
distance of node pairs, and SND denotes local structure information from network do-
main. SNESND denotes the combined information, and λ is a parameter that adjusts how
much local structure information is added.

When λ = 1, Table 2 list all the AUC values. In each column, the best results are
highlighted in bold. From the table, it can be seen that for short-path networks, the
performance improvements brought by the introduction of CN and LP are greater than
CCN index. This is because in short-path networks, compared with community struc-
ture information, the number of common neighbor and 3-order paths can more accu-
rately characterize node similarity. By contrast, for long-path networks, especially in
Power and MN networks, the enhanced performance brought by CCN index is more sig-
nificance than CN and LP, because it can predict links accurately in both short-path and
long-path networks. The proposed method has 0.2%∼8.3% improvement in long-path
networks, while 36.7%∼94.4% improvement can be obtained in short-path networks.

Table 2. Comparison of the performance qualified by the AUC results.

AUC Ht09 Email WC Power BP10 MN
Node2vec 0.531 0.546 0.667 0.842 0.934 0.801
LargeVis 0.506 0.478 0.556 0.933 0.966 0.842

Node2vec+CN 0.774 0.927 0.215 0.850 0.937 0.801
LargeVis+CN 0.767 0.926 0.177 0.935 0.970 0.845
Node2vec+LP 0.772 0.929 0.953 0.856 0.939 0.801
LargeVis+LP 0.772 0.929 0.953 0.939 0.972 0.848

Node2vec+CCN 0.772 0.920 0.912 0.912 0.958 0.834
LargeVis+CCN 0.772 0.920 0.912 0.942 0.968 0.859

〈d〉 1.65 1.96 2.22 18.98 20.85 35.3

References
1. Ren, Z.M., Zeng, A., Zhang, Y.C.: Structure-oriented prediction in complex networks. Phys.

Rep. 750 (2018) 1–51
2. Cai, H.Y., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: Prob-

lems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9) (2018) 1616–1637
3. Brochier, R., Guille, A., Velcin, J.: Link prediction with mutual attention for text-attributed

networks. In: Companion Proceedings of The 2019 World Wide Web Conference. WWW ’19,
New York, NY, ACM (2019) 283–284

4. Cui, P., Wang, X., Pei, J., Zhu, W.W.: A survey on network embedding. IEEE Trans. Knowl.
Data Eng. 31(5) (2018) 833–852

221

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Optimising the angular coordinates in the hyperbolic
embedding of complex networks

Bianka Kovács1 and Gergely Palla2

1 Dept. of Biological Physics, Eötvös University, Budapest, Hungary,
kovacsbianka@caesar.elte.hu

2 MTA-ELTE Statistical and Biological Physics Research Group,
Eötvös University, Budapest, Hungary, pallag@hal.elte.hu

1 Introduction

A remarkable network model offering a scale-free degree distribution, high clustering
and the small world property at the same time is given by the popularity-similarity-
optimization (PSO) model [1]. In this approach the nodes are placed one by one on
the Poincaré disk representation of the 2D hyperbolic plane with a logarithmically
increasing radial coordinate and a random angular coordinate, and links are introduced
with probabilities following the hyperbolic distance between the nodes. The success
of the PSO model provides a strong motivation for the development of hyperbolic
embedding algorithms, that tackle the inverse problem of finding the optimal hyperbolic
coordinates of the nodes based on the network structure. One of the very promising
approaches to hyperbolic embedding is given by the noncentered minimum curvilinear
embedding (ncMCE) method [2, 3], offering a high quality embedding at a low running
time. In the present work we propose a further optimisation of the angular coordinates in
the framework of the ncMCE approach that seems to reduce further the logarithmic loss
of the embedding compared to the original version, thereby adding an extra improvement
to the quality of the inferred hyperbolic coordinates.

2 Methods

In vague terms, the degree of nodes in the PSO model is determined by their radial
coordinate (lower distance from the origin corresponds to larger degree), and the angular
proximity of the nodes can be interpreted as a sort of similarity, wheremore similar nodes
have a higher probability to be connected. Therefore, in most embedding algorithms
the radial coordinates are determined based on the degree of the nodes, whereas the
angular coordinates are obtained from some optimisation. In the case of the ncMCE,
first a minimum curvilinear distance matrix is prepared, which is then subjected to
singular value decomposition, and the angular coordinates are obtained from the vectors
corresponding to the first two largest singular values [2, 3].

To measure the quality of the obtained coordinates we can use the logarithmic
loss, corresponding to the log-likelihood of the observed adjacency matrix A given the
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hyperbolic coordinates X , written as

LL(X) ≡ −lnL(A|X) = −
N−1∑
i=1

N∑
j=i+1

Ai j · ln(p(xi j))−
N−1∑
i=1

N∑
j=i+1
(1− Ai j) · ln(1− p(xi j)),

(1)
where N denotes the number of nodes and the linking probability p(xi j) depending on
the hyperbolic distance xi j between nodes i and j is specified by the PSO model as
p(x) ≈ (1+ e

ζ
2T (x−RN ))−1, where ζ and T are model parameters and RN is a system size

dependent radius.
Our suggestion for improving the angular coordinates obtained from the ncMCE is

a direct optimisation of the logarithmic loss, by iterating over the nodes, and in each
iteration optionally modifying the angular coordinate of the current node by calculating
the logarithmic loss for a couple of new angular positions. If a lower LL can be achieved
compared to the original one, the angular coordinate of the node is changed. Since the
original angular coordinates given by the ncMCE algorithm are already quite good, we
can restrict the search for new angular coordinates within the second angular neighbours
of the nodes. The advantage of this choice is that it also allows swaps in the angular
order. The number of tried new angular positions per node, q and the total number of
correction rounds, n are parameters of our method, which of course, should be kept as
low as possible for efficiency. Due to the additive form of (1), at fixed q and n, the time
complexity of our algorithm is proportional to N2.

3 Results

We tested the proposed angular optimisation on both synthetic networks generated with
the PSO model and real networks. According to our results, by working with q = 6 new
angular positions per node, LL(X) can be decreased roughly by 15-20% on average
during the first 5 to 10 rounds. In Fig. 1a we show the average of LL as a function of the
system size for synthetic networks, whereas in Fig. 1b we plot the relative improvement
in LL as a function of the number of correction rounds n under the same settings. The
curves show that the angular optimisation can provide a significant decrease in LL for
both small and larger networks, and the relative improvement seems to converge to a
steady value already at n = 6−8 rounds.

In Fig. 2 we show the results for a food web among N = 142 Cambrian species
in the Burgess Shale [4]. The relative improvement in the logarithmic loss (displayed
in Fig. 2a) seems to converge again only under 10 rounds to a value close to 15%. In
Fig. 2b we show the layout of the network on the Poincaré disk. According to the figure,
the originally homogeneous angular arrangement provided by the ncMCE algorithm
has become inhomogeneous, allowing a more clear separation between groups of nodes
which roughly match the trophic roles of the species.

In conclusion, the proposed optimisation of the angular coordinates seems to provide
a substantial reduction in the logarithmic loss of the embedding, at the cost of a relatively
low number of extra rounds of iterations over the nodes. In addition, the modification of
the coordinates for the studied real network seemed to be quite useful. Based on these,
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our extension to the ncMCE can be beneficial in further practical applications where
high quality hyperbolic embedding of networks is important.
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Fig. 1. Logarithmic loss for synthetic networks. a) The average of LL(X) for the original ncMCE
algorithm (blue) and the ncMCE with angular optimisation (purple) as a function of the number
of nodes N , for 100 networks generated by the PSO model with input parameters ζ2 = 1, m = 2,
β = 2/3 and T = 0.3. b) The relative improvement in LL as a function of n.
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Fig. 2. Results for the food web among Cambrian species in the Burgess Shale. a) The relative
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Designing plausible network models typically requires scholars to form a priori
intuitions on the key drivers of network formation. Oftentimes, these intuitions are
supported by the statistical estimation of a selection of network evolution processes
which will form the mathematical basis for the development of a stylized model. Ma-
chine learning techniques based on evolutionary computation have lately been intro-
duced to assist the automatic discovery of generative models [1,2,3]. Some of these
approaches [3] may more broadly be described as “symbolic regression”, where fun-
damental network dynamic functions, rather than just parameters, are evolved through
genetic programming. In other words, they aim at automatically discovering plausible
network generation laws from a given empirical network — i.e. extracting a generative
genotype based on a static phenotype.

The core of the present contribution consists in applying symbolic regression to
a collection of social networks of the same nature in order to explore the existence of
families of regular generative principles for networks of the same realm. In other words,
instead of looking for classes of network phenotypes, as is classical in the literature [4],
we use symbolic regression to find families of network genotypes, construed as net-
work generators. Our empirical case is based on an original data set of 238 anonymized
ego-centered networks of Facebook friends which were randomly sampled from about
10,000 such networks collected in a large-scale online survey.

Figure 1 shows an overview of the generator search process that we employed.
Generators are represented as tree-based computer programs, which are equivalent to
mathematical expressions. Tree leaves are variables and constants, and its other nodes
are operators. For a given candidate pair of nodes, a generator can compute a value
that maps to the probability of an arc/edge being created between the nodes. Generators
define decentralized growth processes and rely exclusively on local variables expressing
topological features of the nodes, such as their current degrees and network distances,
as well as unique identifiers. The quality of a generator is evaluated by comparing a
synthetic network generated by it with the target network. To measure the similarity
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(a) (b)

Figure 1: (a): Evolutionary loop including the synthetic network generation process. The outer
part of this figure describes evolution at the generator population level, while the framed part on
the right describes the evolution of a network for a given generator. (b): Visual representation of
ego-networks (real) with their reconstruction (left), for a selection of automatically discovered
generative families: ER (Erdos-Renyi), PA (preferential attachment), ID-based attachment, and
SC (featuring the endogeneous emergence of functions providing for Social Circles)

between the generated (evolved) network and the empirical (target) one, we combine
distributions that describe simple aspects of the network, such as in- and out- degree and
measures of centrality, with distributions describing finer and more meso-level aspects
of the structure, such as distances and triadic profiles. A bias favoring shorter generators
is used to avoid overfitting, and to encourage simpler, understandable expressions.

Applying an evolutionary search on each of the above-mentioned Facebook ego-
centered networks, we obtain one most plausible per network, thus 238 in total. Com-
paring generators as mathematical formulas is not a trivial task, but we define an addi-
tional measure of similarity, this time between the generator behaviors, in terms of the
similarity of the networks that they produce. We then used this measure to produce a
two-dimensional embedding of all 238 generators, as shown in figure 2. With the help
of this embedding we made easier the task of manual analyzing generators. In particu-
lar, we look for patterns of similar generators in mathematical terms, i.e. at the level of
the explicit formula.

226

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Figure 2: Network generators mapped into a two-dimensional layout according to their pairwise
distances. Different colors and shapes indicate families of generators that were manually identi-
fied as semantically similar. The legend shows the pattern that identifies each family.

We identified 11 such strong patterns, that we refer to as “families of generators”.
Five of these families are very simple, some matching well-known models such as pref-
erential attachment and Erdős-Rényi, especially for smaller networks (which may con-
tain less information or be more basic). The other eight have a very strong resemblance
with one another: their link dynamics is strongly influenced by the existence of a certain
number of classes of nodes which likely matches underlying social circles, i.e. cohe-
sive clusters of nodes. This further yields insights on ego-centered sociability networks,
especially with respect to the existence and contribution of social circles in their for-
mation. A simple interpretation for this is indeed that ego networks are a sample of
social groups that ego belongs to. For example: school friends, family, work colleagues
and so on. It makes sense that these groups are much more densely connected within
themselves than between them, as they correspond to separate social spheres.

More broadly, this approach substantiates the existence of a small class of generative
behaviors which are widespread among ego-centered networks. It also opens up to the
possibility of applying this approach to non-social networks as well.
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1 Introduction

Human behaviours often have associated mobility patterns which can be ubiquitously
observed. An in-depth understanding of the laws of human movement would be of great
significance in the fields of public health, urban planning and economic forecasting [1–
3]. Over the past few years, the availability of data sets, such as dollar-bill tracking
and traces of mobile phones, have offered deeper insights for the understanding of hu-
man mobility. However, mobility patterns can be distinct for distinct types of human
activities. In this work, we collect GPS data for an online-shopping app that has more
than 320 million active users. The location data is collected with the users’ permission
and is only recorded when users are active on the app browsing information on goods,
launching an online shopping cart and placing shopping orders. The data set consists of
the locations with longitude and latitude and their time of occurrence for the whole year
(2018). We analyse the mobility patterns of verified users and find scaling behaviour for
the radius of gyration that is different from any previous work [1–3]. A major distinc-
tion is that there are two distinct regimes of users, each one obeying a distinct scaling
relation. This suggests that understanding of the underlying mechanism that correlates
mobility and shopping behaviour is needed. Furthermore, a striking difference also ap-
pears in the scaling laws between verified users and those identified as fraud users which
enables us to develop a classification algorithm based on XGBOOST to identify fraud
users with a high accuracy. Typical fraud behaviours include promo abuse, user abuse
or user takeover on the e-commerce platform.

2 Results

We collect location data from a widely-used online-shopping app with the users’ per-
mission, recording the users’ longitude and latitude, and timestamps, for the whole
year (2018). The data set is distinguished from other existing ones for its huge amount
of samples and broad coverage of time span and locations, which will reveal rich details
in the scaling behaviours.

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



(a) Distribution of waiting time. (b) Distribution of the gyration radii.

(c) Radius of gyration rg(t) versus
time for different rg groups.

(d) The number of visited distinct loca-
tions S(t) versus time in a log-log plot.

Fig. 1. Mobility results for normal e-commerce users.

We collect the data of 337,890 users in 2018 who are identified to have used the e-
commerce platform in a normal and non-abusing way. We measure the most important
metrics that are commonly used to characterize large-scale human mobility patterns.
As shown in Fig. 1a, the waiting time distribution P(T ) ∝ T−1 is consistent with the
queuing model prediction [1, 4]. However, as shown in Fig. 1b, we find that the scaling
exponent for the distribution of radii of gyration P(rg) ∝ rg−α is distinct from all pre-
vious results. We find that there are two-piecewise scaling modes for population groups
with different radii of gyration rg (the population can be divided into two groups, corre-
sponding to rg < rgc and rg > rgc). The scaling modes are separated by a turning point
rgc, which shows that the behaviour of the population with rg < rgc is dramatically
different from that of the population with rg ≥ rgc. Even the scaling before the turn-
ing point exhibits a scaling exponent of α = 0.8, which is distinct from the previously
observed (for example, compared with α = 1.65 in Gonzalez, et al [3]).

Moreover, two other scaling behaviours also exhibit peculiarities as shown in Fig. 1c
and Fig. 1d. Both the change of users’ radii of gyration over time rg(t) and the number
of visited locations versus time S(t) are found to be dependent on rg. Such dependence
has not been identified in previous work. Two examples of location trajectories are dis-
played for users with two typical rg values in Fig. 2. The piecewise scaling behavior
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(a) rg=78. (b) rg=602.

Fig. 2. Examples of location trajectories for two normal e-commerce users. Here the x-axis is for
longitude, the y-axis is for latitude and the third axis is for the corresponding timestamps.

observed for rg is shown in Fig. 1b and the rg-dependent behaviour suggest a differ-
ent mechanism underlying mobility patterns that is associated with the online shopping
behaviour, when compared to the pure human movement patterns studied previously. It
suggests that the mechanism here is not only affected by the generic mechanisms, ex-
ploration and preferential return [1], but also correlated with users’ shopping behaviour.

Fig. 3. Distribution of the number of days for which locations are reported for fraud and normal
users.

The necessity of examining the system by grouping together similar rg users is fur-
ther demonstrated in our study by classifying the normal and fraud accounts. Fraud
users are typically involved in promo abuse, user abuse or user takeover on the e-
commerce platform. Astonishingly, we found that adapting to the abnormal shopping
behaviours, the mobility patterns of malicious users are clearly distinguishable from
those of the normal users (Fig. 3). In particular, the distribution of the number of days
for which locations are reported (if a user reports locations everyday in 2018, its number
of days is 365) follows completely different scaling rules between the normal and fraud
users. Here we have used the Extreme Gradient Boosting algorithm (XGBOOST) for
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the classification task [5]. XGBOOST provides parallelization and high predictive accu-
racy [7, 8]. After removing redundancy and irrelevant information, 24 features including
number of active days (Fig. 3) and radii of gyration are found to be more effective in
discriminating the two user types with high accuracy (96.78%).

In summary, we have found that the human mobility patterns associated with online-
shopping behaviours are different from those shown in pure movements. In particular,
the scalings are highly dependent on different classes of users characterized by their
radii of gyration: although most metrics still follow power laws, they are separable in
terms of the gyration radii. An underlying mechanism taking into account the shopping
behaviours is needed to explain the emergence of this new universality class. Moreover,
we have shown that the investigation into detailed population structure, with the aid of
efficient classification algorithms, may also help to control risks related to underground
industries.
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1 Introduction

The classic Voter Model (VM) is an extremely idealized description for the evolution
of opinions in a population. It has played a central role in probability theory and in
statistical physics because it is one of the few exactly solvable many-body interaction
systems [1]. Furthermore, many phenomenology rich reality inspired generalizations
of the VM have been developed [2]. However, their lack of calibration of the model
parameters to real social data make them unfit to quantify observations or make pre-
dictions.A few steps have been made to overcome this issue [3, 4]. In [3], the Social
Influence with Recurrent Mobility (SIRM) has been developed for two-party systems.
This generalization of the VM works well for the case when the support of the two par-
ties are well balanced. The key idea of the SIRM model is that the commuting pattern
of individuals is a good proxy for the topology of interactions, since people can interact
both in the regions where they live and where they work.

While the SIRM model has been shown to successfully recover spatial correlations
in U.S. presidential elections [3], it suffers from some mathematical issues in the han-
dling of the stochasticity of the interactions. In this paper, we present a generalized
version of the SIRM model that fixes the mathematical issues of the original formu-
lation and that is applicable to multi-party systems [4], as well as a novel calibration
procedure for the model parameters and apply it to Swedish data. In addition, we inves-
tigate Sweden electoral geography based on Network Science [5] with an analysis that
provides a partition of administrative units into electoral clusters based on the similar-
ity in their inhabitants’ electoral behavior. We present a functional network analysis to
uncover stable electoral clusters over time.

2 Method

We now shortly present the SIRM model. Let us denote the fraction of the total pop-
ulation living in region i and working in region j, defining a commuting cell i j, by ni j
and the vote-share for opinion k in a commuting cell i j by vk

i j. The dynamics of the
system is controlled by the transition operator Rkk′

i j = ni jvk
i j p

k→k′
i j . The first factor of the

RHS is the probability to choose the communting cell i j, the second factor is the local
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vote-share for opinion k and pk→k′
i j stands for the probability to change from opinion k

to k′ and is given [4] by

pk→k′
i j = λ

(
αvk′

i +(1−α)v′k
′

j

)
+β ṽk′

i j,D + γ/K , (1)

where vk′
i and v′k

′
j are the vote shares of opinion k′ for the population living in region i

and for the population working in region j, respectively. The first term encodes recurrent
mobility and the parameter α controls the relative importance of interactions at home
and at work. The second term controls the noise in the interaction as defined in [4],
ṽi j,D = D ir(vi j/D) is a Dirichlet sample of parameter vi j/D and D controls the ampli-
tude of the noise. The third term, called the free will term, encodes unilateral change
of opinion between the K possible opinions. Finally, parameters λ , β and γ control the
relative importance of these three terms. Model parameters D and γ are then calibrated
to data according to the procedure developed in [4].

3 Results

Fig. 1. Electoral clusters in Sweden in 1985 and 2018. The colors are arbitrary and used to visu-
alize clusters identified as the same cluster over time. Municipalities displayed in grey belong to
smaller clusters. In the 2018 map, the brown electoral cluster is characterized by a strong vote
share for Sweden Democrats.

We start with the results of the functional network analysis [5] applied to the ten
parliamentary elections held in Sweden between 1985 and 2018. For each elections,
Sweden was partitioned into electoral clusters and these clusters have been shown to
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be stable over time. Figure 1 displays the first and last partitions. Three main clusters
are present in all election and a fourth emerges and propagates form 2002 (colored in
brown in the figure) that is characterize with a stronger than average vote-share for
Sweden Democrats (a ring-wing populist party).

The generalized formulation of the SIRM [4] outlined above has been shown to
recover the original formulation of the SIRM model [3] in some limit allowing the two
formulations to be compared. In the model, we have two different types of noise. The
first one models local variations and fluctuations of the probability to change opinion.
Here, the challenge was to calibrate of the magnitude of the diffusion constant (D). The
other noise, the “free will term” (third term in (1)) allows spontaneous opinion changes
which leads to the emergence of new parties in the model.

The calibration procedure developed in [4] has been shown to be robust against
coalition, i.e., one can group parties together without changing the calibrated D. This
procedure has been applied to a synthetic network and to the commuting network of the
Stockholm county. We have discovered that the diffusion constant calculated in the lack
of the free will noise term (third term in (1)) for the synthetic case is about 18 times
larger than the calibrated value for the U.S. presidential election case calculated in [3],
whereas the corresponding value for the Stockholm case is about six times larger. This
indicates that a calibration procedure based on stationarity of given statistical properties
requires more noise when initial conditions are random than for real initial conditions
and that the Stockholm case is more noisy than the U.S. case.

The paper hints to many other possible developments of this work, since the rates
can be modified in many ways. One could, for example, use the Dirichlet distribution
to add noise on other components of the rate and include time dependent or spatially
dependent rates to account for varying and heterogeneous socioeconomic factors that
might have an influence on the dynamics of the system. Furthermore, the influence of
the commuting network can be studied through numerical experiments.

Summary: In this paper, we discuss the possible generalizations of the Social Influence
with Recurrent Mobility (SIRM) model [4]. As a result of the extension, we show that
our model works well for multiparty systems and is mathematically well-posed even in
the case of extreme vote shares by handling the noise term in a novel way. In addition,
we summarize preliminary results of a functional network analysis [5] to the last ten
parliamentary elections held in Sweden.
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1 Introduction

Migration has become an all-important topic in today’s political and public discourse.
Perhaps in line with that public interest, we have recently observed a surge of publica-
tions in which network analysis was applied to the phenomenon of human migration.
In the last couple of years alone, more than a dozen of migration-as-network analyses
have emerged ([1], [2], to just name a few). Very few network analyses, however, were
applied to migration at the level of settlements (cities, towns, and villages). Yet, as the
UN forecasts, the rise in urban population will reach about 70% of the total in just a
couple of decades. Therefore, we are likely to start discussing the migration at the city
level more often than at the country level. Besides that, the data on international (inter-
country) migrations are not exact, but only estimated, and, as such, are not useful for the
more focused, onspot policy decision making. It is, therefore, imperative to refine the
most functional (network) analysis tools for explaining migration within and between
cities, or, to be more precise, within and between settlements.

In this vein, due to the lack of such attempts in the past, we have run a network
analysis on migration at the settlement level, in the case of Austria. Here we present an
excerpt from the network analysis of internal migration in Austria in 2018, with some
of the basic network indicators and their comparisons, and an estimation of a gravity
model.

2 Network data and definition

Statistics Office Austria defines internal migration in any given year as individuals’
changes of address in that same year, recorded at the level of municipalities ([4]). Ad-
dress changes, independent of the length of stay at any given address, count as migration
as long as there is a minimum stay of 90 days in the country as a whole.

Formally, we define the network of Austrian internal migration at any particular
year as a weighted directed graph G = (N ,L ,W ), whose:

- nodes N = {n1,n2, ...,nN} represent all Austrian municipalities (N = 2096),
- link weights W =

{
wi j
}

N×N , are the total counts of recorded residence address
changes between or within municipalities occurring within the particular year,

- links L =
{

li j
}

N×N , is a binary projection of W , such that li j = 1 if wi j > 0 and
li j = 0 if wi j = 0.

In this general formulation, we take into account loops (wii ≥ 0). From G we further
identify a (spanning) subgraph G ′ = (N ,L ′,W ′), where W ′ = W \ {wii} and L ′ is
the according binary projection of W ′.
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3 Results

We observe that the network of Austria-internal migration in 2018 (Figure 1) is domi-
nated by loops.

Fig. 1. Austria-internal migration network 2018. Labels indicate the most central nodes in G
in terms of their total node strength (si). With little variation in ranking, the same nodes appear
as highest-strength nodes in G ′. Edges of wi j,wii≤ 10 have been omitted from visualization.

We find very high correlation between direction-respective node strength values
([5]) for G vs. for G ′; ρ(sin

i ,s
in
i
′
)≈ 0.96, ρ(sout

i ,sout
i
′)≈ 0.97. We also find nearly perfect

correlation (ρ > 0.98) between in- and out- degrees of nodes within both G and in
G ′and both in weighted and projected binary view. In that regard, in G ′, we search

for and find, expectedly, very high weighted reciprocity ([6]), r′ =
∑i ∑ j 6=i w↔i j

′

∑i ∑ j 6=i wi j ′
≈ 0.81

(≈ 0.47 in binary network), while the average value of the non-reciprocated weights
(ibid.) is ¯w↔i j

′ ≈ 4 (maxw↔i j
′ = 497).

We further test the hold of the gravity law ([7]) on G ′. We produce estimated weights
as ŵi j

′ = PiPjdi j
−1, where Pi and Pj are populations of origin and destination in 2018,

respectively (data obtained from Statistics Office Austria), and di j are the, currently,
shortest driving distances between them (data obtained using Google’s Distance Matrix
service). A simple regression shows very close fit between real and estimated weights,
and most of the migrations occurring among places separated by shorter (< 100 km)
driving distances (Figure 2).

Summary. We provide a rough sketch of the nature of migration occurring within Aus-
tria by using network indicators of centrality, reciprocity and through the gravity model.
Our results suggest Austria-internal migration takes place mostly within the boundaries
of large cities (or periphery-city), else mostly between larger cities, and that these larger
cities tend to send/receive migrants to/from many diverse locations. We find high reci-
procity and symmetry of migration flows; for each specific migration link A to B, there
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Fig. 2. Gravity law in Austria-internal migration 2018. Linear regression on real vs. gravity
law-estimated values, standardized as w′i j/maxw′i j, ŵi j

′/max ŵi j
′ . The model is reduced to the

1300 links of highest weights in G ′.

are roughly same-sized countermigrations B to A. The results also show that the base
gravity law variables, of settlement populations sizes and driving distances between
settlements serve as very good predictors of internal migration in Austria. Our ongoing
research is invested into testing the greater variety of network indicators, both those ex-
isting, as well as customized for the specific case, and developmental models, especially
the updates and modifications to the gravity law model.
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5. Barrat, A. and Barthélemy, M. and Pastor-Satorras, R. and Vespignani, A.: The architecture
of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11),
37473752. (2004)

6. Squartini, T., Picciolo, F., Ruzzenenti, F., Garlaschelli, D.: Reciprocity of weighted networks.
Scientific Reports, 3(1). (2013)

7. Zipf, G. K.: The P 1 P 2 D Hypothesis: On the Intercity Movement of Persons. American
Sociological Review, 11(6), 677. (1946)

238

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Analyzing patterns of mobility and internal migration
among researchers in Mexico using longitudinal

bibliometric data

Andrea Miranda González1,2, Samin Aref2,
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1 Introduction

The academic exchange of ideas can go beyond physical borders. As such many scho-
lars are highly mobile and their work contributes to their host, rather than their origin
countries, through technological and economic advances. A growing body of literature
focuses on the mobility of scientists and its impact at the international level. From the
public policy perspective, it is in the interest of countries to maintain a strong base of
highly qualified scholars who can provide innovative and scientific solutions to pub-
lic issues. In doing so, governments look for the underlying reasons for researchers’
movements and sources of attraction at national and global level.

Nevertheless, little is known about the drivers of internal migration of researchers.
Understanding these patterns can shed light on important regional deficits that are the
source and outcome of disparities and inequality of opportunities for future generations.
We propose an approach to study internal migration of scholars using Scopus bibliomet-
ric data. We present our methods to measure mobility within Mexico as well as interpret
it from a network perspective. Mexico is a particularly important case for exploratory
analysis because a larger share of its mobile population moves internally rather than
internationally. Between 2005 and 2010, interstate and intrastate mobility represented
3.5% and 3.1% relative to 1.1% of the population moving abroad [11]. Moreover by
focusing on Mexico, we study an emerging system of science which has several leading
universities of Latin America. In addition, Mexico is an under-studied case in scien-
tometrics literature and it remains unclear whether mobility in Mexico has increased
or slowed down as a result of special socioeconomic conditions, such as government
spending on public institutions, social inequality, and alternative jobs in the private sec-
tor. This analysis intends to contribute twofold to the literature: first, by re-purposing
bibliometric data to analyze internal rather than international migration, secondly by
exploring mobility patterns of scholars in Mexico. Although our substantive focus is on
Mexico, the proposed methodological framework of re-purposing bibliometric data for
internal migration is applicable to other countries.
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2 Data and Methodology
For analyzing mobility of researchers, many studies have relied on bibliometric databases
such as Scopus [9,8]. Compared to other bibliometric databases, Scopus provides a
wider breadth of records in varied disciplines [6] and offers a more reliable author ID
[7] which is suitable for tracking mobility of individual researchers [1]. Other recent
studies offer proxies for place of residence [4], provide bilateral international migration
flows [5], offer a methodological framework for dealing with multiple affiliations [10],
and analyze mobility of highly mobile researchers and return migration [2].

Large-scale bibliometric data allow us to identify movements of researchers in a
way which has not been possible with traditional sources of migration data like cen-
suses and surveys. The unit of the data is authorship record which is the linkage be-
tween an author and a publication. Our data involve 1.1 million authorship records of
scholars who have published with Mexican affiliation addresses in sources covered by
Scopus. Using the data, we analyze mobility patterns of over 200,000 researchers be-
tween 32 states of Mexico through the changes in their affiliation addresses over the
1996-2016 period. Prior to the analysis, the data were pre-processed in order to extract
the state of the institution of affiliation for each scholar in a given year. First, a state-
detection algorithm is used to identify the most likely state from different parts of a
given authorship record. Then the results, combined with manually extracted states for
2200 records, were used as training data for developing a neural network using Keras
[3] which identifies the state for a given authorship record with an accuracy of 98.9%.

3 Results and Discussion
During the period 1996-2016, the majority of scholars have remained in one state and
only 7.8% have moved between states. The data show that the median mobile scholar
has actively published for 9 years while its non-mobile counterpart only for 5 years.

Although Mexico City appears to attract many scholars, the consistent and negative
net migration rate in Figure 1 suggests that more scholars have exited than entered.
However Jalisco, an important economic actor of the Pacific coast region, is an example
of a common trend in other states where migration rates vary greatly.
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Fig. 1. Net migration rates for scholars in selected states

Figure 2 shows the direction and magnitude of movements of scholars in Mexico
between 1996 and 2016. The states that receive and emit the most scholars include the
capital city and its surrounding states (State of Mexico, Puebla, and Morelos), as well
as states that contribute the most to national GDP such as Nuevo Leon, Guanajuato,
Jalisco and Michoacan. Overall, Mexico City appears to be the main destination and
origin of mobile scholars, which may be due to its political and economic importance
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as well as housing several large national universities. Subpanels (c-f) of Figure 2 high-
light the period movements of scholars between states. Overall, the mobility network
of researchers has not only become more dense but also more diverse over the past two
decades. For instance, in more recent years, states along the Pacific coast (red) show a
greater exchange (purple edges) with states along the Gulf of Mexico and the Yucatan
Peninsula (blue).

By studying the changes in the migration flows and rates of scholars between the 32
Mexican states, we offer a general perspective of where scholars are attracted to move
to. We also analyze general traits of scholars such as their number of years of active
publication and the main states of origin and destination. Our results suggest that there
is heterogeneity in the direction and magnitude of scholarly movements while Mexico
City and its surrounding states appear frequently on the paths of mobile researchers
based on betweenness centrality measure. Finally, our work highlights that longitudinal
bibliometric data offer valuable insight into internal migration patterns of scholars when
coupled with an algorithmic method for sub-national level of aggregation.
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1 Introduction

Even though it is a known fact that many of the great advances of science appear by
deepening into topics that are at the frontier of two or more scientific fields, the study of
language from the perspective of the theory and tools of complex networks has a certain
tradition [7, 11–14, 18]. Analyzing a particular system, discovering a complex network
related to it and studying the properties of that network in order to draw conclusions
about the system analyzed is a methodology that has produced a large number of re-
sults of great interest in many applications [1, 2, 16]. The research on the system under
study must necessarily encompass a diversity of views including different complemen-
tary aspects of the network structure. Throughout this study, a corpus is a collection of
authentic texts collected electronically according to a set of specific criteria used as a
representative sample of a language or subset of that language [4]. In our case, we are
interested in the study of the mathematical language produced by the scientific com-
munity about complex networks. The complex network arisen from this study roots on
a linguistic corpus composed by 89 papers and extended abstracts (all of them based
on the theory and applications of complex networks) and a total of 147,637 words and
25,210 sentences. This complex network will be used to design a help tool for special-
ized translations of this scientific area.

A central assumption of modern linguistics is that language is a system [7]. More-
over, it can be said that language is not only a network, but a complex network, which
with appropriate research can and should be fully exploited as an efficient and effective
approach to linguistic study [7]. Thus, the analysis of linguistic theories based on the
study of its corpus and the vision provided by complex networks can reflect stylistic
and typological characteristics of languages, contributing significantly to the search for
and establishment of the underlying laws and properties of the human being.

As manifested in [7], there is a wide range of quantitative measures [1, 2, 16] avail-
able for the characterization of the topological properties of a linguistic network. For
our analysis we are interested in considering a bi-layer network [3, 10] and the con-
cept of line graph [8, 9] which is very useful to highlight he importance that edges have
sometimes over nodes in the context of some networks and graphs. In fact, the main
motivation behind our study is the new vision that provides the concept of line graph
to characterize the structure of a language, allowing the realization of a comparative
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analysis between different grammars, and the clarity and new approach that offers the
use of a multilayer model for the analysis of the corresponding network.

At this point it is important to highlight that there are several approaches when
analyzing a language from the perspective of complex networks [5–7, 11–15, 17] but
all of them are different from the one we are proposing here. In our model we consider
a directed network built from the corpus under study: network nodes are the words
that appear in any of the texts that make up the corpus, establishing a (directed) link
connecting two words if they appear consecutively (co-occurrence directed) somewhere
in a text. In addition, we place the nodes in two different layers. One layer, the layer N1,
is formed by the “empty words” (v.g,: the, of, and, a, in, to, for, ...) and the other layer,
the layer N2 is formed by substantives and specific terms of the specialized language
under study (v.g.: network, nodes, systems, model, matrix,...). So, we have a directed
network G = (N,E) with two layers, in which N is the set of different words of the text
(N =V1∪V2) and E is the set of directed edges (intra and interlayer).

Fig. 1. Network built with the words surrounding the word network in 6 randomly chosen texts

2 Results

All natural languages have syntax, which encodes the relationships between concepts
(semantic structures) and underlies the linear sequencing of words [7, 13, 14]. The model
we present allows the analysis of the interaction between specific terms of the text
through the usual parameters of network theory (degree, average length of paths, ...)
in the field of multi-layer networks, being of capital importance the properties of the
line graph of (N1,E1) (for example, the length of the paths of this layer) that allow to
compare texts and to classify them according to the Common European Framework of
Reference for Languages (A1,A2,B1,B2,C1,C2). A random text generator based on a
random walker on this model is presented. An additional layer with terms equivalent to
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those appearing in the corpus will allow to increase the linguistic complexity level of
the text. Finally, the model constitutes a very useful tool for translators working with
specialized texts in the area of knowledge corresponding to the corpus studied, since a
quality translation has to maintain the main linguistic characteristics used in the source
text, a especially difficult task if the translator is not mastered in this field. An extension
of this line of research will make it possible to compare corpus of different languages
according to the topological properties of the corresponding networks.
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17. Solé, R.: Syntax for free?, Nature 434: 289 (2005).
18. Zipf, G.L.: Human Behavior and the Principle of Least Effort: Hafner (1965).

246

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Analysis of Temporal Change of Japanese Interfirm
Transaction Relations as a Multilayer Network

Hitomi Sato1, Haruka Kato1, Yuichi Kichikawa2, Hiroshi Iyetomi2,5,
Ryohei Hisano3,5, and Tsutomu Watanabe4,5

1 Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan,
2 Faculty of Science, Niigata University, Niigata 950-2181, Japan

3 Graduate School of Information Science and Technology, The University of Tokyo,
Tokyo 113-8656, Japan

4 Graduate School of Economics, The University of Tokyo, Tokyo 113-0033, Japan
5 The Canon Institute for Global Studies, Tokyo 100-6511, Japan

1 Introduction

One can describe time evolution of complex systems in biology, computer science, eco-
nomics, and sociology as multilayer networks [1]. A network representing interactions
(links) between basic entities (nodes) is constructed at every time step and the snap-
shot layers are combined to form a multilayer network by connecting common nodes
appearing in the adjacent layers. Here we report an empirical study on temporal change
of Japanese interfirm transaction relations taking such a promising approach with an
emphasis on their community structure.

2 Construction of a multilayer network

We use annual data on transaction relations between firms in Japan compiled by Teikoku
Databank, Ltd. to construct a network for this study. The dataset covers the period of
2003 through 2012, including the Lehman crisis in 2008 and the Great East Japan Earth-
quake in 2011. The numbers of firms (nodes) and transaction relations (links directed
from suppliers to buyers with the same weight) are approximately 125,000 and 730,000,
respectively, with variations of less than 10% during the decade; see Refs. [2, 3] for de-
tails of the dataset. Here we stress that the network is so dynamic that about 60% of the
links which exist in 2003 are replaced by new ones in 2012.

Since we focus on evolution of the community structure due to changes in trans-
action relations between firms, we first build a link network [4] in each year which is
complementary to the original node network; links in the original network correspond
to nodes in the link network. The following corresponding relations are established be-
tween a node network and its companion:

– The WCC (weakly connected component) of the link network is the WCC of the
original node network and the opposite is not always true.

– The SCC (strongly connected component) of the link network is the SCC of the
original node network and the opposite is also true.

– The bow-tie structure of the link network is equivalent to the bow-tie structure of
the original node network.
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Fig. 1. Evolution of the Japanese interfirm transaction relations visualized as a multilayer net-
work in three dimensional space. Individual layers (x− y planes with different z values) of the
multilayer network are snapshots of the network taken at every year. The points highlighted with
purple color are nodes belonging to the fifth largest community detected by the map equation
algorithm for the multilayer network as shown in Fig. 3.

!!!!

!!!!

ξ

Fig. 2. The number of commu-
nities detected by the map equa-
tion algorithm for the multi-
layer network as a function of
the interlayer coupling parame-
ter ξ . Note that the y axis is in
logarithmic scale.

In this study, we analyze the giant SCC of the link
network, which encompasses about 80% of the whole
system. We then construct a multilayer network by re-
garding the link networks as layers. To connect com-
mon nodes in adjacent layers in both directions, we as-
sume that the relative weight values for interlayer and
intralayer links are given by ξ (0 6 ξ 6 1) and 1− ξ ,
respectively.

Figure 1 visualizes the multilayer network thus con-
structed in three-dimensional space with ξ = 0.5. The
nodes are arranged in the x-y plane using a spring-
electric model in which linked nodes are attracted by
spring force and all nodes are repelled each other by
Coulomb force. The z axis represents the time direction.
The x-y planes with z =−4 and z = 5 are layers in 2003
and 2012, respectively. This visualization allows us to
see the parts where the original links are dense.

3 Community Detection

To elucidate temporal change of the Japanese interfirm transaction relations, we illu-
minate how evolve major communities in the multilayer network by adopting the map
equation algorithm [5], a flow-based community detection method. Figure 2 shows the
number of communities as a function of the interlayer coupling parameter ξ . When
ξ = 0, communities in the multilayer network are identical to those in the layers of
individual years. Increment of ξ from ξ = 0 connects the communities so separated in
time direction. When ξ = 1, on the other hand, identical nodes (links in the original net-
work) sequentially connected in time direction form communities; the maximum size
of those communities is hence 10. Decrement of ξ from ξ = 1 joins the communities
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within the layers. Therefore, there should be an optimum value of ξ at which the num-
ber of communities is the smallest. In fact, the community structure is optimized around
ξ = 0.6. We note that the community size obeys a power-law distribution.

Fig. 3. Evolution diagram of the 10
largest communities in the Japanese in-
terfirm network, where the vertical axis
shows the cumulative relative size of
the communities.

Figure 3 is an evolutionary diagram for the
communities of the multilayer network obtained
at ξ = 0.6, where only the 10 largest ones are
shown. The communities distinguished by differ-
ent colors are piled up vertically so that larger
communities are placed at lower positions. The
communities show various types of evolutionary
patterns. Some exist steadily over the 10 years,
some gradually fade out, some gradually emerge,
some appear in the middle of the period. Specifi-
cally, the fifth community colored purple is very
stable over the 10 years. The dots of the same
color in Fig. 1 demonstrates how stable is the
community.

Summary. We are thus successful in elucidating
how the interfirm transaction network in Japan
develop gradually with a special emphasis on its community structure. More detailed
analyses on the evolution of the community structure are in progress. This work was
partially supported by JSPS KAKENHI Grant Numbers 17KT0034, 18K03451.
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1. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer
networks, Journal of Complex Networks, 2(3), 203–271 (2014)

2. Mizuno, T., Souma, W., Watanabe, T.: Buyer-supplier networks and aggregate volatility. In
The Economics of Interfirm Networks, Springer, pp. 15–37 (2015)

3. Hisano, R., Watanabe, T., Mizuno, T., Ohnishi, T., Sornette, D.: The gradual evolution of
buyer-seller networks and their role in aggregate fluctuations. Applied Network Science,
2(1), 9 (2017)

4. Luo, J., Magee, C.L.: Detecting evolving patterns of selforganizing networks by flow hierar-
chy measurement, Complexity 16(6), 53–61 (2011)

5. Bohlin, L., Edler, D., Lancichinetti, A., Rosvall, M.: Community detection and visualization
of networks with the map equation framework. In Measuring Scholarly Impact, Springer, pp.
3–34 (2014)

249

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Parametric control of PageRank centrality by using
personalization vectors: Classic and Biplex models

Miguel Romance1,2,3, Regino Criado1,2,3 Julio Flores1,2, Esther Garcı́a1, and
Francisco Pedroche4
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1 Introduction

Roughly speaking Science tries to explain and understand any phenomenon that occurs
in real life. In order to reach this goal, the scientific activity can be classified into three
categories: observation, prediction and control. In this presentation we are focusing on
the control of the centrality of a complex networks in terms of some parameters of
the functions considered. There are many different centrality measures in Networks
Science, including local parameter (such as the in-degree), metric parameters (such as
the betweenness centrality) and spectral centralities (such as the eigenvector centrality),
but the PageRank centrality plays a relevant role, since it has many relevant applications
[6]. This measure is the basic ingredient of the (probably) most famous web searcher
(Google), but it also has many applications to different real-life problems, ranging from
biological systems to cibersecurity (hacking detection).

Given a complex network G = (X ,E) of n nodes, a stochastic vector (so called
personalization vector) v ∈ Rn and α ∈ (0,1) (so called dumping factor), the (classic)
PageRank of the network is defined as the steady state of the Markov chain whose
transition matrix is given by

G = αP+(1−α)evT ,

where e = (1,1 · · · ,1)T ∈ Rn and P is the row-stochastic matrix associated to the adja-
cency matrix A = (ai j) of the graph, i.e. if P = (pi j), then

pi j =
ai j

kout(i)
=

ai j

∑k aik
.

An alternative way of defining a PageRank-like centrality measure is considering a
biplex point of view [8] such that each navigation mode (i.e random walking by using
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the connections of the network and random walking by using the personalization vector)
corresponds to a layer in a multiplex network [1]. Hence the Biplex PageRank is a n-
dimensional projection of the steady state of the Markov chain whose transition matrix
is given by

M =

(
αP (1−α)I
αI (1−α)evT

)
∈ R2n×2n.

By using these ingredients, we can study the influence of the parameters of such cen-
trality measures (either their damping factors or their personalization vectors) in the
possible values of the PageRank centralities. This controllability analysis was also per-
formed for other spectral centrality measures in [5] and for the damping factor in the
case of the (classic) PageRank in [2], so in this presentation we will focus on the influ-
ence of the personalization vector in the Classic and Biplex PageRanks [4, 7, 3].

2 Results

Our first analytical results show that we can give a sharp localization of all possible
PageRank centralities obtained for all admitted personalization vectors [4, 7].

Theorem 1 ([4], Theorem 3.2). If we denote by PRα(i) the set of all possible values
of (personalized) classic PageRank of node i ∈ {1, . . . ,n} and fixed α ∈ (0,1), then

PRα(i) = (min
j

x ji,xii),

where X = (xi j) is the matrix given by

X = (1−α)(I−αP)−1 . (1)

Theorem 2 ([7], Theorem 3.9). If we denote by PRBα(i) the set of all possible
values of the Biplex PageRank of node i ∈ {1, . . . ,n} and fixed α ∈ (0,1), then

PRBα(i) = (min
j

c ji,cii),

where C = (ci j) is the matrix given by

C =
(1−α)2

β

(
I− α

β
P
)−1

((1+α)I−αP) , (2)

with β = 1−α(1−α).

We can also analyze the relative position of the intervals PRα(i) and PRBα(i),
obtaining the following analytical result:

Theorem 3 ([3], Theorem 3.1). Let G = (X ,E) be a complex network with n nodes
and no loops. If i ∈ {1, . . . ,n}, then PRα(i)∩PRBα(i) 6= /0 for all α ∈ (0,1).
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Since PRα(i)∩PRBα(i) 6= /0, we can compute all possible relative positions
of such intervals for different families of random networks (see [3]). In particular, if
we consider Barabási-Albert synthetic networks with n = 100 nodes and compute the
relative position of intervals for different values of the minimum degree value p from
5 to 40, Figure 1 shows that for small values of α all nodes verifies that PRα(i) ⊆
PRBα(i) (right panel). On the other hand, if α ≥ 0.5 (independently of the minimum
degree value d) all nodes verifies that PRBα(i)⊂PRα(i) (left panel).

Fig. 1. Relative position of intervals PRα (i) and PRBα (i) for different Barabási-Albert syn-
thetic networks with n = 100 nodes

Summary. We have presented some sharp analytical results for the influence of the
personalization vector of the Classic and Biplex PageRank centralities. The relative
position of intervals PRα(i) and PRBα(i) is studied, by proving that they always
intersect. Several numerical computations on different families of random networks
are included, showing that Biplex PageRank centrality is less controllable than Classic
PageRank for dumping factor α > 0.5.
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One can model many physical, technological, biological, financial, and social systems as networks, which in their sim-
plest form yield graphs [1]. The standard type of network is a single-layer network (also called a “monolayer network”).
However, this relatively simple structure cannot capture many of the possible intricacies of connectivity patterns between
entities. For example, in temporal networks [2], nodes and/or edges change in time; and in multiplex networks [3], multi-
ple types of interactions can occur between the same pairs of nodes. To better account for the complexity, diversity, and
dependencies in real-world interactions, one can represent such connectivity patterns using multilayer networks [3, 4].

Our motivation for considering a single multilayer network instead of several independent single-layer networks is to
take into account that connectivity patterns in different layers often depend on each other. Data sets that have multilayer
structures are increasingly available (e.g., see Table 2 of [3]). A natural type of multilayer network consists of a sequence of
dependent single-layer networks, where layers may correspond to different temporal snapshots, different types of related
interactions that occur during a given time interval, and so on. Following existing terminology, we refer to an instance of
a node in a layer as a “state node”.

Given a (single-layer or multilayer) network representation of a system, it is often useful to apply a coarse-graining
technique to investigate features that lie between those at the microscale (e.g., nodes or pairwise interactions between
nodes) and those at the macroscale (e.g., total edge weight or degree distribution) [5]. One thereby studies mesoscale
features such as community structure [5], core–periphery structure [6], role structure [7], and others. We refer to a set in
a network partition that corresponds to some mesoscale structure as a “meso-set” (so community is a type of meso-set).

The ubiquity and diversity of mesoscale structures in empirical networks make it crucial to develop generative models
of mesoscale structure that can yield features that one encounters in empirical networks. Broadly speaking, the goal of such
generative models is to construct synthetic networks that resemble real-world networks when one appropriately constrains
the model parameters using information about the application at hand. Generative models of mesoscale structure can serve
a variety of purposes, such as (1) generating benchmark network models for comparing meso-set-detection methods and
algorithms [8, 9]; (2) undertaking statistical inference on empirical networks [10, 11]; (3) generating synthetic networks
with a desired set of properties [12, 13]; and (4) investigating “detectability limits” for mesoscale structure [9, 14].

One of the main challenges in constructing a realistic generative model (even for single-layer networks) is the breadth
of possible empirical features in networks. The available generative models for mesoscale structure in single-layer net-
works usually focus on replicating a few empirical features at a time (rather than all of them at once): heterogeneous degree
distributions and community-size distributions [8, 10], edge-weight distribution [11, 15], spatial embeddedness [16, 18],
and so on. Multilayer networks inherit all of the empirical features of single-layer networks, and they also have a key
additional one: dependencies between layers. Interlayer dependencies in multilayer networks can be temporal (ordered),
multiplex (unordered), or combinations thereof (partially ordered). However, despite this variety, existing generative mod-
els for mesoscale structure in multilayer networks allow only a restrictive set of interlayer dependencies (e.g., they assume
a temporal structure [9, 16], a simplified multiplex structure with the same planted partitions across all layers [13, 17] or
independent groups of layers in which layers in the same group have identical planted partitions [19], etc).

A key feature of multilayer networks is their flexibility, which allows one to incorporate many different types of
data in a single structure. In this spirit, we introduce one general framework that enables users of our generative model
to construct families of multilayer networks with a range of features of interest in empirical multilayer networks by
appropriately constraining the parameter space [20]. To achieve this, we choose to first partition the set of state nodes
of a multilayer network; and we then allocate edges, given a multilayer partition. Specifically, we focus on modeling
dependency at the level of partitions (as was done in [9]), rather than with respect to edges; and we treat the process of
generating a multilayer partition separately from that of generating edges for a given multilayer partition. This modular
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approach, which enables the use of all existing network models with a planted partition, yields random structures that can
capture a wide variety of interlayer-dependency structures (e.g., temporal and/or multiplex networks, appearance and/or
disappearance of entities, uniform or nonuniform dependencies between state nodes from different layers, and so on). For
a specified interlayer-dependency structure, one can then use any network model with a planted partition to generate a
wide variety of network features, including weighted edges, directed edges, and spatially-embedded layers.

The flexibility of our model to generate multilayer networks with a specified dependency structure between different
layers makes it possible to (1) gain insight into whether, when, and how to build interlayer dependencies into methods for
studying different types of multilayer networks; and (2) generate tunable benchmarks to allow a principled comparison
for community-detection (and, more generally, meso-set-detection) tools for multilayer networks.

1 Results

We introduce a general and customisable generative model for mesoscale structures in multilayer networks [20]. The
complexity of dependencies between layers can make it difficult to explicitly specify a joint probability distribution for
meso-set assignments, especially for unordered or partially ordered multilayer networks. To address this issue, we define
a conditional probability model on a state node’s meso-set assignment, given the assignments of all other state nodes.
Specifying conditional models (which capture different dependency features separately) rather than joint models (which
try to capture many dependency features at once) is convenient for numerous situations. We parametrise the conditional
partition model with two key parameters: (1) layer-specific null distributions and (2) an interlayer dependency tensor. The
former allows the incorporation of certain desirable features for any choice of interlayer dependency (e.g., variation in the
expected number and sizes of meso-sets across layers) and the latter allows the explicit parametrisation of dependencies
between different layers. Using the conditional model, we define an iterative copying process on the meso-set assignments
of state nodes to generate multilayer partitions with dependencies between induced partitions in different layers.

Consider a node j in layer β and let VM be the set of state nodes in a multilayer network. We denote the user-specified
interlayer-dependency tensor by P, where P j,β

i,α is the probability that state node ( j,β ) copies its meso-set assignment
from state node (i,α), for any two state nodes (i,α),( j,β ) ∈VM . The interlayer-dependency tensor induces the interlayer-
dependency network, whose edges are all interlayer, directed, and pointing in the direction of information flow between
layers. The probability that state node ( j,β ) copies its meso-set assignment from an arbitrary state node when state node
( j,β )’s meso-set assignment is updated is

p̂ j,β = ∑
(i,α)∈VM

P j,β
i,α ,

where we require that p̂ j,β ≤ 1 for all state nodes ( j,β ) ∈VM . Suppose that we are updating the meso-set assignment of
state node ( j,β ) at step τ of the copying process and that the current multilayer partition is S(τ). With probability p̂ j,β ,
a state node ( j,β ) copies its meso-set assignment from one of its in-neighbors in the interlayer-dependency network; and
with probability 1− p̂ j,β , it obtains its meso-set assignment from the null distribution Pβ

0 . This yields the following update
equation at step τ of our copying process:

P[S j,β (τ +1) = s|S(τ)]

= ∑
(i,α)∈VM

P j,β
i,α δ (Si,α(τ),s)

+
(
1− p̂ j,β

)
Pβ

0 [S j,β = s] .

(1)

The update equation (1) is at the heart of our generative model. It is clear from (1) that the set of null distributions is
responsible for the specification of meso-set assignments in the absence of interlayer dependencies (i.e., if P j,β

i,α = 0 for all
(i,α), ( j,β )). In general, p̂ j,β determines the relative importance of interlayer dependencies and the null distribution on
the meso-set assignment of state node ( j,β ). Specifically, when p̂ j,β = 0, the meso-set assignment of ( j,β ) depends only
on the null distribution; and when p̂ j,β = 1, the meso-set assignment of ( j,β ) depends only on the meso-set assignments
of its in-neighbors in the interlayer-dependency network.

When updating the meso-set assignments of state nodes, we respect the order the layers (e.g., temporal ordering).
For a fully ordered multilayer network (e.g., temporal), our update process reduces to sequentially sampling an induced
partition for each layer based on the induced partitions of previous layers. For an unordered multilayer network (e.g.,
multiplex), our update process defines a Markov chain on the space of multilayer partitions. Our sampling strategy reduces
to (pseudo-)Gibbs sampling [21, 22], an approach in which one samples partitions from a stationary distribution of this
Markov chain. For a partially ordered multilayer network (e.g., multiplex network that changes over time), our update
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process combines these two sampling strategies. We discuss the parameters and properties of our generative model, and
we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer
networks [20].

The three most important features of our model are the following: (1) it includes an explicitly parametrizable tensor
that controls interlayer-dependency structure; (2) it can generate an extremely general, diverse set of multilayer networks
(including, e.g., temporal and/or multiplex); and (3) it is modular, as the process of generating a partition is separate from
the process of generating edges, enabling a user to first generate a partition and then use any planted-partition network
model. We provide publicly available code (https://github.com/MultilayerGM) that users can modify to readily incorporate
different types of null distributions, interlayer-dependency structures, and planted-partition network models.

Summary. Multilayer networks allow one to represent diverse and coupled connectivity patterns — e.g., time-dependence,
multiple subsystems, or both — that arise in many applications and which are difficult or awkward to incorporate into
standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e.,
intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are
not apparent at the microscale or the macroscale. We introduce a generative model for mesoscale structure in multilayer
networks. Our model is very general, with the ability to produce many features of empirical multilayer networks, and
it explicitly incorporates a user-specified dependency structure between layers. Our results provide a standardized set of
null models, together with an associated set of principles from which they are derived, for studies of mesoscale structures
in multilayer networks. We discuss the parameters and properties of our generative model, and we illustrate examples of
its use with benchmark models for community-detection methods and algorithms in multilayer networks.
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1 Introduction
Network embedding methods [7–10] have attracted increasing attention as key-enabling
tool to successfully address emerging challenges in large real-world networks (such as
high computational complexity, low parallelizability, and inapplicability of machine
learning methods) by learning a low-dimensional representation of one or more com-
ponents of a graph network. In particular, deep embedding methods, such as those based
on convolutional neural networks, showed their effectiveness on a broad range of prob-
lems in different fields (e.g., speech and image recognition), and they promise to achieve
unprecedented opportunities also in network science.

However, such methods have traditionally focused on structured data (e.g., grids),
while there is an inherent difficulty in defining basic operations, such as convolution [3],
in graph networks; in fact, defining the convolution operation on grid-structured data is
straightforward (e.g., each pixel in an image can be seen as an element, and the size of
its neighborhood is determined by the size of the kernel), whereas in the case of graphs,
nodes are unordered and the size of their neighborhood can vary largely. One way of
performing the convolution operation on graph data is to aggregate the values of each
node’s features along with its neighbors’ features. This is the basic approach adopted
by the Graph Convolutional Network (GCN) method proposed in [4]. Alternatively, the
GraphEncoder method in [6] exploits stacked sparse autoencoders, which have shown
to be very similar to spectral clustering in theory yet much more efficient and flexible
in practice. It should be noted that the above methods work on simple networks only.

In this work, we take inspiration from GraphEncoder, but differently from it we
leverage graph convolutional networks and their use in an autoencoder framework [5].
To the best of our knowledge, we are the first to propose an autoencoder-based GCN ar-
chitecture for learning a compressed representation (i.e., node embeddings) of a multi-
layer network. Our closely related work is the one recently proposed in [1], which learns
two embeddings for each actor: the one obtained by aggregating information from the
different layers of the multiplex, and the other one for each node of the multiplex.
The two embeddings are then linked together by projection matrices that constrain the
generation of layer-specific representations conditioned to the across-layer ones. Note
that, however, this linkage relies on a hyper-parameter which adds a further degree of
freedom in learning an embedding; also, unlike our proposal, it misses the advantages
coming from autoencoders and, particularly, from variational autoencoders, which act
as generative models to learn the parameters of a probability distribution representing
the network data.
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2 Our proposed mGCNAE and mGCNVAE methods

Given a set V of N entities (e.g., users) and a setL= {L1, · · · ,L`} of layers (e.g., user re-
lational contexts), with `≥ 2, we denote a multilayer network with GL=(VL,EL,V,L),
where VL ⊆ V×L is the set of entity-layer pairings or nodes (to denote, e.g., each user
is present in which layers), and EL ⊆ VL×VL is the set of undirected edges between
nodes within and across layers.

We represent a multilayer network by a set of adjacency matricesA= {A1, · · · ,A`},
with Al ∈ Rnl×nl (l = 1..`), where nl = |Vl |. Entities may be associated with features
stored in layer-specific matrices X = {X1, · · · ,X`}, with Xl ∈Rnl× fl and fl the number
of node features in the l-th layer. In case no side-information is available for GL, each
layer-specific feature matrix is assumed to be the identity matrix Il ∈Rnl×nl . Note that,
since we need to account also for inter-layer edges, the aggregation of features should be
computed not only with the ones of each node’s neighbors, but also with the features of
the different nodes coupled to the same entity over the layers of the multilayer network.

To enable effective convolution, each layer matrix is symmetrically normalized after
adding self-loops for all nodes; formally, for the l-th layer, we have Âl = D̃−

1
2 ÃlD̃−

1
2 ,

with Ãl = Al + Il , D̃l = Dl + Il and Dl the degree matrix. As shown in [4], this helps
shrink the underlying graph spectrum, and as a consequence, nearby nodes will tend to
share similar representations. Note that the i-th entry in Dl stores the degree of entity vi
internal to the l-th layer, plus the number of inter-layer edges that are incident to vi.

Let us utilize subscript l to denote the l-th layer of the input multilayer network,
and the superscript (k) to denote the k-th convolutional layer of the neural system. For
the k-th convolutional layer, we denote the input representations of all nodes with the
matrix H(k−1) and the output representation with H(k), which is usually smaller than
H(k−1). Note that the initial representation is the input feature matrix, i.e., H(0) ≡ X,
which hence feds the first convolutional layer.

Our first proposed approach, dubbed Multilayer Graph Convolutional Network
Autoencoder (mGCNAE), requires at first the following embedding rule for every
l-th layer of the multilayer network:

H(1)
l = ReLU(Âldrop(Xl)W

(1)
l ) (1)

where W denotes a weight matrix in the convolutional layer, the nonlinear activation
function ReLU(·) is applied pointwise, and drop(·) is the dropout function typically
introduced to help reduce overfitting. Matrix H(1)

l has dimension Rnl×d1 (by default,
d1 = 32 [5]), and the layers L are treated independently.

From the second layer of mGCNAE, an analogous operation is performed, however
we devise two different modes and, consequently, two different representation update
rules, for every k = 2..K:

– handle the different layers of the multilayer graph independently:

Hk
l = Âldrop(H(k−1)

l )W(k)
l (2)

– share a unique weight matrix W(k) through the different layers of the multilayer
graph:

Hk
l = Âldrop(H(k−1)

l )W(k) (3)
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Finally, the output of the K-th hidden layer corresponds to the new learned node
representation (i.e., the embedding), Z = H(K). Once obtained the embedding, the de-
coding phase consists in the inner product ZlZT

l to achieve the reconstructed adjacency
matrix Āl for the l-th layer of the multilayer graph.

Our second method, dubbed mGCNVAE, exploits the variational autoencoder para-
digm, so that it differs from mGCNAE in that the second hidden layer consists of two
components which constitute the core of the inference model:

Z(µ)
l = ReLU(Âldrop(H(1)

l )W(µ)
l ) and Z(σ)

l = ReLU(Âldrop(H(1)
l )W(σ)

l ) (4)

with µ (resp. σ ) mean (resp. standard deviation) of the latent representation. The en-
coding step corresponds to a function q to learn:

q(Zl |Xl ,Al) =
N

∏
i=1

q(zl,i|Xl ,Al), with q(zl,i|Xl ,Al) =N (zl,i|z(µ)l,i ,diag(z(σ
2)

l,i )) (5)

while the generative model (i.e., the decoder) is given by function p:

p(Al |Zl) =
N

∏
i=1

N

∏
j=1

p(Al,i j|zl,izl, j), with p(Al,i j = 1|zl,izl, j) = σ(zT
l,izl, j) (6)

and the loss function is: ∑`
l=1Eq(Zl |Xl ,Al)[log p(Al |Zl)]−KL[q(Zl |Xl ,Al)||p(Zl)].

3 Preliminary experimental results
We implemented our proposed methods and tested them, for a link prediction task, on
a number of multilayer networks, including Cora and Citeseer [16, 17], StarWars [18],
London transportation [15], EUair [14], FAO [13], ArXiv [12], and Pierre Auger [12].
We randomly selected and removed 5% (resp. 10%) of the edges from the input multi-
layer graph to be used for validation (resp. testing). Next, we integrated validation and
testing edge sets with unconnected pairs of nodes in a balanced fashion. Once obtained
the embeddings, we assessed the similarity between pairs of nodes to predict whether
the edge between the two nodes existed. For the sake of simplicity, we assumed nl and
fl to be the same for all layers, and used two convolutional hidden layers (K = 2).
Moreover, we devised 4 settings of the two methods, depending on whether only intra-
layer edges or also inter-layer edges were used by the neural system, and whether the
across-layer shared weight matrix was used or not.

Preliminary results show that, on average over all datasets, mGCNAE and mGCN-
VAE obtained good performance in terms of AUC (0.73), precision (0.78) and accuracy
(0.65), with peaks on the Pierre Auger dataset by m-GCNVAE in terms of AUC (0.98)
and precision (0.98), and by m-GCNAE in terms of accuracy (0.93), for the only-intra-
layer-edges variants; also on the two citation networks, any variant of both methods
performed very well. By contrast, the variants using both intra- and inter-layer edges
appeared to perform worse, except on EUair; the latter network, on the other hand,
represents the more difficult testbed, due to their higher number of layers and their ex-
tremely varying structure [14]. Besides that, in general, using both intra- and inter-layer
edges may be more affected by the lack of relevant (side-)information associated with
inter-layer edges.
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1 Motivation

Interdependent complex systems have been shown to be highly vulnerable to attack
as failures cascade across layers leading to a rapid disintegration of the network[1, 2].
The risk of cascades of failure is created by inter-layer connections, which represent
the dependencies between the network layers. Consequently, most studies on resilience
of interdependent networks consider inter-layer connections a necessary evil needed to
sustain a systems functionality, but detrimental to its resilience[3, 4].

While this makes sense for certain types of networks such as the power-communication
interdependent system, which played a crucial role in the famous 2003 blackout in Italy,
it does not hold for all types of interdependent networks. In certain network contexts,
inter-layer connectivity does not only present a risk, but also a chance for resilience[5].

Fig. 1. Illustration of resilience impact of inter-layer edges in multiplex networks depending on
the functional coupling (layer interaction and dependency)

Inter-layer connectivity presents a chance for network resilience if inter-layer edges
have a function that allows for collaboration and shared dynamics between the layers,
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and do not only describe a dependency relation. For instance, strategic interconnectivity
between isolated power grids can suppress cascades of failure as excessive load can bet-
ter be distributed across different grids. However, too much interconnectivity increases
the risk of larger cascades infecting multiple power grids[5]. Furthermore, in multi-
modal transport networks, mode transshipment links increase flexibility to use different
transport modes in response to disruption, thereby mitigating its impact. At the same
time, intensifying inter-layer coupling increases the risk of cascading failure.

This suggests that inter-layer connections can have a very different impact on the
resilience of a multiplex network depending on the type of functional interaction and
dependency between layers. Figure 1 shows a framework describing the different cat-
egories of functional coupling and the resilience impact of inter-layer edges for each
category.

The focus of this study lies on the ’Fragile opportunity’ category. For networks in
this category, inter- layer edges create benefits and make them more fragile at the same
time. This suggests that there is a trade-off in the layer coupling structure between
topological stability (risk of cascadic failure) and operational functionality. This trade-
off comes into play as density and location of inter-layer edges vary. Thus, in order to
understand it, the structural coupling of layers needs to be analyzed. Therefore, differ-
ent synthetic multiplex networks varying in the structure of their layers are analysed
and their resilience against disruption under different coupling structures (intensity of
coupling and coupling pattern) is assessed. Moreover, we study the resilience of the Eu-
ropean hinterland transport network for container shipping, a multiplex transportation
network with layers formed by transport modes rail and barge.

The results contribute to the understanding how inter-layer connectivity can influ-
ence resilience in different types of multiplex networks and how inter-layer connections
should be chosen to foster resilience and mitigate the impact of disruption. This is im-
portant for decision makers in hinterland shipping as transport modes are becoming
more strongly coupled towards an integrated intermodal system. For our analysis we
make use of a unique dataset containing all rail and barge services scheduled in the
European hinterland. We create a multiplex network with nodes representing cities that
have at least one container terminal and edges representing transport connections. Lay-
ers are formed by the two alternative transport modes.

2 Initial results

As a first step, the impact of coupling intensity, i.e. the share q of overlapping nodes that
is linked by an inter-layer edge, on resilience is assessed. Therefore, a multiplex net-
work with layers formed by two Erdos-Renyi networks with 100 nodes and p = 0.053
is studied. The two layers are partially overlapping at 50% of their nodes (Q = 0.5).
Initial failure of nodes is done randomly and cascadic failure propagation is modeled
as in [1]. Resilience is measured by the change in network efficiency [6], which is a
suitable measure particularly for transportation networks.

Figure 2 shows the results for three different initial attack sizes (share of nodes
p∈ {0,0.2,1}). If no attack takes place (p = 0), inter-layer edges have a purely positive
effect as they connect the layers and distances become shorter. The resilience trade-
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Fig. 2. Efficiency of barge-rail coupled network for hinterland transport in Europe depending on
inter-layer coupling intensity q and initial attack sizes p ∈ {0,0.2,1}

off becomes visible at intermediate attack sizes (p = 0.2). At low coupling intensities,
each added inter-layer edge improves network efficiency as routing becomes easier.
However, the marginal added value of an additional edge decreases and at a certain
point, efficiency declines as the network becomes more and more fragile. This point
marks the optimal coupling intensity as resilience reaches its maximum under the given
network settings. Results can vary strongly depending on the choice of network type,
attack strategy, and coupling strategies.
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1 Introduction

The studies on homophilia in social networks seek to quantify the propensity of in-
dividuals to interact with similar actors ([1], [2], [3]). In these studies, the E-I index
proposed by Krackhardt and Stern (1988) [4], is used as a measure for homophilia. The
E-I index is a simple measure obtained from the difference between the number of ex-
ternal links (links between nodes belonging to different groups - EL) and the number
of internal links (links between nodes belonging to the same group - IL), divided by the
total number of connections for normalization.

E− I Index =
EL− IL
EL+ IL

(1)

The E-I index ranges from -1 (all bonds are internal) to +1 (all bonds are external).
The index can be calculated for the entire network, for each group or for each individual
actor. In a weighted network, EL is the sum of the edge’s weights that connect different
cells of the partition and IL is the sum of the edge’s weights that connect actors of the
same cell of the partition.

The nodes of the network are assigned to groups, for example: age-based [1]; based
on ethnicity [3]; based on gender, religion, politics [5]; among others. Grouping in-
volves partitioning the set of nodes into exhaustive and mutually exclusive subsets. Pub-
lications that use the E-I index as a measure of homophilia or segregation are concen-
trated in disjoint or mutually exclusive groups, that is, each node or actor in the network
has only one bond of a particular attribute. Situations where network actors are present
in more than one group, such as non-disjoint groups, are not commonly explored. How-
ever, distinctive disjoint groups rarely exist at large scales in many empirical networks
[6], what is observed in many analyzes, in fact, is a set of overlapping groups rather than
partitions [7]. Some attributes such as: areas of knowledge in networks of researchers;
economic blocks in commercial networks; communities in networks such as Facebook,
Twitter, among others; and other attributes linked to behaviors, tastes and attitudes gen-
erate non-disjoint groups. One of the barriers encountered in the analysis of non-disjoint
groups is the absence of a measure, since the E-I index is defined for disjoint groups.
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In this context, the objective of this work is to develop a measure that quantifies the
relational structure within and between groups that encompass not only the analysis of
disjoint groups but also non-disjoint groups. Allowing the expansion of the analysis of
social networks, for several types of attributes, helps identifying which actors have more
similarities or differences, generating previously unexploited knowledge. Specifically,
we generalize the E-I index developed by [4] to deal with non-disjoint groups.

2 Results

In order to explore cases of non-disjoint groups, we have developed a new method to
obtain the E-I index, which is a generalization of the current method. Figure 1 is used to
illustrate the new method. Figure 1a has three nodes and two generic attribute groups,
nodes 0 and 1 have attribute A and nodes 0 and 2 have attribute B. Therefore, both
attribute groups have one node in common. In Figures 1b and 1c, nodes are connected
if they belong to the same group. In this context, the E-I Index is defined as follows:

– For a set of nodes: EL is the number of nodes’ edges in the first graph that are not
present in any of the group graphs and IL is the number of nodes’ edges in the first
graph that are present in at least one of the group graphs.

– For an attribute group: EL is the number of node edges of a given group in the first
graph that are not present in the given group graph and IL is the number of node
edges of a given group in the first graph that are present in the given group graph.

Table 1: E-I Index non-disjoint group example
Unweighted Weighted

EL IL E-I Index EL IL E-I Index
set {0} 0 2 -1.00 0 5 -1.00
set {1} 1 1 0.00 1 3 -0.50
set {2} 1 1 0.00 1 2 -0.33

set {0,1,2} 1 2 -0.33 1 5 -0.66
Group A 2 1 0.33 3 3 0.00
Group B 2 1 0.33 4 2 0.33

(a) Graph G (b) Graph A (c) Graph B

Fig. 1: Social network with non-disjoint groups of nodes.

Table 1 displays the results for the graph shown in Figure 1a. It is easy to verify that
the proposed metric is a generalization of the E-I index proposed in [4] in the sense that
if groups are disjoint, then it coincides with (1).
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In future work, we will implement the proposed model in two real networks:

(i) Co-authorship PQ: The PQ network is a co-authorship network among researchers
in the area of Industrial Engineering of Brazil, has 92 nodes in the giant component
and 131 edges. The network is undirected and the edges represent the publications
in co-authorship [8].The sets of overlapping groups are the industrial engineering
areas of knowledge.

(ii) Trade of American Countries: The network of commerce between the American
countries is formed 30 countries and 356 edges. This network is a subnetwork of
the network of international trade, developed by [9], which includes 178 countries
that form a unique main component with 10,419 edges. The network is undirected
and the edges represent the commercial transactions between countries. The sets of
overlapping groups are the blocks or trade agreements that the American countries
are inserted into.

As these examples suggest, in applications, the groups do have an empirical mean-
ing and the E-I index is just a way to classify sets of nodes or attribute groups according
to the proportion of their internal/external links.
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9. Andrade RL de, Rêgo LC. The use of nodes attributes in social network analysis with
an application to an international trade network. Phys A Stat Mech Its Appl (2018)
doi:10.1016/j.physa.2017.08.126

267

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Disentangling Public Transit Ridership into a
Spatiotemporal Geography

Mikhail Sirenko1, Scott Cunningham1,2, Nuno A. M. Araújo3, and Trivik
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1 Introduction

The spaces and networks which comprise a city evolve in a complex and interde-
pendent manner. Urban spaces are occupied by an increasing diversity of citizens,
all with varying needs and requirements. Transport networks are increasing in
form and variety and play a central role in providing enhanced access, among
and across neighbourhoods, to residential places, working institutions and local
amenities like shopping malls, restaurants and hospitals. Improved accessibility
through transportation networks also threatens to create larger, more sprawling
urban areas [1].

Discerning the urban structure in the context of public transit utilisation is
significant for urban planning [2] and sometimes central in controlling the ur-
ban sprawl [3] through Transit-oriented Development (TOD). In urban planning
research, urban structures are generally characterised using origin-destination
(OD) matrices that represent individual and cumulative mobility flows in a city
[4]. A standard sociological method involves survey-based direct observation of
urban populations [5] and their transport patterns such as walking and vehicle
ownership [6] or more novel analyses of mobile telephony networks [7]. However,
such indicators are merely representative of formal or designated use of the “di-
urnal” and “bimodal” city that are leveraged for standard planning applications.
Moreover, this framework of estimating demand and developing supply is heavily
model-based, relying on several parameters, and difficult to analyse and compare
through time. Given this, new methods are needed to assess the multiple types
and spatial flows of passengers on urban transportation networks.

Digital services like Automatic Fare Collection (AFC) have been introduced
into transit networks worldwide and enable an unprecedented amount of anony-
mous transit ridership data. We aim to illustrate a simple and powerful method
with an example where entry-only ridership data of ≈ 4.5M daily traces from
the Greater London region can be transformed into spatiotemporal geography
of the city. Each station decomposes into a mix of six distinct ridership classes
across time, while simultaneously being classified in spaces of central, polycen-
tric and concentric development. Our method can be applied to any region in
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the world where entry-only ridership data is available and could be useful for
data-driven planning.

2 Results
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Fig. 1. Disentangling Public Transit Ridership into Time and Space. A).
Probability Density Function of the individual ridership data of Greater London de-
composed into its characteristic mixtures across a day using GMM, with K = 6. B).
Ternary plots showing composite behaviour of stations with the mixtures either charac-
terising stations in time or space. Typical commuters are work or homebound. Midday
commutes relate to afternoon traffic. Nighttime commutes are following standard work
traffic. C). A population map describing the spatial classification of stations into six
types, each type composed of a percentage mix of mixtures as shown in part (A).

Public Transit Ridership. We use the London Underground Passenger
Count dataset as a proxy for ridership, which is provided freely by Transport for
London (TfL). The dataset describes the average number of entrances at each
station in the Underground Network of Greater London, represented as a time
series spanning 24 hours. The time series are aggregated at 15 minute intervals,
resulting in 96 data points per station. This represents an average of all days in
the month of November 2017, separated into weekdays and weekends. We verify
from the TfL datasets that November 2017 illustrates a typical sample of winter
travelling behaviour throughout the year and has been adjusted by TfL for any
disruptions in the Underground service. The time series of entrances (or exits) at
stations represents an aggregation of many different commuting patterns. Since
the vast majority of commuting takes place on weekdays, we ignore the ridership
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patterns on weekends, corresponding to Saturday and Sunday, the designated
weekend in London work district. We re-factor the wide dataset of TfL arranged
as aggregated counts of entrances into a longitudinal set amounting to a corpus
of ≈ 4.56 million geolocated traces.

Disentangling transport demand into time geography. To charac-
terise the nature of urban demand for public transport in cities, we decompose
the diurnal and multimodel transit ridership into its characteristic unimodal
components (mixtures) across a day that is learned through the use of GMM
on the entrance data. Figure 1A shows a range of different demand categories
represented by subpopulations that are automatically identified based on transit
ridership (see Fig 1A). Each mixture has a component weight φk, with the con-

straint that
∑k

φi = 1 such that the probability distribution function normalises
to 1 (k = 6, see Fig 1). By analysing the weighted mixtures in a ternary plot, we
observe that stations in Greater London display only a limited range of usage
types (see Fig 1B).

Clustering of stations in space. Using a robust clustering technique over
the mixtures, we classify six individual ridership patterns that naturally serve a
mix of population types. Figure 1C illustrates that Greater London is spatially
divided into concentric zones of development, displaying a variety of central busi-
ness districts (CBD), secondary hubs (polycentric), and arterial flows of distinct
linkage types (outer and inner residential, mixed-commuter, and potential feeder
zones from outside the city). We reckon this space-time geography will be differ-
ent for other observed cities with different patterns of concentric or polycentric
development.
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1 Introduction
Citation networks provide an intriguing means of studying human activity in fields

such as science, law, and patenting [1]. While previous studies have investigated struc-
tural features of these networks, they have been limited by a lack of information about
the properties of the nodes and links. As such, it is not yet well known what structural
features may be revealed by information such as the level of nodes in an explicit hier-
archy of journals or courts, and the sign of links. In particular, the transitive reduction
link removal operation has been proposed as a way to pare a citation network down
to its most essential or “informative” links [2]. This is based on a mechanism that has
been proposed in some models of the growth of citation networks, in which authors
make citations in one of two ways: first, by searching for relevant articles and then
reading them; and second, by copying citations from documents that they have found
via the first method (without reading them) [3]. We examine and compare the struc-
tural properties of legal citation networks with detailed node and link properties from
three different areas of law. Despite strong differences in the three areas of law that are
confirmed by an analysis of the legal topics associated with each node, the high-level
properties of the three networks are very similar. However, using the information in our
dataset about the “treatment” of the links (whether the citation is positive or neutral) and
the hierarchical level of the court that issued the judgment, we also find evidence that
the transitive reduction operation removes key structure from these networks, contrary
to the proposal of Clough et al. [2]. These findings indicate that link copying is not a
relevant mechanism in the growth of legal citation networks.

2 Data

We study citation networks of court decisions constructed from unique datasets in
three distinct areas of Canadian law: defamation, bankruptcy, and family law. In each
network, the nodes represent judgments made by courts from all levels of the court hier-
archy (provincial trial-level, provincial appellate-level, and Supreme Court of Canada),
and the links represent citations from newer to older judgments. In addition to the level
of court, each node has one or more legal topics associated with it. These topics indicate
legal issues involved in the decision. For example, topics in family law include spousal
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support, division of family property, custody and access of children, and other topics.
Additionally, each link has a “treatment” value indicating how the citing judge cited the
past decision. The treatment of a link can be positive (“Followed” (F)), neutral (“Con-
sidered” or “Referred to” (CR)) or negative (“Distinguished” (D) or “Not Followed”).

3 Results and Discussion
Analysis of the legal topics confirms fundamental differences in the three areas of law.

Specifically, bankruptcy law consists of several strongly isolated (“siloed”) sub-areas,
where each sub-area pertains to a different legal topic and is readily identified as a
cluster of nodes by the Infomap algorithm [4]. In contrast, defamation judgments often
share the same legal topics, and clustering is dominated by temporal rather than topical
structure [5]. Family law is more complex, containing isolated sub-areas such as cases
involving child protection agencies, but also containing a large number of judgments
with multiple topics pertaining to division of finances and parental custody of children.
However, despite these fundamental differences in the three areas of law, we show that

the high-level properties of the three citation networks are very similar. In particular,
and similar to results found in scientific citation networks [6], in-degree distributions
are plausibly fit by a power-law with exponent between 2 and 3, directed degree-degree
correlations are close to zero, and distribution of 3-node motifs follows a similar pattern
in each of the three networks. Examining these properties when only certain types of
links are retained in the network (e.g. keeping only the positive or neutral links) exposes
key structural features of the networks, particularly in the motif analysis.

In directed acyclic graphs, such as our citation networks, only four different 3-node
motifs are possible (shown on the x-axis of Fig. 1). As seen in Fig. 1, the distribution of
3-node motifs following transitive reduction resembles the distribution obtained when
only the least significant, neutral links are retained in the network; conversely, when
only the positive links are retained, the motif distribution is significantly different. Ad-
ditionally, retaining only the positive links results in a much higher proportion of target
nodes (the cited node at the end of a link) issued by the highest level of the court hier-
archy, as compared to the full network, whereas considering only the links remaining
after transitive reduction results in a much higher proportion of target nodes from the
lowest level of the court hierarchy. Fig. 2 is an example showing why these strong dif-
ferences between positive and neutral or post-transitive reduction links occur: newer
judgments often make positive citations directly to highly-cited past judgments, despite
the existence of alternative citation paths of neutral links that pass through intermedi-
ate judgments. These findings suggest that link copying is not relevant in the growth
of legal citation networks, and suggest alternative mechanisms related to node fitness
(propensity of a node to attract links, e.g. due to its hierarchical level) and link type.
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Fig. 1. Comparison of motif occurrence rates and court level of target nodes in the family law
citation network. To the left of the vertical dashed line, the y-axis shows the difference in i) the
percentage of each 3-node motif when considering only the positive (F), neutral (CR), or post-
transitive reduction (TR) links, minus ii) the percentage of each 3-node motif in the full network
(considering all links). To the right of the vertical dashed line, the y-axis shows the difference in
proportion of target nodes issued by the trial (Tr), appellate (Ap) or supreme (SC) courts.

Fig. 2. Portion of a citation network showing the link patterns leading to the motif distributions
shown in Fig. 1. The yellow node represents an appellate-court judgment (Smith), and the rest of
the nodes and links constitute the tree reachable from the Smith in the reversed citation network.
The green node is an example of a judgment that directly cites Smith using a positive link, while
also being part of alternate paths to Smith. Link treatments: blue: F; grey: CR; orange: D.
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1 Introduction

Understanding which nodes and links represent a set of structurally relevant interac-
tions is of crucial importance to obtain parsimonious representations of large network
datasets, often referred to as network backbones. Indeed, filtering out noise in order to
extract meaningful backbones has shed light on the functioning of complex weighted
networks of repeated interactions in a variety of disciplines, ranging from Biology [1]
to Finance [2].

Earlier approaches to network backbone extraction relied on simple weight thresh-
olding. This, however, often amounts to neglecting the multiscale nature of most real-
world networks. Most methodologies put forward in recent years, instead, take such
multiscale nature into account by assigning a p-value to each link in a weighted net-
work by measuring the probability of observing its weight under a null hypothesis of
partially random interactions. One of the most successful - and widely adopted - options
in the literature is the disparity filter [3], which relies on a null hypothesis of uniform
distribution of a node’s strength over its links.

The disparity filter and other options in the same spirit (see, e.g., [4]) provide top-
down approaches based on well defined null hypotheses, against which all links in a
network are tested individually. While this certainly presents advantages in terms of
convenience, at the same time it can lead to a lack of flexibility, as different networks
may display different levels of heterogeneity, to which a ‘one-fits-all’ null hypothesis
cannot adapt. Furthermore, most of the above filters are based on null hypotheses of
partially random interactions. Yet, interactions in most natural and social systems are
far from being random, as past activity naturally breeds further activity.

Here, we propose a filtering methodology based on a null hypothesis designed to
respond to the specific heterogeneity of a network. We do so by contrasting links against
a null hypothesis based on the Pólya urn, a well known combinatorial problem driven by
a self-reinforcement mechanism according to which the observation of a certain event
increases the probability of further observing it. Such a mechanism is governed by a
single parameter a > 0 (which in the urn analogy quantifies the number of balls of a
certain color added to the urn after extracting one ball of the same color), which allows
to tune the null hypothesis’ tolerance to a specific network’s heterogeneity, and to study
a continuous family of network backbones Pa.
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2 Results

The full description of the Pólya filter and some of its possible applications have been
recently published in [5]. The paper’s main results are summarised in the following.

1. We analytically demonstrate that the p-value assigned by the Pólya filter to any
given link is - with excellent approximation - a function of the ratio r = wk/s,
where w is the weight of the link being tested, k is the degree of one of the two
nodes it is attached to (links can be tested with respect to both their directions),
and s is its strength. Therefore, whether a link is statistically validated against the
null hypothesis - and therefore included in a backbone Pa - is determined by an
interplay between weights and topology, which accounts for the Pólya filter’s ability
to validate links at all scales.

2. We prove that the disparity filter [3] is recovered as a special case of the Pólya filter
for a = 1.

3. The Pólya filter becomes increasingly restrictive with the parameter a, with fewer
links being identified as statistically significant as a increases. As a result, back-
bones associated with higher values of a are subsets of those obtained for smaller
values (see Fig. 1), i.e., Pa2 ⊂Pa1 for a2 > a1. Furthermore, we show that as back-
bones become more sparse with higher values of a, they retain links with higher
salience (a recently proposed measure of link importance, which can be loosely
defined as the fraction of weighted shortest-path trees a link participates in [6]) in
the network.

4. We compare the Pólya filter’s performance on a number of network datasets against
that of 5 other well established alternatives in the literature, demonstrating its unique
ability to generate backbones that are simultaneously sparse, salient, and heteroge-
neous.

5. We provide a criterion to filter a network against a null hypothesis tailored around
its own heterogeneity. This is done by identifying the Pólya process whose self-
reinforcement mechanism is the most likely to generate the specific network under
study. Effectively, this amounts to identifying the value of a corresponding to the
‘nullest’ model in the Pólya family or, in other words, the Pólya process that best
captures the heterogeneity of the network under consideration.

We showcase the above properties via two main applications devoted, respectively,
to the US air transport network (see Fig. 1) and to the input-output network of global
trade. In the latter case, we also provide evidence that links validated by the Pólya filter
are highly predictive of future interactions.

Summary. We propose a novel technique to extract backbones of statistically rele-
vant interactions between pairs of nodes in a weighted network based on the Pólya
urn model. The link selection criterion underpinning the Pólya filter is based on the
interplay between topology and the local relative importance of a link. This, in turn,
guarantees that the filter does not perform a naive link selection merely based on re-
taining high strength links connecting hubs, but instead ensures a non-trivial scanning
of all the relevant scales of a network. As a result, the Pólya filter generates network
backbones that are simultaneously sparse, salient, and heterogeneous.
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Fig. 1. Pólya backbones of the US Airports network for different values of the filter’s parameter
a. Links in blue, orange, and purple correspond, respectively, to short, medium, and long-haul
flights according to the US Bureau of Transportation’s classification. (a) Backbone for a = 0.4.
(b) Backbone for a = 1, which approximately corresponds to the one obtained via the disparity
filter. (c) Backbone for a = 2.6, which is the highest value of the filter’s parameter where a long-
haul flight (New York - Los Angeles) is retained. (d) Backbone for a = 4.5, which corresponds to
the network’s optimal value mentioned in point 4 of the list above. As it can be seen, higher values
of a lead to sparser backbones. When tuning the Pólya filter to the network’s own heterogeneity
(panel (d)) all major long-haul flights between hubs (i.e., the links that mostly characterise the
network’s heterogeneity) are filtered out, resulting in a backbone of mostly regional and short-
haul flights connecting airports that are often of secondary importance on the national scale. Yet,
these flights provide vital connections, carrying very large numbers of passengers relative to the
overall heterogeneity of the broader transport system they are embedded in.
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1 Introduction

Detecting the presence of mesoscale structures in complex networks is of primary im-
portance [1, 2]. This is especially true for financial networks, whose structural orga-
nization deeply affects their resilience to shocks propagation, node failures, etc. [3–6].
Several methods have been proposed, so far, to detect communities, i.e., groups of nodes
whose “internal” connectivity is significantly large. Communities, however, do not rep-
resent the only kind of mesoscale structures characterizing real-world networks: other
examples are provided by bow-tie, core-periphery and bipartite structures. In what fol-
lows, we will focus on the last two types of topological structures.

In recent years the detection of mesoscale structures has been faced by adopting a
bottom-up approach, i.e., by defining a benchmark model against which to compare the
actual network structure: in [7] the authors aim at identifying the most likely generative
model that may have produced a given partition; in [8, 9] the authors compare the like-
lihood values of a stochastic block model tuned to reproduce either a core-periphery
or a bipartite structure; similarly, in [10] the authors adopt a random graph model to
find multiple core-periphery pairs in networks and in [11] the same authors employ the
configuration model as a benchmark, showing that a single core-periphery structure can
never be significant under it.

2 Results

We contribute to this stream of research by proposing a novel method to detect statis-
tically significant bimodular structures (i.e., either bipartite or core-periphery ones). To
this aim, we build upon the results of the papers [12–14] and on the very last com-
ment that can be found in [15], by adopting a surprise-like score function. Our choice is
dictated by the versatility of this kind of quantity (originally introduced to detect com-
munities) that allows us to consider undirected as well as directed (binary) networks, a
desirable feature that many of the aforementioned algorithms do not have.

Whenever community detection is carried out by maximizing the surprise, links are
understood as belonging to two different categories, i.e., the internal ones (the ones
within clusters) and the external ones (the ones between clusters). On the other hand,
whenever one is interested in detecting bimodular structures (be they bipartite or core-
periphery), three different “species” of links are needed (e.g., core, core-periphery and
periphery links). This is the reason why we need to consider the multinomial version of
the surprise, whose definition reads
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S‖ ≡ ∑
i≥l∗c

∑
j≥l∗cp

(Vc
i

)(Vcp
j

)(V−(Vc+Vcp)
L−(i+ j)

)
(V

L

) (1)

and that we will refer to as to the bimodular surprise (V is the total number of node
pairs; Vc is the number of core nodes pairs; Vcp is the number of node pairs between the
core and the periphery; L is the total number of links; l∗c is the number of core links;
l∗cp is the number of links between the core and the periphery). The presence of three
different binomial coefficients allows three different kinds of links to be accounted for.
From a technical point of view, S‖ is a p-value computed on a multivariate hypergeo-
metric distribution.

Let us first calculate S‖ for a bipartite network defined by the values of parameters

Vc =
N1(N1−1)

2 (here, the label c indicates the internal volume of one of the two layers),
Vcp = N1N2, l∗c = 0 and l∗cp = L (l∗cp is the number of links between the two layers,
coinciding with the total number of links, in our example). The latter condition implies
that only the addendum corresponding to i= 0, j = l∗cp = L survives; thus, our bimodular
surprise reads

S‖ =

(Vcp
l∗cp

)
( V

l∗cp

) =

(N1N2
l∗cp

)

((N1+N2)(N1+N2−1)/2
l∗cp

) (2)

which can be significant, as it should be: in fact, a number of inter-layer links exists
above which the observed bipartite structure is significantly denser than its random
counterpart.

Let us now move to analyze some real-world systems: we will employ our novel
definition of surprise to understand if the considered networks have a significant bi-
modular structure (i.e. either bipartite or core-periphery). To this aim, we will search
for the (optimal) partition that minimizes S‖ by employing a modified version of the
PACO algorithm [14] a Python version of which is freely available at [16].

As a first example, we consider the social network showing the relationships be-
tween US political blogs. Any two blogs are linked if one of the two references the other.
As shown in 1, a core of the most influential blogs (be they republican or democratic),
surrounded by a periphery of loosely connected, less important blogs is clearly visible.
Differently from the community structure that shows republican blogs and democratic
blogs as belonging to different groups, our core-periphery structure highlights a differ-
ent organizing principle, based on the blogs overall importance irrespectively of their
political orientation.

As a second example, let us consider the US airports network in its directed repre-
sentation. Examples of core airports are the ones of New York, Indianapolis, Salt Lake
City, Seattle, etc. The periphery airports are preferentially attached to the core ones.
This system shares interesting similarities with the NetSci co-authorship network (not
shown here - see [17]): each core airport, in fact, seems to be surrounded by a quite
large number of periphery airports, sharing few internal connections.
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Fig. 1. Left panel: core-periphery structure of US political blogs: a core of the most influential
blogs (be they republican or democratic), surrounded by a periphery of loosely connected, less
important blogs is clearly visible. Notice that blogs are grouped independently from their political
orientation. Right panel: core-periphery structure of US airports.

Summary. Detecting the presence of mesoscale structures in complex networks is of
primary importance. This is especially true for financial networks, whose structural
organization deeply affects their resilience to events like default cascades, shocks prop-
agation, etc. Several methods have been proposed, so far, to detect communities, i.e.,
groups of nodes whose internal connectivity is significantly large. Communities, how-
ever do not represent the only kind of mesoscale structures characterizing real-world
networks: other examples are provided by bow-tie structures, core-periphery structures
and bipartite structures. Here we propose a novel method to detect statistically signif-
icant bimodular structures, i.e., either bipartite or core-periphery ones. It is based on a
modification of the surprise, recently proposed for detecting communities. Our variant
allows for bimodular nodes partitions to be revealed, by letting links to be placed either
1) within the core part and between the core and the periphery parts or 2) between the
layers of a bipartite network. From a technical point of view, this is achieved by em-
ploying a multinomial hypergeometric distribution instead of the traditional (binomial)
hypergeometric one.
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A faster horse on a safer trail: generalized inference for
the efficient reconstruction of weighted networks
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1 Introduction

Network reconstruction is an active field of research within the broader field of com-
plex networks [1, 2]. Among the methods proposed so far, some assume that the con-
straints concerning the binary and the weighted network structure jointly determine the
reconstruction output [3] while others consider the weights estimation step as com-
pletely unrelated to the binary one [4, 5]. Amidst the former ones, a special mention
is deserved by the Enhanced Configuration Model (ECM) [3]; examples of algorithms
belonging to the second group are those iteratively adjusting the link weights on top of
some previously-determined topological structure (e.g. via the recipe firstly proposed in
[6]), in such a way to satisfy the constraints concerning strengths a posteriori. This kind
of procedure, however, assigns weights deterministically, thus being unable to provide
confidence bounds accompanying the weight estimates [7] and basically giving zero
probability to any real-world network. Two-step algorithms also exist [8] that attempt
to overcome the lack of binary information for the estimation of topology: however, they
are characterized by a high computational complexity and only heuristically motivated.

2 Results

Available reconstruction algorithms implement and combine in different fashions the
two estimation steps discussed above. In order to unambigouously asses the goodness
of a given method, we employ the likelihood lnQ(W∗) as a score function, aimed at
quantifying how likely the structure of a given real-world network W∗ is reproduced
by a given algorithm. As shown in table 1 (see also [9]), the probability of reproducing
a real-world structure is either zero (further impliying that lnQ(W∗) =−∞) or rapidly
vanishing as the number of nodes grows.

Here we develop a theoretical framework that provides an analytical, unbiased pro-
cedure to estimate the weighted structure of a network, once its topology has been deter-
mined, thus extending the Exponential Random Graph (ERG) recipe. In our approach,
information about the topological structure (either available ab initio or obtained by
using any of the existing algorithms) is treated as prior information; together with the
proper weighted constraints, it represents the input of our generalized reconstruction
procedure. The probability distribution describing link weights is, then, determined by
maximizing the key quantity of our algorithm, i.e. the conditional entropy
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Method Topology Weights Log-likelihood
MaxEnt D D −∞
Minimum-Density D D −∞
Copula approach P D −∞
Drehmann & Tarashev P D −∞
Montagna & Lux P D −∞
Mastromatteo et al. P D −∞
Gandy & Veraart P D −∞
dcGM P D −∞
MECAPM P P (wi j ∈ N) −∞
fitness-induced DECM P P (wi j ∈ N) −∞
Hałaj & Kok P P ∈ R
Moussa & Cont P P ∈ R
Table 1. Overview of the reconstruction methods reviewed in [1]. The letter “P” indicates that
the considered estimation step is probabilistic in nature while the letter “D” indicates that it is
deterministic (see [9] for the corresponding references).

S(W |A ) =− ∑
A∈A

P(A)
∫

WA
Q(W|A) logQ(W|A)dW (1)

under a properly-defined set of constraints. This algorithm returns a conditional proba-
bility distribution depending on a vector of unknown parameters (say λ ); in alignment
with previous results, their estimation is carried out by considering the generalized like-
lihood

G (λ ) =−Hλ (W∗)− ∑
A∈A

P(A) logZA,λ (2)

(with W∗ representing the observed configuration). In our work, we explore two possi-
ble specifications of the framework above: the simplest - and still most powerful - one
(i.e. the CReMB model) is defined by the conditional, pair-specific weight distribution

qi j(wi j|ai j = 1) = λ i je−λ i jwi j , wi j > 0 (3)

whose tensor λ i j (∀ i 6= j) of unknown parameters is determined by solving the set
of O(N2) decoupled equations 〈wi j〉 = fi j

λ i j
= w∗i j (∀ i 6= j). In fig. 1 we compare the

reconstruction accuracy of the two specifications of our framework.

Summary. The knowledge of the structure of a financial network gives valuable in-
formation for estimating the systemic risk. However, since financial data are typically
subject to confidentiality, network reconstruction techniques become necessary to in-
fer both the presence of connections and their intensity. Recently, several “horse races”
have been conducted to compare the performance of these methods. These compar-
isons were based on arbitrarily chosen metrics of network similarity. Here we establish
a generalised likelihood approach to rigorously define and compare methods for recon-
structing weighted networks. The crucial ingredient is the possibility to input any purely
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Fig. 1. Top panels: comparison between the conditional likelihood function of the CReMA and
the CReMB model (red squares and blue circles, respectively), for the WTW and e-MID. The
reconstruction accuracy obtainable by employing the CReMB model is comparable with the one
obtainable by employing the CReMA model; still, it is achievable with much less computational
effort. Bottom panels: percentage of observed weights that fall into the CI around their estimate.

binary reconstruction method and, conditionally on it, to exploit aggregate information
about link weights in order to unbiasedly reconstruct a weighted network. Our results
indicate that the best method is obtained by “dressing” the best-performing, available
binary method with an exponential distribution of weights. The method is fast, unbiased
and reproduces empirical networks with highest generalised likelihood.
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Andrew Elliott1,2, Angus Chiu2, Marya Bazzi1,3,4, Gesine Reinert1,2 and Mihai
Cucuringu1,2,4

1 The Alan Turing Institute, London, UK
2 Department of Statistics, University of Oxford, Oxford, UK

3 Mathematical Institute, University of Warwick, Coventry, UK
4 Mathematical Institute, University of Oxford, UK

1 Introduction

In undirected networks, core–periphery is a meso-scale network structure typically con-
sisting of a well connected core and a periphery that is well connected to the core but
sparsely connected internally [3, 15, 20]. In [8] we propose a novel generalisation of
core–periphery structure to directed networks. Related approaches which can be ap-
plied to the analysis of directed networks include [2, 18], SBMs [13, 17] and the bow-tie
structure [4].

This extended abstract focuses on one particular core–periphery structure consisting
of four sets (two core sets and two periphery sets) which is constructed as follows. We
split each of the sets in the traditional formulation (one core and one periphery) into
one subset that has only incoming edges and another subset that only has outgoing
edges, yielding four sets, Cin (core-in), Cout (core-out), Pin (periphery-in) and Pout
(periphery-out). Within each of the two core sets (Cin and Cout ) and periphery sets (Pin
and Pout ), we follow the undirected formulation and assume that the two core sets are
fully internally connected, and the two periphery sets do not connect to each other and
do not have internal edges. Directed connections from Cout to Pin, from Cout to Cin,
and from Pout to Cin, are permitted, leading to the structure shown in Fig. 1A. This
structure differs from bow-tie in that bow-tie is a uni-directional flow-based structure.

To detect this structure, we introduce four methods, having different trade-offs be-
tween computational complexity and accuracy. In order of speed, these are: an extension
of the Low-Rank approach from [7] which is based on the singular value decomposition
of the adjacency matrix combined with an in– and out–degree based score (LOWRANK),
an extension of the hub and authority scores of the HITS algorithm to scores for periph-
ery sets from [10] (HITS), a HITS-type score which instead of using hub and authority
scores rewards similarity to the hypothesized structure (ADVHITS), and maximum like-
lihood estimation in an appropriate stochastic block model (MAXLIKE), see also [9].

2 Results
We validate our proposed approaches on three synthetic benchmark network data sets,
and compare their performance to the general methods SAPA [16], Di-Sum [14], Graph-
Tool [11, 12] and simply the in-and out-degrees. We observe that our specialised ap-
proaches perform at least as well as the general methods with similar run times. They
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Fig. 1. A Network Diagram detailing our hypothesised ‘ideal’ structure. B Partition of the Polit-
ical Blog Data by our ADVHITS method. C Comparison between the undirected core periphery
structure and our directed core periphery data using our ADVHITS method on Political Blog Data
from [1]. D Partition of the Computer Science Faculty Hiring Data by our MAXLIKE method.

often outperform the general methods when the planted structure is particularly weak,
highlighting the effectiveness of using specialised techniques for the proposed structure.

Next, we apply our methods to a network of political blogs from [1], and a faculty
hiring network from [5]. In both cases, we test if the structures are statistically signifi-
cant with respect to a directed Bernoulli random graph null model, and with respect to a
directed configuration model null model. In both examples, ADVHIST and MAXLIKE
yield significant differences. These methods are then used for the structure detection.
For space reasons, we illustrate the results only for one method per network.

In the political blogs data set [1] (division shown in Fig. 1B), ADVHITS gives a
division of the classically undirected core into two components (see confusion table in
Fig. 1C), a Cin core and a Cout core. The Cin core turns out to contain relatively few
‘blogspot’ sites; these are free blogging sites which require less expertise to set up than
a full website. We hypothesise that the Cin core has a relatively high proportion of au-
thorities which are highly referenced (with high in-degree), whereas Cout core contains
mainly blogs which link to a large number of other blogs (with high out-degree).

In the faculty hiring data set, our MAXLIKE approach (division shown in Fig. 1D)
uncovers the expected structure from [5] with Cout representing the top research uni-
versities and Pin representing the remaining universities hiring faculty from the top
institutions. The set Cin turns out to consist of Canadian universities which have a large
number of links with the top US schools, but also appear to strongly recruit from other
Canadian schools in Cin. This structure was not previously uncovered.

Summary. We introduce a novel directed core periphery structure, with two cores and
two peripheries, and four algorithms to detect this structure, with different time quality
trade-offs. All of these algorithms are able to uncover the structure in a synthetic model,
and often outperform classical methods.

Our methods reveal previously unobserved structures in two real-world data sets. In
the political blogs data set, we find a division of the known undirected core–periphery
into what may be an authoritative core and what may be a less authoritative core. In the
faculty hiring data, in addition to the structure observed in [5], we find a separate core
which corresponds to Canadian Universities who attract academics from high-ranking
American institutions, but also strongly recruit from other Canadian schools.
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Thus, the directed core–periphery structure is a structure which is able to reveal
interesting features in real data sets and thus warrants further investigation, including
more detailed comparison with other approaches.

References
1. Adamic LA, Glance N. 2005 The political blogosphere and the 2004 US election: divided

they blog. In Proceedings of the 3rd international workshop on Link discovery pp. 36–43.
ACM.

2. Beguerisse-Dı́az M, Garduno-Hernández G, Vangelov B, Yaliraki SN, Barahona M. 2014
Interest communities and flow roles in directed networks: the Twitter network of the UK
riots. Journal of the Royal Society Interface 11, 20140940.

3. Borgatti SP, Everett MG. 1999 Models of core/periphery structures. Social Networks 21,
375–395.

4. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J.
2000 Graph structure in the Web. Computer Networks pp. 309–320.

5. Clauset A, Arbesman S, Larremore DB. 2015 Systematic inequality and hierarchy in faculty
hiring networks. Science Advances 1, e1400005.

6. Csermely P, London A, Wu LY, Uzzi B. 2013 Structure and dynamics of core/periphery
networks. J. Complex Networks 1, 93–123.

7. Cucuringu M, Rombach P, Lee SH, Porter MA. 2016 Detection of core–periphery struc-
ture in networks using spectral methods and geodesic paths. European Journal of Applied
Mathematics 27, 846–887.

8. Elliott, A., Chiu, A., Bazzi, M., Reinert, G., Cucuringu, M. (2019). Core–Periphery Structure
in Directed Networks. In preparation.

9. Karrer B, Newman ME. 2011 Stochastic blockmodels and community structure in networks.
Physical Review. E 83, 016107.

10. Kleinberg JM. 1999 Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM) 46, 604–632.

11. Peixoto TP. 2014 Efficient Monte Carlo and greedy heuristic for the inference of stochastic
block models. Physical Review. E 89, 012804.

12. Peixoto TP. 2014a The graph-tool python library.
13. Peixoto TP. 2013 Hierarchical block structures and high-resolution model selection in large

networks. Phys. Rev. X 4.
14. Rohe K, Qin T, Yu B. 2016 Co-clustering directed graphs to discover asymmetries and direc-

tional communities. Proceedings of the National Academy of Sciences 113, 12679–12684.
15. Rombach P, Porter MA, Fowler JH, Mucha PJ. 2017 Core-Periphery Structure in Networks

(Revisited). SIAM Review 59, 619–646.
16. Satuluri V, Parthasarathy S. 2011 Symmetrizations for clustering directed graphs. In Pro-

ceedings of the 14th International Conference on Extending Database Technology pp. 343–
354. ACM.

17. Snijders TA, Nowicki K. 1997 Estimation and Prediction for Stochastic Blockmodels for
Graphs with Latent Block Structure. Journal of Classification 14, 75–100.

18. Travencolo, B., Viana, M., da F. Costa, L. (2009). Border Detection in Complex Networks.
New Journal of Physics. 11. 10.1088/1367-2630/11/6/063019.

19. Tudisco F, Higham DJ. 2019 A nonlinear spectral method for core–periphery detection in
networks. Siam Journal of Data Science 1, 269–292.

20. Zhang X, Martin T, Newman ME. 2015 Identification of core-periphery structure in net-
works. Physical Review. E 91, 032803.

286

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Friendship Concept and Community Network Structure
among Elementary School and University Students

Ana Marı́a Hernández-Hernández1, Marı́a Dolores Viga-de Alba2 Rodrigo
Huerta-Quintanilla, Efrain Canto-Lugo, Hugo Laviada-Molina, and Fernanda

Molina-Segui

1 Centro de Investigación y de Estudios Avanzados del Institute Politécnico Nacional, Unidad
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1 Introduction

Friendship, as a historical phenomenon, is complex, dynamic, and sensitive to influence
[1, 2]. Social scientists have found that the concept of friendship is not as simple as we
may think but depends on several variables [3–5]. Friendship, identified as a basis of hu-
man and psychological wellbeing [6, 7], is influenced by several environments in which
people interact with each other, with their families, and with other social communi-
ties such as schools, churches, neighborhoods, etc. In this study, we adopt an approach
that allows us to develop a context for the findings reported concerning friendship, the
kind of effects that are produced across a social networks structure, and the commu-
nities defined in social network analysis [8–10]. We analyze four friendship networks,
three from elementary schools and one from a university. Two of the three elementary
schools are in rural areas. The first two elementary schools are public schools located in
Temozón South and Abalá, Yucatán, respectively. Those are rural areas where the prin-
cipal activities are commerce, agriculture, construction, and manufacturing. The third
elementary school is a public school located in the urban area of Mérida, Yucatán. The
university in which we conducted our study is a private one, located in Mérida, Yucatán.
In this work, we are interested in identifying how communities emerge in the presence
of friendships and mixed links (relatives considered also as friends), and also we were
looking for differences in the communities composition and topology of the networks
according to where the schools are located and the socioeconomic position of those
locations. To do this we employ Newmans algorithm for all four networks. We consider
this study important because it allows us to provide an analytic and computational basis
to observational studies, thus providing the opportunity to engage in interdisciplinary
work and open new lines of research for applied physics.

2 Results

The collection of data was done through a survey. At elementary schools, the surveys
were applied on paper due to the participant’s ages and the limited access to the internet,
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especially in rural areas. For university students, the same instrument was applied us-
ing a web platform designed for that purpose. Each student individually fills the survey
(under the supervision of interviewers) using a computer. Once the data were acquired,
the adjacency matrix was constructed taking into account that the links should be con-
firmed, it means if the participant i mention participant j in the survey, the link exists
only if j also mentions i. This confirmation was done to avoid bias in the study. In ele-
mentary schools, relatives were also considered as friends (mixed links) by the students.
The three elementary school networks are all connected if the mixed links are consid-
ered. If we do not consider these links, the networks corresponding to schools 2 and 3
become disconnected. On the other hand, the university network is disconnected and is
formed by 61 components. We calculate the communities from the largest component
of the network. We start the network analysis by calculating main properties such as the
average degree k, the clustering coefficient C, and density ρ . We observed that elemen-
tary schools networks have large values of k compared with the university network. One
interesting thing about the rural schools is that they have a large number of mixed links
because of the siblings and relatives that students have on school, and also consider be-
ing friends. It is a large difference between the two rural schools and the urban school
in terms of the mixed links. To find the community structure of the networks, we used
Newmans algorithm [11, 12] and investigated the relationship between the friendship,
family ties and that structure. On the urban elementary school, eight of the twenty-five
communities found were similar to classrooms composition (the initial grades of schol-
arly). In contrast, the communities found in rural areas were a mix of students from
different classrooms. We also considered the networks and the communities obtained
where mixed links are not considered (figure 1). Once the mixed links were removed
some communities start to be closer to the classrooms. Mixed links are the ones that
help to establish a connection between classrooms and breaks in a way the spatial con-
finement. For this reason, when the mixed links are removed, some communities show
similar composition to classrooms.

Fig. 1. Giant component of Elementary School network and its communities without mixed
links E2(NF). A. The giant component has ng = 221 (nodes), mg = 536 (links) and kg = 4.85. B.
Communities detected in the giant component.(doi:10.1371/journal.pone.0164886.g006).
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Therefore, according to the results, spatial confinement favors the formation of friends
at elementary school. Most of students’ friend (in elementary schools) are from the
same classroom. With university students, it is a different situation. These students have
a more defined concept of friendship and therefore do not necessarily consider class-
mates as friends. One may conclude that spatial confinement has no relevance to having
a friend at the university. Even though we also find communities that can be large, most
students are in different classrooms. At this level, we do not have mixed links. One of
the limitations of this type of work is the difficulty of obtaining the data, which is a
lot of work and is a slow process that does not provide all the information we need.
Another limitation is not having all the information about external factors, which im-
plies the need for not only working with students but also with their families. This kind
of work is important to know the network structure of scholar networks for studying
dispersion diseases in the future, especially in a zone like Yucatán (which has tropical
weather and it is a high incidence of diseases like dengue) the study of this structures
can be useful.

Summary. We analyzed the structure and the communities of four friendship networks
and found significant differences among elementary schools and university networks.
In elementary schools, the students make friends mainly in the same classroom, but
there are also links among different classrooms because of the presence of siblings and
relatives in the schools. Once the links between siblings and relatives are removed, the
communities resembled the classroom composition.
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1 Introduction

Our purpose in the current work is to determine an extremal index (EI) of the particular
node for the given directed graph G = (V,E). In the context of random graphs the EI
metric indicates the ability of a randomly selected node to attract highly ranked nodes in
its orbit. The stationary sequence {Xn}n≥1 with the distribution function F(x) is said to
have EI θ ∈ [0,1] if for each 0 < τ < ∞ there is a sequence of real numbers un = un(τ)
such that it holds mixing condition D(u) and

lim
n→∞

n(1−F(un)) = τ, lim
n→∞

P{Mn ≤ un}= e−τθ , (1)

where Mk,l = max{Xk, . . . ,Xl},0 ≤ k < l, Mn = M0,n−1 [1]. The EI shows relations
between the distributions of extremes and a random variable [1]

P(Mn ≤ un) = (F(un))
nθ +o(1),n→ ∞. (2)

On the first side, an assumption can be made that the node EI is a measure of the current
node dependence on neighbours in the graph G. On the other hand, the consideration
were given in [2] that PageRank in random graph is an autoregressive process with
random coefficients and a random depth of dependence on it. By Google’s definition
[3] PageRank (PR) is determined as the rank R(pi) = Ri of node (Web page) pi by

R(pi) = ∑
p j∈N(pi)

c
D j

R(p j)+(1− c)qi, i = 1,v, (3)

where N(pi) is the set of incoming nodes, D j is an out-degree of node p j, c ∈ (0,1) is
a damping factor (c = 0.85 as an average probability to browse a web-page connected
with current one [3]), qi ≥ 0 is a node personalization, v = |V |. Thus, local graph struc-
ture can be defined as branching tree with the investigated node as a root, a kind of
Thorny Branching Tree (TBT) [4], based on PageRank relations between nodes. That
means the node EI value should be found with an attribute sequence {Xn}n≥1 for nodes,
belonged to the associated node TBT. The following algorithm of the node EI estima-
tion contains description of the mention below assumptions [6, 7]:

0The reported study was partly funded by RFBR, project number 19-01-00090 (recipient
N.M. Markovich, conceptualization, mathematical model development, methodology develop-
ment; recipient M. S. Ryzhov, numerical analysis, validation
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1. Estimate the PR (3) values of each graph G = (V,E) node by the chosen method.
2. For the chosen node pi receive a node sequence {p jk : k ≥ 1, p j1 = pi} associated

with the sequence of the k largest values {ε i
jk
> 0}k≥1, where

ε i
j =





1, pi = p j,
cs−1R j

∏s−1
m=1 D jm Ri

, ∃(p j1 , . . . , p js) = min{(p j1 , . . . , p j f ) :

∀m = 2, f → (p jm−1 , p jm) ∈ E, p j1 = p j, p js = pi},
0, otherwise.

(4)

3. The EI value is empirically calculated by an appropriate estimator. The commonly
used estimator is the blocks estimator [5] for sequence of interesting nodes at-
tributes

θ̂Bl,n(u) =
n∑l

i=1 I
(
M(i−1)r,ir > u

)

rl ∑n−1
i=0 I(Xi > u)

, (5)

where r = [ n
l ] is a block size, l is a number of blocks. According to sliding blocks

model [7] if a node attends in different blocks, its copy should be added in each one
(as on Fig. 1). Here a block is a group of the graph nodes having incomming edges
with the same parent node. Level u is chosen with the bootstrap method [6].

4. Estimate the EI of the enlarging length k,k + 1, . . . node sequence until a stable
value is reached.

Fig. 1. Examples of the block definition by sliding blocks model.

2 Results

The EI was estimated by (5) for each node with the sequence of PageRanks (3) θPR,
personalisations θprs and in-degree counts θind provided by the local TBT. As in [7]
it were received that θPR = 1− 1

E(Ni)
or θPR = 1

E(Ni)
, where E(Ni) is an average node

in-degree value in TBT.

θPR =

{
θprs, i f αprs ≥ αind ,

θind , otherwise.
(6)
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Here αprs and αind are the tail indexes of personalisations and in-degree distributions in
node TBT. The latter outcome is in agreement with the results of [2] and [10], where a
heaviness of PRs distribution is equal to the heaviest one from in-degree and personali-
sation distributions.

Fig. 2. Plots of the EI value for PR versus the EI value for the personalisation (grey dots) and the
in-degree value (black dots) for the particular graph node. Graph is generated with Forest Fire [8]
(left) and Erds-Rnyi [9] (right) models.
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1 Introduction

A taxonomy is a hierarchically organized categorization of concepts or entities, for ex-
ample a Wikipedia category, an ACM Classification System, or an Amazon Product
Category. For a great many companies around the world domain-specific taxonomies
form a crucial component of the provision data-driven solutions: they can help in search
optimization, browsing, organization and storage of information, and much more be-
sides. However, the creation of taxonomies is invariably a highly manual process which
is time-consuming, expensive and generally unsustainable at scale, especially in fast
changing domains (e.g. news and certain products), therefore an effective method of
automated taxonomy generation could be highly valuable. Automated taxonomy build-
ing has been well researched in the recent years. Most approaches apply NLP tools to a
text corpus e.g. [2], some of them utilize knowledge-graphs, e.g. [5], like Wikipedia or
WordNet, while others combine the previous approaches e.g. [3].

In this work we provide a simple, Wikipedia knowledge graph-based methodology
to build topic focused taxonomies. We utilize the Wikipedia graph and regard the taxon-
omy construction as a series of basic graph algorithms performed using topic-specific
seed input nodes. Our case-studies demonstrate that the method performs well in gen-
eral with respect to standard statistics derived from comparison with expert-curated
manual taxonomies.

2 Methods and results

We construct the Wikipedia-based knowledge graph proposed and deployed by Aspert
et al. [1] available at https://lts2.epfl.ch/Datasets/Wikipedia/. This graph is a directed
multigraph with multiple nodes and edge types. Specifically, there are two classes of
node which represent either Wikipedia articles or Wikipedia category articles (i.e. cat-
egory pages). These in turn may be connected by two classes of directed edge which
represent ‘links to’ and/or ‘belongs to’ relationships. A ‘links to’ type edge connects
two nodes if a hyperlink exists between the corresponding articles (the direction of the
edge is straightforward), while a ‘belongs to’ type edge represents a hyperlink between
an article node or (sub)category node and a category node. For illustration, see Fig. 1.
The graph is stored in a Neo4J graph database; for detailed description of the graph
structure and other technicalities, see [1].
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Fig. 1. Wikipedia graph structure. Blue (black) nodes: articles (as input). Green nodes: category
pages. Black edges: hyperlinks connecting articles. Red edges: hyperlinks connecting articles or
subcategories and parent categories.

2.1 Entity selection

The taxonomy generator is initialized with a collection of Wikipedia article type nodes
P = {P1,P2, . . .} and Wikipedia category type nodes C = {C1,C2, . . .} which we pro-
cess according to the following steps.

1. Construct a set P = {P1
1 ,P

1
2 , . . . ;P2

1 ,P
2
2 , . . . ; . . .} of all nodes which have a ‘link to’

edge to one or more of the input pages, P.4

2. Start a depth-first traversal over each node P j
i ∈P for all ‘belongs to’ type outgo-

ing edges from P j
i . At the first level this will result in the set C j

i = {C j
i,1,C

j
i,2, . . .}

of categories which the page P j
i “belongs to”, at the second level the set of higher

‘super’-categories of categories in C j
i will be reached, and so on.)

(a) If for a category node C j
i,k, found during the traversal process C j

i,k ∈C is satis-

fied, then add P j
i to a “filtered” entity list L ;

(b) Else, go to step 2, until all elements of P have been iterated over.

Note that in step 2. a stop criteria is required to restrict the maximum depth of the
traversal process due to performance issues. In our experiments the criteria was set to a
maximum depth level of four starting from the root node, provided that a category page
in C had not already been reached.

2.2 Taxonomy creation

The next step is to classify each entity e∈L with a category and to provide a hierarchi-
cal category organization. For each e let Ce be the set of categories which e belongs to,
that is, the neighborhood of e based on its outgoing ‘belongs to’ type edges. Note that
Ce is determined in step 2 of the entity extraction process. Let C be the set of all distinct

4After this step a fast filtering procedure can be applied by simply deleting any nodes from
set P for which the node’s corresponding Wikipedia page name either begins with a number
(i.e. “2019 in tennis”) or contains the terms “by year”, “of the year”, “List of”, or “ in ” (i.e.
“Tennis in Hungary”).
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Taxonomy/category TP/ Gold Players TP/Gold Teams TP/Gold All cat. All Auto
American football 90.65 (97/107) 100 (32/32) 74.59 (138/185) 4,068
Basketball 89.15 (403/452) 100 (30/30) 89.67 (443/494) 5,526
Motorsport 88.38 (784/88) – 86.12 (807/937) 5,862
Soccer 79.8 (399/500) 48.83 (294/602) 62.96 (731/1161) 3,096
Tennis 75.45 (206/273) – 67.17 (262/390) 2,077

Table 1. Coverage (ratio of true positives of automatically extracted entities and manually defined
gold standard entities) results for several sports related taxonomies.

categories in
⋃

e∈L Ce. We define a bipartite graph over the disjoint node sets L and
C , where e ∈L and c ∈ C are connected if e belongs to category c ∈ C . Then, starting
from c with the highest degree we greedily assign entities to categories step-by-step
by removing the assigned entities and corresponding category in each step. Finally, to
organize categories into a proper hierarchy one may use a pruning heuristics used e.g.
in [4]

2.3 A case-study and evaluation

Domain-specific taxonomies are usually evaluated either by comparing them to manually-
built (Gold Standard) taxonomies or by requesting feedback from experts in the field.
One of our case-studies is targeted to build a taxonomy covering various sports.5 Ta-
ble 1 shows our experimental results regarding coverage (recall) values comparing the
Gold Standard and automated taxonomy methods. It is noteworthy that the automated
method finds many more relevant entities than the Gold Standard, however, for the pur-
poses of this investigation this is a secondary concern to the primary aim of achieving
a high recall compared to the Gold Standard. The high-precision reduction of irrelevant
entities from the auto taxonomy (false positives) remains for future work.
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1 Introduction

Networks have become a popular representation for systems where distinct parts of the
system are known to interact in a similar way. From the interaction between those parts
we sometimes witness the emergence of a global behaviour which is not the sum of the
atomic behaviours of each of those parts. We call those parts nodes and the interactions
between them links. But for many complex systems, such as the neurological, financial
and climate systems, we are not able to observe pairwise interactions directly and the
researcher needs to resort to other means to infer the presence or absence of direct in-
teraction between nodes. Once constructed, the network representation provides access
to a range of network science tools and measures that can be used to characterize those
systems.

There exist many ways to reconstruct a network. Most involve selecting a measure
of similarity to compare the node signals and then selecting the most significant pair-
wise similarities to be represented as edges in the network. However, the reconstructed
network and any subsequent analysis can be sensitive to the choices made in the recon-
struction process, i.e., the measure of similarity, the method of selecting relevant edges
and any parameter setting of the method. But often these choices are made arbitrarily
and with little consideration of how sensitive results are to these choices. For instance,
reconstruction methods are often tuned to achieve a arbitrarily specified density [1], ob-
taining a single connected component and/or to achieve a certain property, such as being
small-world enough. Analogously in [2] the authors can set an hard threshold to recover
the small-world property. In [3] the authors checks three values for the regularization
parameter of the graphical LASSO [4] sparsification approach, to reconstruct a dense,
medium and sparse graph. In [5] the authors show that in certain cases the community
structure of the reconstructed networks does not widely depend on the threshold value
selected. In this work we will explore the sensitivity of network statistics to some of
these choices.

2 Results

We collected a number of time-series from different fields: MRI data for different tasks
(neuroscience), the S&P100 price fluctuations (finance), local temperature changes (me-
teorology), tuberculosis quarterly reports (disease spreading). To compute a similarity
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Fig. 1. Network statistics for different parameters of the sparsification method. The statistics fluc-
tuate widely in the range of the sparsification parameter considered (the threshold value, the
number of neighbours, the regularization parameter in graphical Lasso). Network statistics are
computed on the giant component only, we use a solid line when the reconstructed network is
composed by only one connected component. The network reconstruction is applied to the tuber-
culosis reports (quarterly) in health facilities in a sub–Saharan region.
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measure between the time-series we select among several possibilities a popular ap-
proach that is both simple and pervasive: the Pearson’s correlation.

To reconstruct the network from the similarity measure, and thus extract a sparse
adjacency matrix, one has to choose which edges should be retained from all possible
node–pairs. To this aim we apply a number of popular sparsification processes to the
correlation matrix of the original time-series: (i) a fixed threshold; (ii) the k-nearest
neighbours; (iii) the graphical Lasso [4]. In each case we consider undirected and un-
weighted networks without self-loops. In Figure 1 we visualize the network statistics
in the case of tuberculosis reports in a sub-Saharan region, where each time-series rep-
resents a health zone in that region. For each reconstruction method we compute the
modularity of the community structure found by the Louvain algorithm, the clustering
coefficient, the average shortest-path length, the assortativity coefficient, the Gini [6]
coefficient and the link density, all as function of the sparsification parameter. The net-
work statistics of the reconstructed networks show wide fluctuations within the mean-
ingful range of the sparsification parameters for all the reconstruction approaches. De-
spite the community structure may be robust [5], one can see the the modularity increase
to almost double its value as the network gets more and more sparse and the weakest
edges get removed. Similar analysis with similar results is performed for other datasets:
the time-series of daily highest temperature reported in a number on US cities, the MRI
scan of patients performing different tasks, the market values of the hundred leading
US stocks in the S&P100 index.

Summary. From temporal activity data such as disease incidence reports, daily temper-
ature and others, we perform sparsification of similarity matrix as found in many works
in the literature in order to reconstruct the underlying network structure. The statistics of
such reconstructed networks highly depend on the value of the sparsification parameter.
Further work is necessary in this field to link analysis of temporal datasets to complex
network techniques.
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1 Introduction

Making predictions about the unobserved behaviour of natural and social systems is a
key element for scientific advancement. The massive generation of data in the society
of information and the development of Machine Learning tools, provide an excellent
opportunity to test our ability to make predictions in many different fields. In general,
this is accomplished by exploiting patterns and regularities in those data with the aid of
computer algorithms.

However, these algorithms are often difficult to interpret in their results and internal
functioning. Our goal is precisely to develop models and their corresponding algorithms
that make accurate predictions in a variety of contexts, but are easily interpretable. We
consider two different datasets: one corresponding to a social experiment on strategic
decision making, and another one consisting of the microbial content of human gut
samples. The first dataset consists of a recent large-scale study of individuals playing a
variety of 121 dyadic games in a controlled setting [1]. The second one is the result of
a microbial analysis of stool samples of 883 patients.

In both cases, the data can be represented as a bipartite network with different types
of links: there are two kinds of nodes in each set and interactions happen between nodes
of different types; players perform a specific action when playing a game in the first ex-
ample, and patient stool samples have a certain concentration of a specific microbe in
the second example.

The common trait in both of these examples is that we expect that there are patterns
in the way people play games and in the way microbes are distributed in a sample. We
also expect that there is a finite set of patterns so that there exist groups of people that
tend to perform the same type of action in the same games, and in the same way we
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expect that there are groups of people who have similar concentration profiles of mi-
crobes in their gut. These common patterns can be thought of as being phenotypes that
characterize individuals in different contexts. Our models thus work on the assumption
that there exist groups of nodes in these networks. We capture them by exploiting the
commonalities that exist in the behaviours of players or microbial profiles of patients
(that is, in the connectivity patterns of nodes). Additionally, we can apply this mech-
anism to define groups of games and microbes. As a result, both problems considered
can be tackled with the same group-based modeling approaches.

We implement two different models that belong to the Stochastic Block Model
(SBM) family. The first one is a single phenotype model. Here, we consider that each
person or microbe belongs to a single group and we look for the most plausible partition
of groups. This partition is the one that maximizes the likelihood of the system and we
use a simulated annealing to find it. In the second model, we allow nodes to belong to
different groups simultaneously with different weights. That is, people and games or
microbes have mixed memberships to different groups. As a consequence, groups are
not any longer subsets of nodes. The membership profiles are encoded in what we call
mixing vectors and we use an Expectation-Maximization algorithm to find the mixing
vectors corresponding to the maximum likelihood. In both models, only three parame-
ters are required: two vectors to track the membership of nodes to different groups or
phenotypes (one vector for each species of nodes), and a matrix encoding the proba-
bility of connection between phenotypes. Therefore, it is very easy to understand why
or why not the models succeed at making predictions by looking at these parameters.
Furthermore, it is possible to analyze the dynamics of the system looking at the matrix
of connections.

2 Results

Our results show that it is indeed possible to make reliable predictions on both problems
highlighting the versatility and robustness of our inference approaches (Fig. 1 [a-b]).
Not only that, but our results are easily interpretable in the single phenotype model as
well as in the mixed phenotype one, which allows us to understand why predictions are
accurate and to unveil key aspects of the underlying dynamics of the systems.
In the case of games, we conclude that (i) the perception of games by individuals is at
odds with what should be expected from game theory; (ii) individuals tend not to follow
single strategies, but rather mixtures of multiple strategies (Fig. 1 c ).
In the case of microbes, we observe a well defined ecological order among groups of
microbes and patients, characterized by the existence of increasing levels of specializa-
tion in their interactions (Fig. 1 d ). This structure is called nestedness and it’s very
common in mutualistic networks. However, nestedness has not been observed in micro-
biome related systems before, at least to our knowledge.
As for the models used, we conclude that the mixed phenotype approach yields higher
predictive accuracies and better interpretability regarding the interaction of different
groups, albeit a higher number of parameters is generally required.
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a) b)

c) d)

Fig. 1. (a) Predictive accuracy of the baseline model (red), the single phenotype (orange) and the
mixed phenotype model (blue) for the game experiment. Each bin represents the average of a
5-fold cross-validation; error bars indicate the standard error of the mean. (b) Predictive accuracy
of the mixed phenotype model for the human gut microbiome problem. Each circle represents
the average of a 5-fold cross-validation for a given combination of K groups of patients and L
groups of microbes. The black solid line indicates the baseline model. We observe a gradual
and moderate increase in the predictive accuracy that saturates around K = 10, L = 20. (c) The
relation of communities of patients and communities of games can be regarded as a set of latent
strategies, indicating the behavioral pattern of groups of players towards groups of games. (d) The
interaction between latent groups of patients and microbes shows a nested structure; specialist
groups of patients contain a small subset of groups of microbes that are subset of those contained
by more generalist groups of patients.

(1)
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Egocentric networks (egonets) are fundamental units of human social networks.
Thus, studying their structure helps to understand not only properties of people’s per-
sonal networks, but also those of whole social network. An egonet consists of the ego
as central node and his contacts (alters) connected to him via links. The structure of
egonets and their evolution over time has been studied before. However, the majority of
these studies investigate their evolution by comparing a few network snapshots [1], [2].
Here, to get more detailed insights on the dynamics of evolution of egonets, we study
changes in egonets with high resolution, focusing on the dynamics of alter ranks.

The structure of egonets is often rather hierarchical, with few strong and many weak
ties [3], [2], [4], [5]. The reason is that people divide their social attention heteroge-
neously among their contacts: a few alters get most of the communication time while
the rest is distributed among many. Even though egonets are hierarchical, it seems that
such hierarchies are not stationary in their composition and order. This was for instance
reported in Ref. [2] where the observation timeline is divided into theree 6-months long
consecutive periods and for each ego and each period the aggregated weighted egonet
is constructed from phone call data. Following evolution of egonets, the study reports
that from one period to the next, on average around 30% of top 20 alters are new. The
mean turnover percentage is even higher for the complete egonets.

Large turnover in the membership of personal networks in consecutive time win-
dows indicates that egonets are highly dynamic: social ties often decay or strengthen
over time. Moreover, contacts on even stable and persistent ties are bursty [6], [7].
Here, instead of merely comparing snapshots of aggregated egonets, we closely fol-
low the dynamics of egocentric networks with the highest possible resolution: event by
event. To do so, we use a large mobile-phone call detail record (CDR) dataset which
contains outgoing calls and text messages of egos during a 7-month period.

To form the timeline of an call egonet, we add call events one by one in chronolog-
ical order. Therefore the link weights in the egonet (or the scores of alters) at time t are
defined as the cumulative volume of communication since the beginning of the obser-
vation period, ts. Fig. 1 shows the time evolution of the scores of alters of an example
ego—one can clearly observe how some alters increase their rank through accumulating
a lot of communication time.

Given the communication scores of alters of an ego at each time, t, we can rank
the alters based on their scores. Then we can use a rank diversity measure to get an
overview of the competition of alters in an egonet. Normalized rank diversity dr(ts, te)
of rank r is a measure of the number of unique elements which have been occupying that
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Fig. 1. The total time an ego has spent on phone with each of her alters from the beginning of data
collection period till time t as a function of t. Here, we can observe how alters overtake others
in terms of aggregated communication time. The heterogeneity of time allocation is also clearly
visible, with one alter receiving a large fraction of communication.

rank between start time ,ts, and end time ,te, and is defined as dr(ts, te) := Nr(ts,te)
N(ts,te)

, where
N(ts, te) is total number of alters that an ego has contacted during the whole period and
Nr is number of alters who have occupied rank r in that period.

Plotting the rank diversities of egos as a function of (normalized) rank reveals that
they generally have a parabolic shape (see fig. 2). This means that the highest and lowest
ranks are visited by a few alters only, while most of the dynamics is going on in the
middle ranks. This is different from the rank diversity curves observed in the context
of usage-frequency of words in languages [8] or in competitive sports [10] where the
bottom ranks have high diversity scores.

Our results point out that there might be a general mechanism that rules the rank
dynamics of egocentric networks as they often have a parabolic rank-diversity curves.
Nevertheless, we observed variation across the population which suggests that varia-
tions in the shapes of rank diversity curves might also be related to personality trait
or demographic attributes of egos. For future research, we are interested in building
models of communication which can explain the observed parabolic shape and also in
searching our data for any correlation between attributes of egos and the specific shapes
of their rank diversity curves.
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Fig. 2. In blue, you can see normalized-rank diversity curve of an example ego as a function of
normalized rank. If the rank set in an egonet is {1,2,8 . . . N}, then { 1
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sponding normalized rank set. Defining normalized rank makes ranks across egonets of different
size comparable and enables us to calculate population- average. In red, you can see population
average of normalized rank-diversity (sample size 8000) as a function of normalized rank which
has an almost perfect parabolic shape. The errorbars are equal to one standard deviation.
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1 Introduction

Recognition of authorship and literary style of a writer has been a frequent subject of in-
vestigation. Today, a new approach to representing and modeling complex systems has
gained strength and has proven powerful: complex networks. They have modeled many
real systems from the internet to the human body, including texts. The most used textual
network for recognition of authorship is the co-occurrence of words. In this paper, we
study a Latin text network to obtain authorship verification [2, 1]. The Latin texts are
from Historia Augusta, a collection of biographies of Roman emperors extending from
Hadrian (117-138) to Carus (282-83) and his son Carinus (283-285) and Numerian (283
(284), and ours. Traditionally, the work is attributed to six different authors (collectively
known as the Scriptores Historiae Augustae). The true authorship of the work, its actual
date, its reliability, and its purpose, have long been matters for controversy amongst his-
torians and scholars, ever since Hermann Dessau in 1889 rejected both the traditional
date and authorship. The objective of this work is to verify the hypothesis that the attri-
bution of authorship of the texts is correct (six authors) or that all texts were written by
one author.

We construct a method that combines traditional measurements and complex net-
work measurements. Traditional methods that use frequency of words, characters and
character bigrams like Stylo with R and k-means. K-means is a partial algorithm that is
the most commonly used because is fast and produces good results, see fig 1 for Latin
Ha.

The proposed method for authorship attribution is based on the evolution of the
topology of networks, i.e. we exploit the network dynamics[4]. Therefore, unlike previ-
ous approaches we do not construct one single network from the whole book. Instead,
a book is divided into shorter pieces of text [3] comprising the same number of words.
Then, a co-occurrence network is constructed for each part, which generates a series of
independent network for each book.

In fig 2 we present the graph for the following words co-occurrence: duobus, duobus
− > liberis, liberis− > quos, quos− >SeptimiusSeverus, SeptimiusSeverus − >reliquit , reliq-
uit − >Getam,Getam− > et , et− >Bassianum, Bassianum − >quorum, quorum − >unum,
unum−> Antoninum, Antoninum−> exercitus, exercitus−>alterum, alterum−> pater, Pater−>
dixit, dixit− >Geta, Geta− >hostis, Hostis− >est, est− > iudicatus, iudicatus− > Bassianus ,
Bassianus −>autem, autem−> obtinuit, obtinuit−> imperium
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Fig. 1. stylo analysis

Fig. 2. Co-occurrence graph

2 Results

In our work we used two different preprocessing steps before transforming texts into networks,
first we build our graphs by removing all punctuation marks from the text and second we build our
graphs by removing all punctuation marks from the text and all stopwords . Then, a co-occurrence
network is constructed for each part, which generates a series of independent networks for each
book. Each partition is described by the following topological network measurements[5, 6]: clus-
tering coefficient, network diameter, network radius, number of cliques, betweenness centrality,
shortest path length, degree centrality, total number of nodes, total number of edges, the graph
assortativity and (for the first time in a co-occurrence network) the second-smallest eigenvalue
(counting multiple eigenvalues separately) of the Laplacian matrix, the Fiedler value. In fig 3 we
considered a book divided into 182 parts with 500 words each, without stopwords.

Fig. 3. Series of book Graph parametres

To create a mathematical model credible based on complex network parameters, it was neces-
sary to consider other texts whose authorship is known and there is no doubt. In order to compare
with completely different dates and styles, we also considered some Portuguese authors: Jos
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Saramago, Mia Couto, Antnio Lobo Antunes. We introduce a classifier that uses the previously
calculated network parameters. K-nearest neighbors (KNN), that infers the class of an instance by
a voting process over the nearest neighbors in the training dataset. Our experiments on portuguese
books, 3 authors with 3 books each, show that the co-occurrence graphs that we build for each
book, 20 graphs for text peaces of 200 and 500 words, can be well classified with the algorithm
of K-nearst neighbors. Our tests enable us to conclude that this method is very good in detecting
authorship for the portuguese authors. We train the 8 books(2 ALobo, 3 Mia, 3 Sara) and test
with the book of one author (ALobo), each book is represented by 20 graphs characteristics, 500
Words (with stop words).

knn.1 ALobo Mia Sara knn.1 Alobo Mia Sara knn.1 Alobo Mia Sara
ALobo 20 0 0 Alobo 0 0 3 Alobo 0 2 0

Mia 0 0 0 Mia 0 0 1 Mia 0 13 0
Sara 0 0 0 Sara 0 0 16 Sara 0 5 0

Our experiments, see table below, with Historia Augusta, 3 authors (5 texts, 4 texts and 9
texts), for Historia Augusta authors it is not conclusive.

knn.1 AS JC TP knn.1 AS JC TP
AS 8 0 0 AS 0 0 4
JC 6 0 0 JC 0 0 14
TP 6 0 0 TP 0 0 0

For some authors it is possible to recognize the authorship But some tests fail this task
We can observe that we cannot say that there are six different authors, maybe results confirm

that the study in [2] is correct.
Keywords: Latin text Authorship, complex networks, topological parameters, co-ocurrence

networks, spectral clustering.

Acknowledgements This work has been partially supported by (CIMA) through the grant
UID/MAT/04674/2013, by (LISP) through the Grant UID/CEC/4668/2016, both research cen-
ters are supported by FCT (Fundao para a Ciłncia e a Tecnologia, Portugal) and, also, by Dep. de
Matemticas, Escuela Politcnica de Cceres, de la Universidad de Extremadura, Spain.

References

1. TEIXEIRA, Cludia; RODRIGUES, Irene. Deciphering Latin sentences using traditional lin-
guistic resources. Digital Scholarship in the Humanities, 2018.

2. Stover, J. A., Kestemont, M. (2016). THE AUTHORSHIP OF THE HISTORIA AUGUSTA:
TWO NEW COMPUTATIONAL STUDIES. Bulletin of the Institute of Classical Studies,
59(2), 140-157.

3. Tohalino, J. V., Amancio, D. R. (2017, October). Extractive Multidocument Summarization
Using Dynamical Measurements of Complex Networks. In 2017 Brazilian Conference on
Intelligent Systems (BRACIS) (pp. 366-371). IEEE.

4. Newman, M., Barabasi, A.L., and Watts, D.J. The structure and dynamics of networks. Prince-
ton University Press, 2011.

5. Kannan, R., Vempala, S., Vetta, A. (2004). On Clusterings: Good. Bad and Spectral. Journal
of the ACM, v.51, pp. 497-515.

6. J. Leonel Rocha, Sara Fernandes, Clara Grcio and Acilina Canec0, Spectral and Dynamical
Invariants in a Complete Clustered Network, Appl. Math. Inf. Sci. 9, No. 6, 1-10 (2015).

307

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



A Network model of the Chemical Space provides
similarity structure to the system of chemical elements

Eugenio Llanos1,2,3, Wilmer Leal1,2 Andrés Bernal2,4, Guillermo Restrepo2, Jürgen
Jost2, and Peter F. Stadler1,2,5

1 Bioinformatics Group, Department of Computer Science, Universität Leipzig,Härtelstraße
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1 Introduction

The collection of every species reported up to date constitutes the so-called Chemi-
cal Space (CS). This space currently comprises well over 30 million substances and
is growing exponentially[2]. In order to characterize this ever-growing space, chemists
seek for similarity of substances on the CS based on the way they combine[3]. Mendeleev’s
work on chemical elements was based upon his knowledge of the CS by 1869 is per-
haps the most famous example of how the CS determines similarity relations [4]. From
a contemporary point of view, Network Theory serves as a natural framework to iden-
tify these kind of relational patterns in the CS [5]. Nowadays, databases such as Reaxys
have grown to a point where they can be taken as proxies for the whole CS, opening the
possibility to analyze it from a data driven perspective.

In this work we propose to study the similarity of chemical elements according
to the compounds they form. From each compound, we deleted each element to ob-
tain a formula that is connected to the deleted element, v.g. S1/2O4/2, Na2/1O4/1 and
Na2/4S1/4 are formulae coming from Na2SO4 (Sodium sulfate) where Na, S and O,
have been deleted respectively. This form a bipartite graph formed by elements and
those formulae where they have been deleted, We build our network using 26,206,663
compounds recorded on Reaxys up to 2015. Similarity among chemical elements is
constructed analogously to Social Network Analysis, where actors are declared similar
whenever they are connected to the same set of other actors. The more formulae ele-
ments share, the more similar they are. We introduce a new notion of in-betweenness
of elements acting as mediators on similarity relations of others. We analyze the struc-
tural features of this network and how they are affected by node removal. We show that
the network is both highly dense and redundant. Even though it is heavily centralized,
similarity relations are widely spread across a wide range of formulae, which grants
the network extraordinary structure resiliency, even against directed attack. We discuss
some implications of these results for chemistry.
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2 Results

– The network is heavily centralized: chemical reactivity of elements is far from uni-
form, as the degree distribution of elements exhibits three different regions, see
Figure 1(b). The first one is composed by a few elements that concentrate the vast
majority of relations (the first is H, which accounts for 95.9% of formulae, followed
by C 95%.0). The second one is composed by the bulk of elements, which connect
to 10,000-100,000 formulae. The third region corresponds to elements that have a
very low number of molecular formulae.

– Formulae with degree one are mostly connected to central elements: formulae of
degree one correspond to compounds that are unique to one element (singulari-
ties). Eight elements concentrate most singularities (90%) evoke both the singular-
ity principle of the periodic chart and the distinction between organic and inorganic
chemistry. In general, the number of singularities scales semi-linearly with ele-
ment degree (power law with exponent 1.3, see Figure 1(a)). This result shows that
elements tend to be unique as long as more compounds of them are obtained, inde-
pendently of their identity. The more compounds one element has, the less similar
to others it becomes.

– Similarity does not partition the space into clear-cut classes of elements: since for-
mulae generate similarity relations among the elements that are connected to them,
the degree of one formula corresponds to the number of elements it makes similar.
The smoothness of this degree distribution (Figure 1(a)) shows that elements can-
not be divided into clear-cut classes, since otherwise such classes would produce
local maxima corresponding to the sizes of these classes. This result has an interest-
ing chemical implication, as it challenges the usual view of elements as separated
families.

– Element in-betweenness depends on its degree: elements work as mediators of sim-
ilarity relations through the formulae they constitute. Such mediation scales almost
linearly with the degree of the element (see Figure 1(c)). This is a very interesting
feature, since it shows that similarity relations are not concentrated on certain kind
of compounds or manifested by specific elements working as mediators, but are
evident on the entire CS.

– Similarity relations are highly resilient to directed attack: since the network is
highly centralized, deleting random elements should not have a major effect on
the network topology. We instead deleted sequentially elements from the one with
highest degree down to 12 elements and those formulae on which they take part.
Deleting central elements has impact on the degree of the elements and the dis-
tribution goes down on absolute frequency. Notwithstanding, almost all elements
are affected in the same way and the shape of the curve is conserved (see different
data series on Figure 1(b)). The same happens on the degree of formulae, which is
shifted towards the left, but the shape remains (Figure 1(a)).

– Strong and weak similarity relations are the less variant: since our network is
of an epistemic nature, vulnerability can be related to the viability of extracting
knowledge with limited information. To test how variant are the similarity rela-
tions against removal of molecular formulae, we calculated the variance of the rank
of pairwise element similarity (number of length 2 paths between the correspond-
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ing nodes) when keeping only similarities mediated by each element. Surprisingly,
strong and weak similarities have the lowest variance (see Figure 1(d)), showing
that similarities are by no means random but they form a strong structure that stands
across the entire CS, revealing a fundamental nature of these similarity patterns.
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Fig. 1. (a) Distribution of formula degree. Different colors of points correspond to series where
different central elements has been removed. (b) Degrees of elements. (c) Singularities and in-
betweennes vs formula degree. (d) Variance of pairwaise rank position vs average rank position.
Low variance is found on low average rank positions (similar elements) and high average rank
positions (dissimilar elements).
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1 Introduction

Community structure is one of the most organizing properties of real-world networks.
There is no universal definition of the community structure. Yet, it is usually described
as groups of densely connected nodes with loose connections to nodes from different
modules. Two types of community structure can be found in the literature depending on
the nature of nodes. The majority of networks exhibit an overlapping community struc-
ture where nodes may belong to multiple communities [1]. In real-world networks,
hubs are nodes with a number of links that greatly exceeds the average. They play a
major role in terms of information dissemination. In previous work, M. Kumar et al. [2]
used the OverlapNeighborhood strategy to highlight the most connected nodes in the
network. This strategy selects randomly the immediate neighbors of the overlapping
nodes for immunization. It is based on the idea that overlapping nodes are part of sev-
eral communities. Therefore, there is a high chance that nodes with high degrees to be a
neighbor of overlapping nodes. This strategy targets hubs by requiring only information
at the level of overlapping nodes and without the knowledge of the global structure of
the network. It supposes that overlapping nodes are neighbors of the highly connected
nodes. Our aim in this paper is to confirm this assumption. Few studies have been in-
terested in the topological analysis of overlapping nodes [3]. In this work, we try to
measure the proportion of hubs located in the immediate neighborhood of the overlap-
ping nodes. This is in an attempt to understand the relation between the overlapping
nodes and the hubs. Experiments performed on empirical networks with overlapping
community structure show that the hubs represent a large proportion of the immediate
neighbors of overlapping nodes.

2 Materials and Methods

Methods. To study the relationship between the hubs and the overlapping nodes, two
empirical approaches are adopted. First, we compute the proportion of the hubs in the
list of neighbors of the overlapping nodes according to the algorithm 1. If this proportion
is greater than 50%, we consider that a high portion of the hubs are neighbors to the
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overlapping nodes. In the second approach, the Spearman correlation coefficient is used
to quantify the relationship between both hubs and the neighbors of the overlapping
nodes. We consider X and Y as the rank vectors of nodes belonging respectively to the
ordered list of hubs and the ordered list of neighbors of the overlapping nodes. The ranks
are computed according to the degree of nodes. The Spearman correlation coefficient ρ
between the two vectors X and Y is defined as:

ρ(X ,Y ) =
∑(xi− x̄)(yi− ȳ)√

∑(xi− x̄)2 ∑(yi− ȳ)2
(1)

The following ranges are considered to measure the strength of the relation between
the hubs list and the neighbors list: It is a moderate correlation if the coefficient ranges
between 0.5 and 0.7, a high correlation if the coefficient ranges between 0.7 and 0.9,
and a very high correlation if it ranges between 0.9 and 1. Therefore, our hypothesis is
considered verified if both measures have a quite high values. In this case, we confirm
that the hubs are neighbors to the overlapping nodes.

Algorithm 1: Computation of the proportion of hubs in the neighborhood of
the overlapping nodes

Input : Graph G(V,E), Number of nodes n← |V |, List of the overlapping nodes Lo
Output: Proportion of hubs in the neighborhood of the overlapping nodes p

1 Create and initialize the list of neighbors of the overlapping nodes Lon
2 for each v ∈V do
3 Add all the neighbors of the node v to the list Lon
4 end
5 Initialize k the size of neighborhood of the overlapping nodes : k← size(Lon)
6 Sort all the nodes of the network in decreasing order according to their degree
7 Create and initialize the list of hubs Lh
8 Add the top k nodes of the network to the list Lh
9 p←− 0

10 for each v ∈ Lh do

11 if v ∈ Lon then
12 p←− p+1
13 end
14 end
15 p←− p/n
16 Return p

Empirical datasets. A set of four real-world networks is considered to perform a series
of experiments. The selected networks are from various origin (social, co-appearance,
collaboration and e-commerce networks) and different sizes to cover a wide range of
situations. The overlapping community structure of the networks is discovered using
the the Speaker-Listener Label Propagation Algorithm SLPA. This algorithm is chosen
because of its good compromise between the effectiveness and the complexity when
used in many different types of networks [1].
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-Zachary’s karate club: is a social network of friendships between 34 members of a
karate club at a US university in the 1970s.
- Les Miserables: is a coappearance network of characters in the novel Les Miserables.
- ca-GRQC: is a collaboration network which has been collected from the e-print arXiv.
It covers scientific collaborations between authors of papers submitted to the General
Relativity and Quantum Cosmology category.
-Amazon co-purchasing network: This network is collected from Amazon web site. If
a product i is frequently co-purchased with product j, the graph contains an undirected
edge from i to j.

Fig. 1. Karate club network. Nodes with the same color belong to the same community. Nodes in
black represent the overlapping nodes.

3 Results

In this section, we measure the proportion of hubs in the neighbors of the overlapping
nodes. The correlation between the list of hubs and the list of the neighbors of the
overlapping nodes is also computed. The experimental results are performed on four
networks of various nature. The results are reported on Table 1.

313

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Table 1. Statistics and properties of the real-world networks. N is the total numbers of nodes. E is
the number of edges. on is the number of the overlapping nodes. Nc is the number of communities.
p represents the proportion of the hubs in the neighborhoods of the overlapping nodes. c is the
correlation between the list of hubs and the list of the neighbors of overlapping nodes.

Network N E on Nc p(%) c(%)

Zachary’s karate club 34 78 4 2 77.6 99
Les Miserables 77 254 5 5 81.06 97.2
ca-GrQc 4158 13428 1138 667 65,04 94.6
Amazon 334863 925872 81215 75149 68,31 96

Figure 1 illustrate the Karate club network. This network has two communities and
four overlapping nodes (colored in black). It is noticed from this figure that all the over-
lapping nodes are connected to the hubs belonging to both communities. We note that
the size of nodes is assigned according to their degree. Thus, a high fraction of hubs
takes part of the neighborhood of the overlapping nodes in the Karate club network.
Moreover, the proportion of the hubs among the overlapping neighborhood is always
greater than 50% for all the other networks. However, it shows the highest value in net-
works with small sizes. Additionally, for all the tested networks, there is a very high
correlation between the list of hubs and the list of neighbors of the overlapping nodes.
Therefore, a high proportion of hubs are neighbors to the overlapping nodes for the four
tested networks.
To summarize, a set of experiments are performed on empirical networks to character-
ize the relation between the hubs and the overlapping nodes. Results show that a high
proportion of the hubs take part of the neighborhoods of the overlapping nodes. This
confirm the assumption that overlapping nodes are neighbors with the highly connected
nodes of the network. Further analytic work should be performed to define the exact
nature of this relationship.
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1 Introduction

The original (hard) random geometric graph (RGG), as proposed in [1], was created by
generating a Poisson point process (PPP), Φ , on some space, V ⊂Rd , and then placing
an edge between any two nodes a distance at most rc apart. This idea was formulated as
a way of adding a spatial element to the Erdős-Rényi random graph. These RGGs have
been well studied and used in many different applications for which this spatial ele-
ment is important. These include modelling disease spread in social networks, climate,
infrastructure, and neuronal networks. A more general review on spatial networks is
given in [2]. The original idea, however, was to use these graphs to model ad-hoc wire-
less communication systems and this model has been widely used in this area (see [3,
4] for example). The idea in an ad-hoc wireless communication system is that devices
communicate with each other directly, rather than via a central router, therefore allow-
ing for increased mobility and scalability, and removes the single point of failure from
the network. The nodes in our RGG represent users or devices and an edge between any
pair of nodes indicates that communication is possible between these two users/devices.

In the one-dimensional RGG model nodes are distributed on the line according to
some random process and edges are placed between nodes a distance at most rc apart.
One main application has been to vehicular ad-hoc networks (VANETs) [5]. Here the
line represents the road, the nodes represent the vehicles, and an edge between two
nodes indicates that two vehicles are able to communicate with each other.

The model of RGGs has also been extended to look at a non-binary version of con-
nectivity where edges are now created with a probability that is a function of the dis-
tance between the points. These have many different names in the literature but we will
call them “soft” RGGs (SRGG) [6, 7]. These have also been called “random connection
models” and Waxman graphs. This new model adds an extra layer of randomness to
these graphs and also creates a more realistic model of physical networks where con-
nectivity is not as simple as being within a certain distance. This allows us to model
fading into our model in the form of a probabilistic connection function. In this new
model, the point process is now generated in the same way, however now an edge is
placed between nodes in our network with probability H(r) where r is the mutual dis-
tance between the nodes. The general form of these connection functions is that they are
smoothly decreasing from 1 to 0 as r is increasing from 0 to ∞. Since the main applica-
tion of this work is to ad-hoc communication networks and, in particular, to vehicular
communication systems, we have looked at connection functions of the form
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H(r) = exp(−µrη) . (1)

Here η is the path loss exponent and µ is a constant that determines the length scale.
η is based on the type of environment in which our network is placed. Typically for a
line of sight communication, η takes a value of 2, for more dense urban environments η
takes values of 3 or 4 (going as high as 6 or 7 for a city such as Manhatten). A value of
η = 1 would represent an environment in which there are low levels of reflection such
as vehicles in a tunnel. For an overview of possible connection functions for different
wireless communication systems, see [7].

A widely asked question when looking at these graphs is what is the probability
of having a fully connected network. In other words, what is the probability of having
a path (either single- or multi-hop) from every node in the graph to every other node.
When looking at SRGGs in dimension d ≥ 2, a powerful result is given in [6] stating
that in the limit of the number of nodes going to infinity and under certain conditions on
the rate of fading of the connection function, the only obstruction to full connectivity is
isolated nodes. It was also shown that the number of isolated nodes in this graph can be
well approximated by a Poisson distribution. Therefore, to find the probability of full
connectivity, one simply needs to find the probability of having no isolated nodes in the
network, which is given by

P(Niso = 0) = e−E[Niso] (2)

where Niso is the number of isolated nodes in our SRGG. This result, however, doesn’t
hold in the case of d = 1. This is due to the fact that in dimension one, the graphs
can “split” into separate large clusters, a phenomenon not witnessed in the higher di-
mensional version. Therefore, a different method for calculating the probability of full
connectivity is required.

2 Model and Results

For our work, the model is as follows. Generate a Poisson point process of rate = 1
on a line segment of length L. Each pair of nodes is then connected independently
with probability H(r) as defined in Eqn. (1). We concentrate on η = 1,2 which are
respectively called the Waxman and Rayleigh connectivity functions. In our work, we
are firstly looking at a large but finite L and varying µ in our connection function. The
idea of looking at a large but finite L is that this will best represent a vehicular network
on a highway. Secondly, we look at a large L limit in which µ scales with L. Within
these two different regimes, we wish to find the probability of having a fully connected
network. For this to happen, we need to have none of the following three events: isolated
nodes, uncrossed gaps, and splits. These are illustrated in Figure 1.

In the work so far, we have seen that the two dominating factors in connectivity are
the isolated nodes and uncrossed gaps. We have calculated the expected number of iso-
lated nodes in our network and shown via. simulations that the number of isolated nodes
follows a Poisson distribution. This means that we have a very good approximation for
the probability of having no isolated nodes in the network. We have also shown via.
simulations that this same behaviour occurs when calculating the probability of having
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Fig. 1. The three different ways in which a disconnection can occur in our network are isolated
nodes (upper), uncrossed gaps (middle), and splits (lower).

no uncrossed gaps in the network. Since these are the main two contributing factors to
not having a fully connected network, the probability of full connectivity can be ap-
proximated by one minus the probability of having neither of them occur. This leads to
the following equation for the probability of full connectivity in our network model.

Pfc ≈ exp(−E[N0]−E[Nucg]) (3)

where E[N0] and E[Nucg] are the expected number of isolated nodes and uncrossed
gaps respectively.

Summary. In summary, one dimensional soft random geometric graphs are surprisingly
more complicated to analyse than their higher dimensional analogues. Furthermore,
an understanding of one dimensional connectivity is needed for the development of
effective vehicular peer to peer communications networks.
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1 Introduction

The practice of testing hypotheses against a properly specified control case, or null
model, is at the heart of the scientific method. In network science [1], null models
take typically the form of generative models that produce maximally random graph en-
sembles given some specific features [2, 3]. Many successful applications include the
detection of over-represented motifs in networks [4], the quantification of communities
using modularity [5], the detection of rich-club ordering [6, 7] or the characterization
of structural correlations in weighted networks [8]. However, null models for networks
that incorporate geometric information are scarce and mainly focused on spatial net-
works.
In fact, a geometric approach to the structure of complex networks has only started to
be developed recently. A class of these models in hidden metric spaces [9, 10] explains
many pivotal features of real networks simultaneously, including the small world prop-
erty, heterogeneous degree distributions and high levels of clustering. In those models,
the probability of connecting two nodes is determined by their distance in an underly-
ing metric space. This distance is defined along two dimensions representing popularity
and similarity features of the nodes, such that the more popular and the more simi-
lar two nodes are, the greater the chance to interact and be linked. Specifically, in the
well-known S1 model [9], the hidden degree of a node is a proxy for its popularity,
and nodes are assigned angular positions in a circle, such that the angular separation
between nodes provides a measure of their similarity. The hidden degree can be reinter-
preted as a radial coordinate in a hyperbolic plane [11], leading to the formulation of the
isomorphic H2 model. In both geometric network models, S1 and H2, the angular co-
ordinate is uniformly distributed, at odds with the heterogeneous angular distributions
observed in hyperbolic maps of real networks [12–14]. In such maps, clusters of nodes
lying nearby in the similarity space form indeed geometric communities [13, 14]. This
observation opens the door to the use of geometric models with homogeneous angu-
lar distribution as null models for the investigation of the community organization and
other structural properties of real networks.
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Here, we introduce a model for the randomization of complex networks with geo-
metric structure consisting of a rewiring procedure [15] based in the popularity-similarity
S1 network model. The geometric randomization (GR) model, as we named it, preserves
exactly the degree sequence of the input network while completely randomizes the an-
gular coordinates of the nodes. Such randomization of the similarity coordinate supports
the use of the GR as a null model for the analysis of the topological properties of real
networks, including community structure. The GR model assumes the same form of the
connection probability as in the S1 model, and a uniform distribution for the similar-
ity coordinate as well. In contrast, it is fit with a given degree-sequence. Gainfully, the
use of prescribed degrees allows to skip the delicate task of estimating hidden degree
variables from real data. This attribute can help, for instance, in the analysis of features
which are specially sensitive to fluctuations in the degree cutoff, like the behavior of dy-
namical processes such as epidemic spreading or synchronization, or for high-fidelity
reproduction of real network topologies.

2 Results

Based on the premises mentioned above, we propose an algorithm that produces a
randomized version of an original network by homogenizing the angular distribution,
rewiring the links, preserving the given degrees and maximizing the likelihood that the
new topology is generated by the geometric S1 model. The GR model is manifestly sim-
ple as it relies upon a single free parameter, β , controlling the clustering of the rewired
replica. Initially, we show how to tune this parameter, and conclude that the parameter
value needed for the GR replica to have the same level of clustering as the original net-
work is in general different from the estimated β value of the original network.
Secondly, we analyze the effects of the GR model on the topological properties of 6 real
networks from different domains. We show that the deviations between GR and origi-
nal networks at the level of clustering and average nearest neighbors degree spectrums
are almost inexistent. Nonetheless, this is not the case for the replicas of real networks
obtained directly from S1 model through hidden degree estimation. This observation
informs the importance of preserving the exact degree sequence during the construc-
tion of an angularly randomized version of a network in order to not to alter its main
topological characteristics.
Lastly, we demonstrate the applicability of GR by implementing it as a null model for
the analysis of community structure. We focus on the comparison of modularity mea-
sures obtained using both topological (Louvain method [16]) and geometrical (Critical
Gap Method [13]) approaches, while preserving the clustering between original and GR
networks. As a result, we find that geometric and topological communities detected in
real networks are consistent, while topological communities are also detected in ran-
domized counterparts as an effect of structural constraints. The fact that an underlying
geometric organization imposes structural constraints on complex networks, which are
strong enough for recreating detectable topological communities even in the absence
of geometric ones, is an interesting subject by itself and will be investigated in future
work.
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Fig. 1. Top row: Empirical networks embedded in the hyperbolic disk. Distinct communities are
indicated by different colors as detected by the Critical Gap Method. Bottom row: Probability
distribution of the angular coordinate, P(θ), of the empirical networks.
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1 Introduction

In spatial networks, nodes are positioned in a geometric space, and the distances between
them in the space affect their linking probability in the network [1]. In real-world
systems, such spaces can be explicit/physical, as in geographically embedded networks [2,
3] or in the Ising model with long-range interactions [4–6]. Yet these spaces can be
also hidden/latent. Latent similarity spaces have been employed for nearly a century
to model homophily in social networks, for instance [7, 8]: the closer the two people
are in a virtual similarity space, the more similar they are, the more likely they know
each other [9]. Another field where the space can be virtual are graph embeddings in
computer science and machine learning, with applications including network compression,
visualization, and node labeling [10, 11].

In models of spatial networks, the space is usually explicit. Perhaps the simplest
spatial network model is that of random geometric graphs that have been extensively
studied in mathematics and physics since the early 60ies [12–15]. In these graphs,
nodes are positioned in a space randomly using a point process, usually a Poisson point
process, and two nodes are linked in the graph if the distance between them in the space
is less than a fixed threshold. If the intensity of the point process does not depend on
the graph size n, then the resulting graphs are sparse and have nonzero clustering in the
thermodynamic n→ ∞ limit, thus sharing these two properties with many real-world
complex networks [16, 17]. Yet many of these networks are also heterogeneous small
worlds, while random geometric graphs are homogeneous large worlds.

This mismatch was resolved in [18, 19] where a class of models of spatial networks
that are sparse heterogeneous small worlds with nonzero clustering was introduced.
Networks in these models have some additional properties commonly observed in real-
world networks, such as self-similarity [18, 20] and community structure [21–23]. Yet
the following question remains: what are the general requirements to spatial network
models so that networks in these models possess the properties of real-world networks?

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



2 Results

Here [24], we first focus on just three properties: (1) sparsity, (2) small worldness, and
(3) nonzero clustering. Simplifying the results a bit, we show that spatial networks
in Rd have all these three properties at once only if the probability pi j of connection
between nodes i and j scales with the distance xi j between them in Rd as pi j ∼ x−β

i j with
β ∈ (d,2d). We then add (4) heterogeneity to the list of the requirements, and show
that β must be within the same range (d,2d) if the variance of the degree distribution is
finite. If it is infinite, however, e.g. if it is a power law with exponent γ ∈ (2,3), then the
networks are always ultrasmall worlds, and any β > d satisfies all the four requirements.
Finally, we show that if we also want to suppress nonstructural degree correlations, then
the unique shape of the connection probability in the heterogeneous case is as in [18,
19]: pi j ∼ (κiκ j)

β/dx−β
i j , where κi,κ j are the expected degrees of nodes i, j.
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The theory of complex networks provides a useful conceptual framework for the
study of a large variety of systems and processes in science, technology and society.
These studies are based on network models, in which the nodes represent physical or
virtual objects, while the edges represent the interactions between them. Typically, these
networks exhibit random structures, which can be characterized by their statistical prop-
erties at the local and global scales. The local structure of a network is captured by the
degree distribution and by certain correlations between the properties of nearby nodes.
However, the large scale structure of a network is captured by the spectrum of path
lengths between random pairs of nodes. The shortest path between each pair of nodes
is of particular importance because it provides the strongest interaction and fastest re-
sponse between these nodes. The average lengths of these paths were studied exten-
sively, while the entire distribution of shortest path lengths (DSPL), PDSPL(L = `), has
attracted limited attention.

The DSPL provides a useful framework for structural analysis of networks, such as
network hyperbolicity [1], as well as for analysis of dynamical processes on networks,
such as the propagation of information, traffic navigation [2], and epidemic spreading.
To give just one example, considering an epidemic which starts from a random indi-
vidual, i, in the limit of high infection rate, the temporal spreading of the infection is
determined by the shell structure around node i (Fig. 1). Thus, the expectation value of
the number of nodes infected up to time t, NI(t), can be expressed in terms of the DSPL
and is given by NI(t) = 1+(N−1) [1−PDSPL(L > t)], where N is the network size.

Fig. 1. Illustration of the shell structure around a reference node in a random network. The `th

shell consists of the nodes which are at distance ` from the reference node.
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Recently, we developed a suite of analytical approaches for the calculation of the
DSPL in a wide range of random networks both in and out of equilibrium. The first ap-
proach is the Random Shells Approach (RSA), which is designed to treat Erdős-Rényi
(ER) networks [3]. We later improved RSA in Ref. [4] to take into account the detailed
size and micro-structure of the giant cluster. This improvement yields very good re-
sults even in the vicinity of the percolation transition of the ER ensemble, which takes
place when the mean degree is c = 1. To obtain a complete understanding of the prob-
lem, including the subpercolating regime, we have developed a different methodology,
based on a topological expansion [5], which yields an exact result, namely an exponen-
tial distribution, for the DSPL with c < 1, conditioned on the nodes being on the same
cluster. An interesting conclusion is that the mean distance between random nodes is
E[L|L < ∞] = 1/(1−c), which means that in the vicinity of the percolation transition it
diverges. Among other things, it means that even within the ER ensembles the common
lore that distances are ”small-world” is far from being the full picture.
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Fig. 2. (a) The tail distribution of shortest path lengths, PDSPL(L > `), for Supercritical ER net-
works above the percolation threshold, using the Random Paths Approach. (b) The exact result
for the DSPL conditioned on finite distances PDSPL(L = `|L < ∞) for Subcritical ER networks
below the percolation threshold, using the topological expansion. In both cases N = 104. The
analytical results (solid lines) agree with the results of computer simulations (symbols).

The second methodology, named the Random Paths Approach (RPA), was also de-
veloped in the context of the ER ensemble [3], but unlike RSA lent itself to general-
ization. We identified and formalized the relation between RPA and the cavity method,
which allowed application of the RPA to configuration model networks [6], and in par-
ticular to random regular graphs (were the exact solution is a Gompertz distribution)
as well as to scale-free networks - see Fig. 3. We found that except for the very dilute
limit, the distance between most pairs of nodes is centered around to the typical dis-
tance (mean or mode), which is given by 〈L〉 ' lnN/ ln

(
〈K2〉/〈K〉−1

)
. Also, when

the 2nd moment of the degree distribution diverges (as in certain scale-free networks),
the N-dependence enters in a more complicated way, which may lead to an ”ultra-small”
network [7], i.e. with a mean distance that scales like loglogN or logN/ log logN.
Recently, we have developed a methodology to study growing networks based on master
equations. We successfully calculated analytically the DSPL for the Node Duplication
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Fig. 3. The tail distributions PDSPL(L > `), for (a) Random Regular Graphs of N = 103 nodes, and
degrees c = 5, 20, and 50, and (b) Scale-Free networks of size N = 103, with p(k) ∝ k−2.5 and
lower cutoffs at kmin = 2, 5 and 8. The analytical results (solid lines), obtained using the Random
Path Approach, compare well to numerical simulations (symbols). Note that larger degrees (a)
and kmin’s (b) reduce the mean distance of the network.

model, both undirected [8] and directed [9]. It turns out that although networks gen-
erated by this model are scale-free their mean distance scales like logN, and therefore
they are small-world networks, unlike generic scale free networks, that were shown to
be ultra-small [7]. Moreover, the mean distance is even much longer than a correspond-
ing configuration model with the same degree distribution.

The DSPL is only one member in a family of distributions of important metric prop-
erties - another one being the distribution of shortest cycle lengths (DSCL). Cycles play
an important role in the study of critical phenomena on networks using high tempera-
ture expansions as well as in dynamical processes such as the first return of diffusive
particles. We calculated the DSCL for the configuration model using the DSPL [10].
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Abstract 

Analysis of ‘big data’ characterized by high-dimensionality such as word vectors and 
complex networks requires often their representation in a geometrical space by em-
bedding. Recent developments in machine learning and network geometry have 
pointed out the hyperbolic space as a useful framework for the representation of this 
data derived by real complex physical systems. In the hyperbolic space, the radial 
coordinate of the nodes characterizes their hierarchy, whereas the angular distance 
between them represents their similarity. Several studies have highlighted the rela-
tionship between the angular coordinates of the nodes embedded in the hyperbolic 
space and the community metadata available. However, such analyses have been of-
ten limited to a visual or qualitative assessment. Here, we introduce the angular sepa-
ration index (ASI), to quantitatively evaluate the separation of node network commu-
nities or data clusters over the angular coordinates of a geometrical space [1]. ASI is 
particularly useful in the hyperbolic space - where it is extensively tested along this 
study - but can be used in general for any assessment of angular separation regardless 
of the adopted geometry. ASI is proposed together with an exact test statistic based on 
a uniformly random null model to assess the statistical significance of the separation. 
We show that ASI al-lows to discover two significant phenomena in network geome-
try. The first is that the increase of temperature in 2D hyperbolic network generative 
models, not only reduces the network clustering but also induces a ‘dimensionality 
jump’ of the network to dimensions higher than two. The second is that ASI can be 
successfully applied to detect the intrinsic dimensionality of network structures that 
grow in a hidden geometrical space. 
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2 

 
Fig. 1. Angular separation in 2D with statistical test. The left panels show examples of 2D 
hyperbolic embeddings of synthetic networks generated using the nPSO model. (A) The nPSO 
network has been generated with parameters N = 100 (network size), m = 3 (half of average 
degree), T = 0.1 (temperature, inversely related to the clustering coefficient), C = 5 (number of 
communities) and γ = 3 (power-law degree distribution exponent). The embedded coordinates 
have been inferred using the coalescent embedding method RA2-ncISO-EA. The 5 ground-
truth communities are highlighted with different colors. (B) The nPSO network has been gener-
ated with the same parameters as in (A), except for T = 0.9. The embedded coordinates have 
been inferred using the coalescent embedding method RA2-ncISO-EA. (C) The embedded 
coordinates correspond to the ones in (B) after a random reshuffling. The right panels represent 
the statistical test for the ASI evaluation and show the observed ASI (in red) compared to the 
null distribution of ASIs (in black), reporting the related p-value. For further details, please see 
the reference [1]. 
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3 

 
Fig. 2. ASI improvement in 3D with respect to 2D. The figure shows the hyperbolic embed-
ding of the opsahl_10 network using the coalescent embedding method RA1-ISO both in the 
2D hyperbolic disk (left) and in the 3D hyperbolic sphere (right). The 4 ground-truth communi-
ties are highlighted with different colors. At the bottom of each panel the ASI and the related p-
value of the statistical test are reported. The figure provides an example in which the addition 
of the third dimension of embedding improves the angular separation of the communities, lead-
ing to a perfect segregation. For further details, please see the reference [1]. 
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Network models provide a useful conceptual framework for the study of a large vari-
ety of systems and processes in science, technology and society. One of the central lines
of inquiry in the study of random networks, has been concerned with the existence, un-
der suitable conditions, of a giant component. Critical parameters for the emergence of
a giant component in Erds-Rényi (ER) networks were identified and its asymptotic size
was determined ([1]). For configuration model networks, those problems were solved
by Molloy and Reed ([2]). However, not much work has been done concerning the finer
structure of the giant component, which is the main aim of [3]. The knowledge of de-
gree distributions and degree-degree correlations restricted to the giant component of
a network would be very useful when investigating dynamical processes on complex
networks. For example, epidemic spreading is usually studied in restriction to the giant
component on which the contamination is potentially maximal ([4]).

For networks in the configuration model class, we obtain the degree distribution
P(k|1), conditioned on the giant component, as a relation to the degree distribution
P(k) of the entire network. In Fig. 1 we compare these two distributions for an ER
network (left) and for a scale-free configuration model network (right). As can be seen,
the analytical results agree with the simulations.
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Fig. 1. Analytical results for the degree distribution, P(k|1), of the giant component of an ER
network with c = 2 (left) and a scale-free network with γ = 3 , kmax = 100 (right), as well as
results of computer simulations (circles). For comparison, the degree distributions, P(k), of the
whole networks are also shown (dashed lines).

A consequence of the relations obtained between P(k) and P(k|1), is that they can
be inverted, so to prescribe the degree distribution of the entire network given that of the
giant component. These inverted relations were obtained in [5], and are employed as a
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method for the construction of ensembles of random networks that consist of a single
connected component with a desired degree distribution. This approach extends the
construction toolbox of random networks beyond the configuration model framework,
in which one controls the degree distribution but not the number of components and
their sizes.

In a second broader consequence of [3], we address in [6] a closely related topic:
the structural vulnerability of the giant component and the network as a whole. Net-
works are often exposed to the loss of nodes and edges, which may severely affect their
functionality. Such losses may occur due to inadvertent node failures ([7]), propagation
of epidemics or deliberate attacks ([8]). In each network, one can identify the nodes
whose deletion would break the component on which they reside into two or more
components. Such nodes are called articulation points (APs) or cut vertices. Sometimes
the resulting disruption caused by their removal can be so severe as to cause the entire
system to fail, making such APs essentially single point failures (SPOF) of the system.
In this context, a concept of a strongly connected component (SCC) emerges, which is
the maximal sub-component of the network that does not contain any APs with respect
to itself. In Fig. 2 we present a schematic illustration of an ER network in which these
different concepts are visualized.

We derived analytical results for the statistical properties of APs in ER networks and
configuration model networks with various degree distributions. We obtain the proba-
bility P(i ∈AP) that a random node i is an AP, and calculate various related conditional
probabilities, such as P(i∈AP|k) and P(i∈AP|GC), relating the probability that a node
is an AP, to its degree k, or to the probability that it resides on the giant component of
the network, respectively. We also introduce a new AP-based centrality measure: We
denote by r the number of components which are added to the network upon deletion
of a given node i, and refer to this as the articulation rank of this node. We obtain ana-
lytical results for the distribution of articulation ranks, P(R = r) of all the nodes in the
network. In Fig. 3 we show (left) P(R = r) for an ER network of mean degree c = 2,
and also the mean articulation rank 〈R〉 (right) as a function of mean degree c in ER
networks. The theoretical curves agree well with the simulations.

References
1. B. Bollobás, Random graphs (Cambridge University Press, 2001)
2. M. Molloy and A. Reed, The size of the giant component of a random graph with a given

degree sequence, Combin., Prob. and Comp. 7 , 295-305 (1998)
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Fig. 2. Illustration of an ER network, with some structural features emphasized. In blue are
marked the nodes residing on the strongly connected component of the network. 3 nodes, with
distinct surrounding environments are shown in large circles. In cyan is marked an articulation
point (AP) of degree k = 3 in a tree component. Deletion of the AP would split the giant compo-
nent into three separate components; In green is marked an AP of degree k = 4, where two of its
neighbours reside on a cycle. Deletion of the AP would split the giant component into three sepa-
rate components; The portions that break off from the giant component upon the removal of each
AP are coloured the same as the APs. Lastly the node marked in red is not an AP because each
pair of its neighbours share a cycle. As a result, upon deletion of the red node all its neighbours
remain on the giant component.
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Fig. 3. Analytical results for the distribution P(R = r) (left) of the articulation ranks of nodes in
an ER network with c = 2 (solid line) and the mean articulation rank 〈R〉 (right) of all nodes in
the network. These quantities are also shown for nodes restricted to the giant component (dashed
line), and nodes in the finite components (dotted line). The analytical results are in very good
agreement with the results of computer simulations (circles).
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1 Introduction

In filtering, each output is produced by a certain number of different inputs. This num-
ber is the output’s degeneracy. A similar problem emerges in cooperative systems with a
large number of local minima in the energy landscape, in particular, in spin glasses and
deep learning neural networks. The configuration space of a system of this sort can be
divided into a set of domains (basins) of attraction of these minima. One can ask: what is
the statistics of these domains of attraction, what is the distribution of their sizes? These
issues were explored in a recent series of works [1–4] which exploited the principle of
maximum entropy in application to compression problems. The finding of Refs. [1–4]
is that optimal compression generates outputs with broad distributions. More specif-
ically, the entropy optimization based theory predicts power-law like distributions of
degeneracy of maximally informative outputs (minimal sufficient representations).

We explore the statistics of this degeneracy in an explicitly treatable filtering prob-
lem in which filtering performs the maximal compression of relevant information con-
tained in inputs [5]. The filter patterns in this problem conveniently allow a microscopic,
combinatorial consideration. This allows us to find the statistics of outputs, namely the
exact distribution of output degeneracies, for relatively large input sizes and to describe
the dependence of this distribution on the input size and on the size of the input data
set.

2 Filtering problem

Let the input data be a set of N strings of zeros and ones of length n, assuming the
periodic condition. We consider two types of data set. The first set is the complete set
of all possible unique inputs. Its size N is determined by the size n of inputs, N = 2n.
Second, we consider data sets of arbitrary size N consisting of strings of uniformly
randomly generated zeroes and ones constrained by the same periodic condition.
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The filter works as follows: every instance of a specific pattern in the input is marked
by a one in the corresponding position in the output. All other positions are marked with
zeros. This produces a minimal coding of the positions of the pattern occurrences in the
input. For the sake of simplicity, we use the following filter. Each sequence of ones of
length 1 in the input (i.e., every one whose neighbors are both zeros) gives one at the
same position in the output. All other sequences of ones or zeros in the input produce
zeros in the corresponding places in the output.

3 Results

Figure 1(a) represents the statistics of the outputs generated by the complete input data
set, 2n inputs, N (d) is the number of outputs of degeneracy d, Ncum(d) = ∑u≥q N (q).

Fig. 1. (a) Cumulative degeneracy distribution for n = 20,40,60,80,100,120. The black
curves represent least-squares fittings of lnNcum(d,n) as lnN ∗

cum(n) + Bn lnαn d for each
n. (b) Cumulative degeneracy distribution ln{− ln[Ncum(d,n)/N ∗

cum(n)]} vs. ln lnd for n =
20,40,60,80,100,120. Inset: exponent α vs. 1/n.
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Figure 1(b) demonstrates that, asymptotically,

Ncum(d) ∝ e−c lnα d = d−c lnα−1d , (1)

where exponent α depends on n, approaching approximately 2.3 as n→ ∞. This is
significantly distinct from a power-law dependence. Note that the explored range of de-
generacies 30 orders of magnitude which enables us to extract the complicated asymp-
totic dependence, Eq. (1). Each point in Figure 1 was obtained exactly. Importantly, the
statistics of outputs is determined not by the form of filter patterns but rather by what
occurs in the gaps between them. The degeneracy corresponding to each such gap can
be found using recursion relationships. We then used an integer partitions apparatus to
aggregate the statistics of prime degeneracies from these gaps, finding the exact full
spectrum of output degeneracies.

We inspected the dependence of the form of the degeneracy distributions on the
input size n and on the size N of the uniformly randomly generated input data set.
These size effects turn out to be very different from those for more familiar distributions
drawn from heavy tailed ones, e.g., power-law degree distributions [6]. Curiously, the
distributions found for different values of n have a very similar form for input sizes N
chosen such that (zd/2)nN is constant.

Summary. Our straightforward, purely combinatorial treatment reveals features of dis-
tributions of outputs hidden from other approaches. For complete input data sets passed
through our filter, we have obtained degeneracy distributions markedly distinct from
power laws. Our model filter can be used as a convenient reference filtering and com-
pression problem.
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1 Introduction

Human mobility has been studied for decades due to the relevant role it plays in a
wide spectrum of applications including economic questions and living conditions, city
structure, epidemics forecasts, infrastructures design, urban pollution and air quality.
Aggregating the home-work trips of individuals, one can compute the so-called Origin-
Destination (OD) matrices which for every pair (i, j) collect the flow of people traveling
from i to j, Ti j. These matrices are essential for transport planning since they mathe-
matically encode trip demand. Census and dedicated surveys have dominated the area in
terms of mobility data collection until a few years ago. With the rise of big data sources,
the availability of large-scale quick-updated data has notably increased. Passive sources
such as mobile phone records or GPS-located messages in online social networks have
been employed to study mobility and, in particular, to extract OD matrices (see also
the recent reviews [1, 2]). The quality of the OD matrices obtained from these new in-
formation and communication technologies (ICT) sources has been proven consistent
with respect to those provided by surveys in urban areas at spatial scales larger than
one square kilometer [3]. The availability of this new data opens the door to tackle and
revisit relevant theoretical aspects concerning mobility flows that could not be boarded
before. Several models have been proposed to obtain the flows from basic variables as
the population. The bet is high since determining transport demand is fundamental for
infrastructure building and urban planning. Among all models, two competing frame-
works have been used for almost 80 years to characterize mobility flows: the gravity [4,
5] and the intervening opportunity [6, 7] models. Briefly, in the gravity model the flows
decay with a certain deterrence function, e.g. with an exponential or power law-like
forms, while the intervening opportunity models rely on the ”opportunities”, intended
as jobs, found within a given area. A few years ago, the radiation model has been intro-
duced as a physical adaptation of the intervening opportunity concept where the density
of opportunities is related to the population [8, 9]. In 1947 a visionary study explored
the possibility of defining a scalar potential to describe human mobility [10], but the
lack of reliable data hindered further research in this direction.

2 Results

In this work, we introduce a new approach based on the observation that daily commut-
ing flows can be represented as vectors pointing from the origin to the destination, and
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that these elementary vectors can be summed to produce a mesoscopic vector field. A
particular pattern is observed in all the cities under study since the vector field clearly
points to the city geographical center. This pattern is illustrated for London in Figure 1a
with ODs from Twitter data. This vector field fulfills the Gauss (divergence) theorem
and also its rotational is nearly zero in all the space. Note that we are studying empiri-
cal information, hence these results are far from trivial and they reveal intrinsic features
of aggregated daily human mobility. The existence of a well-behaved mesoscopic field
is confirmed with both data from Twitter and census for large urban areas. The first
feature allows us to admit that the field is generated by a source and it allows us to
study the flux around different closed perimeters. To do this we used essentially circles
of different radiuses around the center of the cities. The classical models to reproduce
OD matrices, i.e. gravity and radiation model, are then employed to generate fields and
their results are tested against the empirical ones. The flux produced by a gravity model
with an exponentially decaying deterrence function with the distance fits much better
than the radiation model. Additionally, the observed irrotationality of the field allows
us to define a scalar potential in the space for each city which shapes the urban com-
muting mobility of inhabitants. The maximum of the potential is typically located in
the center of the cities and it decays as one gets further. This potential is a tool that
will crucially contribute to controversial issues such as the functional definition of city
limits [11], e.g. in the areas of influence of different cities as it can be seen in the case
of the Manchester-Liverpool conurbation (Figure 1b), and the presence of polycenters
[12]. The results of this work are available on Nature Communications [13].

Fig. 1. a) Top row, two examples with the definition of the average vector in every cell (red
vector). In the bottom, the vector field in an area comprehending the Greater London area. b) The
potential field calculated using the gravity model with an exponential deterrence function in the
area of Manchester and Liverpool. We find 13 centers (local maxima).

Summary. We have introduced a vectorial field framework to characterize human mo-
bility flows. When considering recurrent home-work mobility in cities, we find that
the mesoscopic field representing the flows is well-behaved in the sense of satisfying
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Gauss’s theorem and, besides, it is irrotational. As a consequence of this last point, it
is possible to define a scalar potential, which reducing the dimensionality of the sys-
tem encodes all the information on the commuting at a mesoscopic scale. The results
are corroborated using two independent data sources for the commuting. The shape of
the potential sheds new light on the spatial organization of mobility in cities as we can
picture city centers as the strongest gravitational attractors of the metropolitan area and
redefine city boundaries. This can have an important practical relevance when planning
infrastructures and public services.

References

1. Blondel, D. V., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets
analysis. EPJ Data Science 4, 10 (2015).

2. Barbosa-Filho, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand, M., Louail, T.,
Menezes, R., Ramasco, J. J., Simini, F., Tomasini, M.: Human mobility: Models and appli-
cations. Physics Reports 734, 1–74 (2018).

3. Lenormand, M., Picornell, M., Cantú-Ros, O. G., Tugores, A., Louail, T., Herranz, R.,
Barthelemy, M., Frias-Martinez, E., Ramasco, J. J.: Cross-checking different sources of mo-
bility information. PLoS ONE 9, e105184 (2014).

4. Carey, H. C.: Principles of Social Science, volume 3. JB Lippincott & Company, Philadelphia
PA, USA (1867).

5. Zipf, G. K.: The p1 p2/d hypothesis: on the intercity movement of persons. American Soci-
ological Review 11, 677–686 (1946).

6. Stouffer, S. A.: Intervening opportunities: a theory relating mobility and distance. American
Sociological Review 5, 845–867 (1940).

7. Ruiter, E. R.: Toward a better understanding of the intervening opportunities model. Transp.
Res. 1, 47–56 (1967).
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1 Introduction

Dissemination of ideas and opinions in virtual networks, e.g., in social networks, in the
Internet, in academic networks, in the blogosphere, etc. can be considered as excitations
in active media [1, 4, 3]. One of the models of active media is the model by Wiener and
Rosenblueth [6]. Originally, the model has been proposed to describe conduction of
impulses in a network of connected excitable elements, specifically in cardiac muscle.
Excitable elements have been considered as vertices of a regular graph (a square lat-
tice). After a while, the model has been generalized [6, 7, 2]. Recently, the generalized
Wiener—Rosenblueth model of excitable medium has been used to simulate activities
in networks with topologies both of a complete graph [4] and of a scale-free network [3].
The first one can be treated as a small group where everyone knows everyone. The sec-
ond one can be considered as a model of a virtual group. However, other topologies,
e.g. a small-world [5], are possible. Since different networks have different structures,
application of the generalized Wiener—Rosenblueth model to other topologies looks
promising.

Within the generalized Wiener—Rosenblueth model, each element of the network
have three possible states, viz., rest, excitation, refractoriness [6, 7, 2]. Initially, all ele-
ments are in the rest state. The i-th element becomes excited under the influence of an
external excitation. The intensity of this external excitation must exceed the threshold
value, hi. The i-th element states in the excited state during the time τe

i , then it transfers
into the refractory state in which it states during the time τr

i , then it comes back to the
state of the rest. A state of any element is specified by the integer phase, Φn

i , and the
activator concentration, un

i , where integer n indicates the discrete time step. Activator
decays with time, gi is the rate of decay.

Any transitions between these states obey the following set of rules

Φn+1
i =





Φn
i +1, when 0 < Φn

i < τe
i + τr

i ,
0, when Φn

i = τe
i + τr

i ,
0, when Φn

i = 0 and un+1
i < hi,

1, when Φn
i = 0 and un+1

i > hi.

(1)

A vertex receives a certain amount of activator from its adjacent active vertices of
the network.

un+1
i = giun

i +∑
j

In
j , (2)
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where j is the number of the neighbour vertices i,

In
j =

{
1, when 0 < Φn

j 6 τe
j ,

0, when τe
j < Φn

j 6 τe
j + τr

j or Φn
j = 0.

(3)

Networks may be both homogeneous and inhomogeneous. Each vertex of a homoge-
neous network is described by the same set of parameters, while each vertex of a inho-
mogeneous network has a particular set of parameters. When the vertices are consid-
ered as persons, different sets of parameters correspond to persons of different temper-
aments.

2 Results

A homogeneous small-world network is considered as a model of a virtual community.
Activity of the vertices is described by Eqs. (1), (2), and (3). Initially, all vertices are in
the rest. Then, some vertices are transferred in an excited state by a sufficient amount of
the activator. These excited vertices may activate the whole network. Different regimes
can be observed.

Figure 1 demonstrates an example of a periodical regime in a small-world network
with 100 vertices. Initially only one vertex got enough amount of activator to transfer
into excited state. The scatter plot “min degree” corresponds to the vertex with minimal
number of connections, while “max degree” corresponds to the vertex with maximal
number of connections. Presented regime is insensitive to choice of initially excited
vertex. The parameters of the model are h = 0.75, g = 0.75, τe = 5, τr = 10.
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 max degree
 min degree

f

Fig. 1. Example of fraction of excited nodes, f , vs time step, τ . Initially only one node got enough
amount of activator to transfer into excited state.

Figure 2 demonstrate propagation of the excitation in the same network.
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Fig. 2. Propagation of the excitation in the same network τ = 6,7,8,9.

Summary. Dissemination of an activity in a virtual group has been simulated using the
generalized model of excitable medium by Wiener—Rosenblueth [6, 7, 2]. A structure
of the virtual group has been assumed to be a small-world [5].
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1 Introduction

The network approach has become an ubiquitous tool for analyzing complex systems,
possibly composed of many interacting sub-units, ranging from the microscopic level
to the level of society. In the past few decades one of the most widely studied features
of complex networks has been given by the scale-free (SF) property, manifesting in a
power-law like decay of p(k) ∼ k−γ . Several growing mechanism have been proposed
to generate networks with SF property, such as the well-known Barabási-Albert model
together with its modifications and extensions [1, 2]. However, it turned out that, in
some cases neither preferential attachment nor the growing mechanisms are available
and the topology of the networks are entirely encoded in some hidden hidden properties
of the nodes. Inspired by this recognition the concept of static networks with intrinsic
node weights (fitnesses, hidden variables) was first investigated by Caldarelli et al. [3] in
order to give explanation for the emergence of non-growing scale-free networks. Later
on, Boguña et al. [4] proposed a rigorous analytical framework for classes of hidden
variable network models and since then the applicability of the model has been con-
firmed in a large scale ranging from temporal networks, through multifractal networks
[5] to hyperbolic networks [6].

2 The non-geographical threshold model

The concept of hidden variables is based on assigning a hidden parameter xi to each
element of a given set of nodes according to an arbitrary but prescribed ρ(xi) probability
density function and then connecting these nodes with 0≤ f (xi,x j)≤ 1 probability.

It can be shown that SF networks can easily be generated through power-law dis-
tribution of fitness, however a surprising result was investigated in [3] where an ex-
ponential distribution of fitness (ρ(x) ∼ e−x) was chosen together with a f (x,y) =
Θ(x+ y−∆) threshold linking form, where Θ(x) denotes the Heaviside step function
and ∆ is a constant (non-geographical threshold model). Under these settings a power
law decay of the degree distribution was detected with a γ = 2 scaling exponent, pro-
viding the first evidence that SF networks can be generated in this approach even with
non power-law like fitness distributions.
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3 Results

In our work [7] we have analitically extended the results of the non-geographical model
(γ = 2 scaling exponent), now being valid for three different classes of fitness distribu-
tions. These generalized classes of fitness distributions and the corresponding linking
functions can be written in the following forms:
1, Exponential-like class:

ρ1(x) = H ′(x)exp[−H(x)] with f1 = f∆ (H(x)+H(y)) (1)

2, Power-like class:

ρ2(x) = G′(x)G−α(x) with f2 = f∆ (G(x)G(y)) (2)

3, Mixed class:

ρ3(x) =
M′(x)

(1+M(x))α with f3 = f∆ (1+M(x)+M(y)+M(x)M(y)) (3)

where H,G,M are arbitrary functions while f∆ is also an arbitrary function but with
a lower-cutoff at ∆ . The previously defined pairs of functions universally lead to the
emergence of SF networks with γ = 2 thus providing a far-more general form of the
non-geographical threshold model. Despite the universality of the exponent networks
generated via different forms of f∆ might show different behaviour at the level of local
network quantities such as degree correlation or clustering coefficient. For illustration
in Fig. 1. we provide simulation results for the clustering coefficient as a function of k,
when replacing the Heaviside step function with other possible forms of f∆ .

Fig. 1. a) Clustering coefficient as a function of node degrees for four different networks each of
them containing N = 20000 nodes. All networks were generated by using the same exponential
fitness distribution but with different connection functions f∆ indicated in panel b).

By introducing an external, tuneable β parameter of the linking function (which can be
associated with the modulation of the threshold function) f = fβ (. . .) similarly to [6],
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the scaling exponent of the degree distribution can be modified to γ = γ(β ) for each
and every particular pair of the above discussed generalized {(ρ, f )} classes. Further-
more, we have fully described the γ(β ) transition (Fig. 2.) and also generally discussed
the criteria in multiple different cases of how to generate networks having degree dis-
tribution independent of the size [7]. Hence, these models with the relaxed threshold
at finite β values offer a quite flexible fitness-based approach being applicable to fit-
ness/activity driven systems (such as temporal network or hyperbolic networks) where
the distribution of hidden parameters follow non-trivial/complicated distributions.

Fig. 2. Scaling exponent γ of the degree distribution as a function of the effective temperature
1/β in the model with soft thresholding.

From the theoretical point of view it might also be remarkable that according to
these results a general mapping can be established between ρ and f , meaning that for
any fitness distribution ρ∗ there always exists classes of linking functions f ∗ in the
forms of (1),(2),(3) with a lower-cutoff which generate scale-free networks with γ = 2
scaling exponent and vice versa.
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1 Introduction

Modular hierarchical structure is a common feature of complex systems within a broad
range of ecological, social, communication and economic networks [1–3]. Although
many related works have been shown to produce relevant modules in a number of sys-
tems [4], the mechanisms leading to the flow hierarchical structure of the modules is
still an open problem. Here we propose a new method for constructing modular and
directed hierarchical networks based on a successive clustering method. Our approach
is based on i) clustering the ”agents” forming the subsequently generated directed net-
work (so that similar agents become close to each other), ii) the clusters form ”modules”
and ”elect” a leader, finally, iii) the levels of hierarchy are determined from the number
of steps an agent/leader is ”below” the top leaders.

Our study is motivated and supported by observations. These observations can be
based both on downloadable data about the structure of organizations and by our ev-
eryday personal considerations when we consider how large universities or companies
are organized. First of all, in a network representation, they are hierarchical (have ”lev-
els”) and they have mostly two types of links: directed ones from an upper layer to the
layer below and ones within a given layer without direction. Here direction stands for
a leader-follower relation: the ”bosses” can give instructions to the group of their sub-
ordinates. An important observation is that the typical value of organizational units is a
number being within 3 to 12 (with an overall average close to 7) [5].

2 Methods

We use clustering as a method of obtaining a multi-level modular structure. Our ap-
proach utilizes only a few parameters that allow fine-tuning the size of modules and
the number of levels in the hierarchy. Why clustering? Because agents with similar in-
terests, capabilities tend to form groups and our clustering method expresses this fact
by bringing together into clusters those units which have close values of their abilities.
For example, in a department of material science or a division of car design people
with similar knowledge of the related activity form a unit in the organization (within a
university, or a car factory, respectively). The whole organization is then made of suc-
cessively embedded and through these interacting units, and the feature of directionality
(along which the communication is exercised) is essential.
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2.1 Clustering algorithm

As argued above, a module is made up of people with similar abilities who are commit-
ted towards a common purpose. Organizations create modules by grouping individuals
in a way that generates a variety of expertise and addresses a specific operational com-
ponent of the organization. It is important to note that a single network module at a
given level itself must be less hierarchical, be almost fully connected and share the
leadership. To this end, we put forward a clustering algorithm based on the well known
H-K (the Hegselmann-Krause) method [6] bringing gradually closer agents with simi-
lar ”opinions” and meanwhile resulting in clusters of agents. At first, we represent an
organization by a set of N individuals (i = 1, ..,N) having a variety of abilities/opinions
a taking values between 0 and 1 [7]. The abilities are changing in time according to
interaction and influence from neighbors, here is updating rule:

ai(t +1) =
1

|Ni(t)| ∑
j∈Ni(t)

a j(t)+ηi(t) (1)

where Ni(t) = j : |a j(t)−ai(t)| ≤ εi is the neighbor set of agent i at time t and η de-
notes the level of the added white noise. The summation is over the individuals j whose
abilities differ from its own not more than the certain level εi. The system uses a similar-
ity measure between nodes to group them onto modules and converges within a number
of steps. Besides, by considering a bounded log-normal distribution for ε we could get
modules with varying sizes. The updates were implemented synchronously.

2.2 Leader-follower structure

Since the internal structure of an organization can be represented by leader-follower
relationships we define a leader for each module after the convergence to a set of clusters
occurs. A leader is associated with each module/cluster in a given level as follows: the
leader’s ability has a value (of the ability of an agent in the cluster) closest to the average
ability values in a given module. The clustering is carried out in steps, i.e., the newly
”elected” leaders will be clustered in the next stage (example: in a university there are
departments, the departments form an institute the institutes are units of a faculty - of,
e.g., sciences - the faculties (or ”schools”) are the main units of the university itself)

2.3 Generating directed, hierarchical modular networks from clustered data

To construct the desired network, we use a simple connection probability function Pi, j,
which is computed from the clustering results through our model (Eq.2). The network
is obtained by starting with a set of N nodes already clustered and M adding edges
between them in a probabilistic fashion. At the beginning, we assume that there are
modules in each level of the network and that the nodes are assigned to a module Ci and
level Li. The connection probability function is formulated as,

Pi, j = δ (Ci,C j)[ δ (|Li−L j|,1)+δ (|Li−L j|,0)] +
1

|Li−L j|+B∗ (|ai−a j|α) (2)
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Fig. 1. The directed, modular hierarchical structure for a network with N = 168 and M = 238
using our connection probability function. This figure is generated by using the following values
B = 104 and α = 1. The edges are all directed and top to down. Our approach allows to construct
much larger networks of similar structures.

where B and α are constant values and δ denotes the Kronecker function. The network
is generated in two steps. First the agents are connected with a probability Pi, j. This
probability function consists of two terms. The first one aims to enforce the agents
inside a module to be connected with each other including the leader as well. The second
term minimizes the number of connections between distant levels and between agents
with too different abilities. In the second step, we update our system to be more realistic.
We implement restrictions on the size of the modules and the corresponding levels. We
apply specific - not detailed here - measures to maintain realistic cluster sizes and levels.
As shown in Fig.1, our method can model a directed hierarchical modular network, with
features similar to those which are typical for large organizations.
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Context. Many real-networks, also refered to as complex networks, lend themselves to
the use of graphs in order to analyse their structure and model their properties. Since the
seminal papers of Barabási and Watts, one usually considers that, whatever the context
in which they emerge, all networks share non trivial properties such as a low density, a
low average distance, an heterogeneous degree distribution, a high local density, etc.

Such properties distinguish those networks from classic random graph models such
as the ones generated by the Erdős-Rényi model which only reproduce the density of
the networks. As a consequence, significant effort is dedicated to the elaboration of ran-
dom models able to capture more intricate properties. Among them, one can cite the
Barabási-Albert model which succeeds in producing a heterogeneous (scale-free) de-
gree distribution but fail in generating graphs with a high local density, the Watts and
Strogatz model which generates networks with the opposite features or the Configura-
tion Model [3] which generate random graphs with a prescribed degree sequence but
with a low local density. All in all, and despite the different attempts, generating a graph
exhibiting all expected properties is still an open issue.

The purpose of this study is to present a new step toward that goal by exploiting the
bipartite version of the configuration model. Indeed, although useful, the representation
of networks as unipartite graphs does not account for the inherent complexity induced
by the hierachical structure observed in most real networks. This observation led the
scientific community to turn to bipartite graphs to describe such complex structure
when possible. This formalism allows to define explicitly two disjoint sets of nodes and
the links only relate a node of one set to a node of the other set. The natural extension of
the configuration model to bipartite graphs allows to preserve the degree of every nodes
while shuffling the links, as depicted below:

A B C D

321 4 5 6 t

Bipartite

Configuration Model

A B C D

321 4 5 6

However, as illustrated in the picture, such a model can easily disturb key patterns
of the structure. Although the degree distribution is preserved, the two bicliques (in red
and green) completely vanish after the randomization due to a slight modification of

∗This work is funded in part by CNRS under grant n 245 709 (PICS project Récital).
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the links. To that regard, recent studies showed that overlaps (top nodes connected to
common bottom nodes) are ubiquitous and important patterns in bipartite networks [4].

In order to overcome this issue, we propose in this paper a generative model able
to preserve both the degree sequence and the overlaps of real networks. It relies on the
encoding of those patterns in a third level, defining thus a tripartite graph, on which
we perform the randomization. More precisely, we first perform the enumeration of all
maximal bicliques in the bipartite graph, then encode the bicliques in a third level before
performing a randomization preserving the encoding. Finally, we project the obtained
tripartite graph into its corresponding bipartite structure:

A B C D

α β

321 4 5 6 t

Randomization

Process

A B C D

α β

321 4 5 6

Tripartite 

Encoding

Bipartite

Projection

A B C D

321 4 5 6

A B C D

521 43 6

One key operation in this method relies on the tripartite encodings of the bipartite
structure. We tested several natural heuristics which select the bicliques in a given order
to create the tripartite encoding: a random selection, a selection that maximizes the
number of links encoded and one that maximizes the number of nodes captured.

Results show that all heuristics lead to generating bipartite graphs in which the over-
laps are preserved. We show in addition that several other properties emerge naturally
with much more accuracy than with a standard bipartite configuration model.

Results. In order to validate the approach, we tested the models on 9 datasets that have
an underlying bipartite structure. Due to space limitation, we only show the results on
three representative datasets: HepB is a network featuring scientists and the articles
that they coauthored, collected from Medline repository using the keyword Hepatitis B,
BPSE is a network built from the proteins of bacteria Burkholderia pseudomallei and
the biochemical reactions they take part in, and Youtube contains the membership of
Youtube users as collected in 2007 [2].

For each network, we computed several properties both on the original bipartite
graphs and on the ones generated by the models. More precisely, let G = (>,⊥,E) be
a bipartite graph, where > is the set of top nodes, ⊥ the set of bottom nodes, and E ⊆
>×⊥ the set of links between> and⊥. We denote by N(u) the set of neighbors of u in
the bipartite graph and by N2(u) its neighbors at distance 2. We computed several nodes
characteristics related to the overlaps: the bipartite coefficient [1] based on the Jaccard

index defined as bip(u) =
∑v∈N(u) cc(u,v)
|N(u)| where cc(u,v) = |N(u)∩N(v)|

|N(u)∪N(v)| , the dispersion
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Fig. 1. Inverse cumulative distribution of the degree distribution (first column), the bipartite clus-
tering coefficient (second column), the redundancy coefficient (third column) and the dispersion
coefficient (fourth column) for HepB (top), BPSE (middle) and Youtube (bottom).

coefficient [4] defined as disp(u) = |N2(u)|
∑v∈N(u) (|N(v)|−1) and the redundancy coefficient [1]

defined as rd(u) =
|{(v,w) ∈ N(u)×N(u) s.t. ∃u′ 6= u,(u′,v) ∈ E and (u′,w) ∈ E}|

|N(u)|(|N(u)|−1)
2

.

Figure 1 presents the results for the 3 datasets and the distribution of all characteris-
tics considered. For all features examined here the tripartite models succeed in preserv-
ing the properties better than the configuration model applied on the bipartite structure.
This is particularly true for the redundancy and dispersion coefficients.
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1 Introduction

Coevolving or adaptive network models are increasingly popular due to their closer re-
lation with real-world systems in comparison with static or evolving networks [1]. Most
of the empirical networks display both the topological evolution and state’s dynamics.
Moreover, a nontrivial feedback loop between these aspects renders a simple sum of
effects analyzed separately incomplete. Adaptive mechanisms can generate results un-
reachable when omitting one side of the system. The question is how important are the
new outcomes, as there is always a trade-off between the model’s complexity and ef-
fectiveness. Recent works have proved that this balance favours coevolving models [1].
They not only have the microscopic assumptions in better agreement with empirical
observations, but also produce macroscopic results otherwise unachievable.

Here we aim at exploring the joint effect of the three important aspects of real-
world networks – the coevolution of structure and state, the non-linearity of interactions
and the noise – on the behavior of the system. As the framework we choose a simple
yet fruitful in explaining empirical observations model, namely the voter model [2].
With a binary state, it provides a convenient platform for analysis of opinion dynamics.
Exceptionally, fairly distinct phenomena like ants behavior [3], or stock market nature
[4] were successfully described within the frames of the voter model. It has been already
extended for coevloution, noise and non-linearity separately [2, 5, 6]. The joint effect of
these aspects, however, can be more complex than a superposition of so-far obtained
results. Hereafter we seek to examine it.

2 The model

First a random graph is generated and every node is assigned a state si ∈ {−1,+1}. In
every time step a node is chosen at random, we call it the active or focal node. Then,
with probability (ai/ki)

q an interaction occurs, where ki is the degree of the focal node
i, ai is the number of neighbours of the node i being in the opposite state, and q is the
non-linearity parameter of the model. If an interaction occurs, one of the ai neighbors in
a different state is chosen, call it j. Then, with probability p a link rewiring is performed
and with complementary probability 1− p a state copying. The link rewiring is global
and random. At the and of the time step, regardless of what happened before, the active
node with probability ε draws a random state. The algorithm of the model is illustrated
in the Figure 1.
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Fig. 1. Schematic illustration of update rules in the nonlinear coevolving voter model with noise.

3 Results
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Fig. 2. Phase diagram in p-ε space for N = 250 (left) and N = 1000 (right) for µ = 4 and different
values of q. Picture is made based on simulations averaged over 500 realizations.

We numerically study the p-ε phase diagram for three different values of the q
parameter – the sub-linear case q = 0.5, the ordinary linear case q = 1, and the super-
linear case q = 2. These phase diagrams are presented in the Figure 2 for two different
network sizes. We can distinguish three general phases in the model. The phase A,
indicated by the red area in the figure, is a consensus phase. In this range of parameters
the network stays in a consensus state for most of the time, i.e. magnetization is close
to ±1 and the network is connected having one large component. Obviously, for any
finite amount of noise in the system a frozen configuration does not exist and a phase
is described by its dynamical stationary state. If we increase the noise rate ε or the
plasticity p sufficiently, we obtain the fully-mixing phase B, indicated by the white
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area in the Figure 2. Here, the magnetization drops to zero m = 0, hence there is no
consensus in the system anymore. But the network still stays connected most of the
time. Finally, for high values of the rewiring probability above pc and not too big noise
rates the phase C arises. It is marked by the blue area in the figure. In this region we
report a dynamical fragmentation – the network consists of two separate components
being in the opposite states. It is possible, however, that two components get connected
for a moment due to the noise and random rewiring, creating again one big network.
The phase C can be described as dynamical switching between these two arrangements.

We derive equations (1) governing the dynamics of the system and describing time
evolution of the magnetization m and the interface density ρ . Several solutions (m∗,ρ∗)
can be found depending on the parameter choice, however not all of them are stable,
therefore not all of them are observed in experiments. Since the analytical description
is derived for the thermodynamic limit, we don’t observe stable fixed points at non-
zero magnetization for q≤ 1. This finding is consistent with the scaling behavior of the
numerical results indicating existence only of the phase B in the large network limit.

dm
dt

= 2(1− p)(1− ε)(n−n−q −n+n+q )+ ε(n−−n+),

dρ
dt

=
2
µ

[
(1− p)(1− ε)(n+n+q δ++n−n−q δ−)− p(n+n+q +n−n−q )+

ε
2
(n+δ++n−δ−)

]
.

(1)

Our work fills the gap in the studies of the CVM. It provides a binding between stud-
ies of the CVM with noise [5] and studies on the nonlinear CVM [6]. Additionally, it
collapses to the nonlinear noisy voter model [7] and the ordinary CVM [2] for a proper
configuration of parameters values. We obtain full consistency with those limit cases
and explore untouched regions in between. Our work brings the analysis of the voter
model to a greater complexity by taking into account many possible effects. It may pro-
vide a tool in evaluation of the relevance of different factors in description of opinion
dynamics, but can be also a reference point in the study of coevolving network models.
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1 Introduction

Dynamics and emergence of collective behavior in social system strongly depend on the
structure of the interactions between actors in the social network. The nature of connec-
tions has been studied through empirical analysis and theoretical models of evolving
networks [1]. Models of evolving networks start with one, or the small number of ran-
domly connected nodes. The network grows by the addition of new nodes, which link to
ones already present in the system, following some linking rule. These rules can shape
the network in a specific way. For example, the preferential attachment mechanism is
essential for reproducing the networks with a heterogeneous distribution of the number
of first neighbors.

The role of driving, i.e., non-constant addition of new nodes in the network is still
poorly understood. While standard networks models assume that the addition of new
nodes is constant in time, the growth signal of real social systems varies and influences
network structure [2]. It is of great importance to understand the interplay between
the driving signal and network topology, and how they, separately and in combination,
shape the collective behaviour in social systems. We use a model of network with aging
nodes to examine the role of driving signal in a network.

2 Results

The aging model incorporates the time in a non-trivial manner by introducing nodes
aging [3]. The network is generated by adding one node with one link to the target node
in each time step, t. Probability for connecting new node in the network depends on
degree k of the target node and the age difference τ between the new and target node,

Πi(t)∼ ki(t)β τα
i (1)

Different values of parameters α and β lead to networks with different structural prop-
erties.

We customised the aging model by allowing the addition of multiple nodes (M > 1)
and links (L > 1), in each time step. As input in the simulation, we used the driving sig-
nal from the Meetup website, TECH social group [4]. Driving signal shows the number
of new members that joined a group at a single event.
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We run the simulations for TECH signal and randomized TECH signal, for all com-
binations of parameters −3 < α < 0 and 1 < β < 3, generating a sample of 100 net-
works. New members in network can make one (L = 1), or more (L = 3) connections.
As the average number of added nodes per time step is M = 1, we looked into differ-
ences of networks driven with original and randomized TECH signal and ones with
constant growth in the time. We use dissimilarity measure (D-distance) [5] to compare
samples of networks grown with different signals. D-distance considers Jensen-Shenon
divergence and node distance distribution.
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Fig. 1. (a) Dissimilarity distance between networks with (randomized) TECH and constant M = 1
signal, for number of links L = 1 and L = 3 in α-β plain. Network properties of (randomized)
TECH signal for different values of L: (b) degree distribution, (c) dependence of average neighbor
degree on node degree, (d) node clustering coefficient; for fixed model parameters α = −1. and
β = 1.5

Figure 1(a) shows calculated D-distance between networks obtained for original
driving signal vs. M = 1 (upper panel) and for randomized driving signal vs. M = 1
(lower panel). We notice a critical region around β = 1.5 and α =−1, where D-distance
between TECH and M1 signal is greater than between randomized TECH signal and
M1. For these parameters, we represent the topological features of networks. For de-
gree distribution (Fig.1(b)) we observe the only difference in slope between original
and randomized TECH signal, with linking parameters L = 1 and L = 3. Networks gen-
erated with the original and reshuffled signal have significantly different topology if we
compare degree-degree correlations and clustering coefficient.
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Networks obtained for the real signals are strongly disassortative (Fig.1(c)) and
have hierarchical structure, i.e., their clustering coefficient (Fig.1(d)) decreases with
k. On the other hand, networks observed from driving the model with the randomized
signal are uncorrelated, and their clustering weakly depends on the degree. Networks
generated with the aging network model for L=1 are tree-like networks. They don’t
have triangles and their clustering is equal to 0.

Summary. Our results show that for the certain values of model parameters networks
obtained from the driving with original signals have different topological features than
ones obtained from the driving with random signals, although they evolve under the
same linking rules. We find that driving signals alter the shape of the degree distribution,
degree-degree correlations and clustering in the network. The effect is the largest for
the values of model parameters for which we obtained networks with broad degree
distribution. This difference disappears as we move away from these parameters. Our
results strongly support the conclusion that driving signal is an important factor in the
evolution of social networks and it has to be included, as a parameter, in modeling social
systems.
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1 Introduction

Networks consisting of nodes and edges are observed in nature and society. From the
viewpoint of the relation between the average path length and the system size (the total
number of nodes in a network), real-world networks can be classified into small-world
and fractal networks [1]. In small-world networks, the average path length increases
with the logarithm of the system size at most. In fractal networks, the number of boxes
required to cover a network decreases with the radius of boxes in a power law fashion.

As has been reported, fractal networks have a long-range degree correlation that is
a degree correlation between two nodes not directly connected; fractal networks have
long-range anti-correlations in the sense of degree fluctuation [2]; nearest neighbor de-
gree correlations fail to explain the fractality of a network [3]. However, it is not suf-
ficient to understand the degree-correlated structure of fractal networks because it is
difficult to handle the long-range degree correlation both analytically and numerically
in most networks.

We treat the long-range degree correlations of an infinitely large cluster extracted
from the Erdős-Rényi random graph. In the Erdős-Rényi random graph with the de-
gree distribution pk = k̄ke−k̄/k!, where k̄ is the average degree of the graph, there exists
(does not exist) the infinitely large cluster if the average degree k̄ is greater (less) than
the critical value k̄c = 1. At the critical average degree k̄c, the cluster becomes fractal
and such a cluster is hereinafter referred to as the fractal cluster. Using the generat-
ing functions, we obtain the property of the fractal cluster extracted from the critical
Erdős-Rényi random graph. Specifically, we derive the probability Pfc(k,k′|l) that two
randomly chosen nodes separated by distance l from each other have the degrees k and
k′ on the fractal cluster and characterize the long-range degree correlations of the fractal
cluster extracted from the Erdős-Rényi random graph.

2 Results

Let us consider an infinite Erdős-Rényi random graph which is degree-uncorrelated
and is locally tree-like. We introduce the probability u that an edge does not lead an
infinitely large cluster. In the Erdős-Rényi random graph, the probability u is given as
u = ∑k kpkuk−1/k̄(= ∑k pkuk). From the probability u, we have the probability S = 1−
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∑k pkuk = 1−u that a node belongs to an infinitely large cluster. For k̄ < k̄c, the network
consists of only small (finite) clusters, which corresponds with u = 1. For k̄ > k̄c, there
exists an infinitely large cluster. In this case, the relation u < 1 is satisfied. Using the
probability u, we can extract properties of the infinitely large cluster, e.g., the relative
size S of the cluster [4], the degree distribution and the joint probability that degrees of
two ends of a randomly chosen edge are k and k′ [5, 6]. We derive the probability that
two randomly chosen nodes separated by distance l from each other have the degrees
k and k′ on the infinitely large cluster. Approaching the system to the critical average
degree, i.e., k̄→ k̄c, the probability Pfc(k,k′|l) on the fractal cluster behaves as

Pfc(k,k′|l) =
k̄c(l−1)+(k+ k′−2)

k̄c(l−1)+2
kpk

k̄c

k′pk′

k̄c
. (1)

Figure 1 shows Pfc(k,k′|l) for the critical Erdős-Rényi random graph as a function of k
and k′ for several distances. Wireframes (analytical treatment (1)) match perfectly with
symbols (simulation results), which implies the validity of our analytical treatment.

Fig. 1. Probability distribution Pfc(k,k′|l) for the critical Erdős-Rényi random graph (k̄ = k̄c) as a
function of k and k′ for l = 1, 3, and 5. Wireframes are results for analytical calculations obtained
by Eq. (1) and symbols represent corresponding simulation results. In simulations, the number of
nodes is set as 107 for a single sample.

Summary. We discuss the long-range degree correlations of the fractal cluster in the
critical Erdős-Rényi random graph. From Eq. (1), we can obtain the average degree
kfc

l (k) of l distant nodes from a degree-k node on the fractal cluster which is a gen-
eralization of the average nearest neighbor degree knn(k) of nodes with degree k. The
behavior of kfc

l (k) shows that the fractal cluster possesses a negative degree correlation
for any distance l. In this presentation, we will present the general result for random
graphs with arbitrary degree distributions and discuss long-range degree correlations of
not only the fractal cluster but also the infinitely large cluster.
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1 Introduction

Models of network evolution have been studied intensively in the past two decades, and
have resulted in an increasingly thorough understanding of the structure and function
of various classes of real-world networks, both natural and artificial. Most theoreti-
cal works on evolution mechanisms have followed a deductive approach, focusing on
structures resulting from general network evolution rules. The recent surge of scientific
activity related to artificial intelligence and machine learning algorithms has led to the
new field of network archeology, where the aim is to infer information about the history
of a network from a current static snapshot of its structure. Such information can help
us better understand its current structure and predict future states.

Inferring the history of growing networks, even considering the simplest growth
mechanisms and network structures, is a difficult combinatorial problem. In the last
decade considerable literature has accumulated around the problem of inferring the root
of a growing tree, one of the simplest well-defined problems in network archeology. An
efficient root detection method was introduced in [1] and was shown to give the ex-
act maximum likelihood estimate of the root of a randomly growing tree confined to a
Bethe lattice of arbitrary coordination number. This method has also been shown to be
exact for trees grown according to the Barabási-Albert model [2], and its accuracy has
been studied in various non-exact scenarios [5–7]. A far more complex problem is the
inference of the complete history of a growing network. Very recently some principled
methods have been suggested, based on a Bayesian inference framework [3, 4]. These
approaches rely on Monte Carlo sampling from an appropriately weighted distribution
of possible histories, which are computationally demanding and hence not easily scal-
able. Simpler heuristic approaches have also been suggested in [3, 4], based on node
degrees and other simple centrality measures that are efficiently retrieved from network
structure.

2 Results

2.1 Root inference

We consider a root finding algorithm based on the concept of history degeneracy: the
number of distinct node sequences (complete node orders) that start at a given node and
produce exactly the tree under observation. The structure of the given tree imposes a
partial order on the set of its nodes, and there are a large number of particular sequences
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that comply with that partial order. (Such a complete sequence is also called a linear
extension of the given partially ordered set (poset)). The probability Pi that a given node
i of a tree was the root is proportional to the number Ni of allowed sequences generating
our given tree, started at node i. We derive a set of message passing equations whose
solutions Qi← j combine to give the above probabilities on an arbitrary tree,

Pi ∼Ni ∼ ∏
j∈∂ i

Qi← j, (1)

where ∂ i denotes the set of neighbours of node i. The solutions Qi← j can be written in
vector form as

lnQ = (B− I)−1 lnN, (2)

where lnQ is the element-wise logarithm of the vector Q = {Qi1← j1 ,Qi2← j2 , . . .}. Sim-
ilarly lnN = {lnNi1← j1 , lnNi2← j2 , . . .}, where Ni← j denotes the number of nodes in the
branch “upstream” of directed link i← j. B denotes the nonbacktracking matrix of the
given tree and I is the identity matrix. The probabilities calculated in this way are pro-
portional to the rumor centrality of [1]. We show that this method is exact for general
linear preferential attachment (LPA) trees.

This message passing scheme also allows us to accurately measure the history de-
generacy of LPA trees and random trees grown in a Bethe lattice. We call the latter
constrained random recursive (CRR) trees. In both classes the logarithm of the history
degeneracy lnΩ behaves as

lnΩ ∼= N lnN−aN, (3)

where N is the tree size and a is a size-independent constant. The behaviour of a as a
function of the parameter of CRR and LPA trees is shown in Fig. 1.

2.2 Reconstruction of complete history

Based on the above scheme we propose a fast algorithm to reconstruct the complete his-
tory of a growing tree. Our method is a step-wise maximum likelihood estimate of the
history that is calculated in each step according to a slight modification of Eq. (2), tak-
ing into account the part of the tree that already exists (is already inferred), and nodes
whose order is yet to be determined. Our method works well for trees with low his-
tory degeneracy, and the reconstruction quality gets progressively worse as degeneracy
increases, see Fig. 1.

For low degeneracy trees our method works considerably better than simple degree-
based reconstruction methods as indicated by comparison of the average relative overlap
of inferred sequences with the real one, and by measuring the correlation of inferred
ranks with the real ranking.

We expressed the probabilities of nodes on a growing tree being the root using the
nonbacktracking matrix of the given tree. We showed that this is exactly the maximum
likelihood estimate in the case of general linear preferential attachment trees. We nu-
merically studied the efficiency of this root finding approach and proposed a fast method
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Fig. 1. Probability P0 of being the root for the most likely node, the history degeneracy parame-
ter a (see Eq. (3)) and Pearson rank correlation ρ , for the two classes of trees considered: CRR
trees parametrized by the coordination number z of the underlying Bethe lattice, and LPA trees
parametrized by the degree distribution exponent γ . The detectability of the root node monotoni-
cally increases, and the reconstructability of the complete history monotonically decreases as we
approach a star structure (1/γ = 0.5). Note that the limits z→ ∞ and γ → ∞ both correspond to
random recursive (RR) trees.

to infer the complete history of a growing tree, based on the same principle of counting
history degeneracies. We accurately measured the history degeneracies of linear pref-
erential attachment trees and random trees grown in Bethe lattices, and concluded that
high-quality history reconstruction is possible in the low-degeneracy range.
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2 Centro de Fı́sica Teórica e Computacional, Universidade de Lisboa,
1749-016 Lisboa, Portugal

3 Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
4 A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

1 Introduction

The synthesis of three-dimensional polyhedral shells at the micron and nano scales is
key for encapsulation and drug delivery. Inspired by the Japanese art of Kirigami, where
hollowed structures are obtained from cutting and folding a sheet of paper, lithographic
methods have been developed to form shells from two-dimensional templates of inter-
connected panels. The potential is enormous, for a wide range of shapes and sizes can
be obtained.

Ideally, the unfolded templates (nets) should spontaneously self-fold into the target
structure to reduce production costs and achieve large-scale parallel production. How-
ever, some nets are much more likely to self-fold into the desired shell under random
movements [1]. The optimal nets are the ones that maximize the number of vertex con-
nections, i.e., vertices that have only two of its faces cut away from each other in the
net.

Even a shell of moderate size (in number of faces) has many possible nets, but only a
small fraction of them is optimal. For example, for the dodecahedron, with only twelve
faces, less than 0.04% of its more than 5 million nets are optimal, i.e., to obtain an
optimal net one would need to randomly sample 2500 configurations on average.

2 Methods and Results

Previous methods for finding such nets are based on random search and thus do not
guarantee the optimal solution. Adapting concepts and methods from Graph Theory, we
show in [2] that the optimal solution can be obtained in a deterministic and systematic
manner. We map the connectivity of the shell into a shell graph, where the nodes and
links of the graph represent the vertices and edges of the shell, respectively, see Fig. 1.
Identifying the nets that maximize the number of vertex connections corresponds to
finding the set of maximum leaf spanning trees of the shell graph.

As we showed in [2], the fraction of nets that have the maximum number of vertex
connections decays exponentially with the number of edges in the polyhedron, reinforc-
ing the necessity of a deterministic method. This method allows not only to design the
self-assembly of much larger shell structures but also to apply additional design criteria,
as a complete catalogue of the maximum leaf spanning trees is obtained.
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a) b)

c)

Fig. 1. Net of a cubic shell. (a) The cubic shell is mapped into a shell graph (black), where nodes
and links of the shell graph are the vertices and edges of the polyhedron, respectively. In the face
graph (blue), the nodes are the shell faces and the links connect pairs of adjacent faces. To unfold
the shell into a two-dimensional template (net), one needs to remove a set of shell edges (e.g., red
links in (b) and (c)). This set of removed shell edges is a sub-graph of the shell graph. The set of
removed shell edges (cut) and the net are spanning trees of the shell and face graphs, respectively.
The four vertices of the bottom face are vertex connections.

Using the minimization of the radius of gyration as the secondary design criteria,
we find the optimal net for several examples of shells [2], some of which we show in
Fig. 2. Moreover, we develop a variation of the method for open shells structures, i.e.
with some of the polyhedral faces missing, who’s optimal nets are also shown is Fig. 2.

(1)

Three-dimensional shells can be synthesized from the spontaneous self-folding of two-
dimensional templates of interconnected panels, called nets. However, some nets are
more likely to self-fold into the desired shell under random movements. Previous meth-
ods for finding such nets are based on random search. Here, we propose a deterministic
procedure. This method allows us not only to design the self-assembly of much larger
shell structures, closed and open, but also to apply additional design criteria.
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a) b) c) d) e)

Fig. 2. Five examples of shells and of one of their nets corresponding to a cut that is a maximum
leaf spanning tree: a) tetrahedron, with four faces and nine edges, it has one non-isomorphic op-
timal net; b) dodecahedron, with twelve faces and thirty edges, it has 21 non-isomorphic optimal
nets; c) small rhombicuboctahedron, with 26 faces and 48 edges, it has 32 non-isomorphic op-
timal nets; d) open cubic shell, with five faces and twelve edges, it has only one optimal net; e)
small rhombicuboctahedron with the top nine faces removed and 17 faces, 36 edges and 20 nodes
remaining, it has 90 non-isomorphic optimal nets. The black circles in the nets indicate the vertex
connections.
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Distances in Node Duplication networks
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To gain insight into the structure of complex networks, it is useful to study their
growth dynamics. In general, it appears that many of the networks encountered in bio-
logical, ecological and social systems grow step by step, by the addition of new nodes
and their attachment to existing nodes. In some networks, the new nodes emerge with
no predefined connections, while in other networks the new nodes result from the du-
plication of existing nodes, followed by a stochastic readjustment of their links.

The effect of node duplication (ND) processes on the structure of complex networks
was studied using the ND model [1–5]. In this model, at each time step a random node,
referred to as a mother node, is selected for duplication. The new, daughter node, retains
a copy of each link of the mother node with probability p. Furthermore, in an important
variant referred to as the corded ND model (introduced in Refs. [6, 7]), the daughter
node forms a link to the mother node (deterministically) as well. Examples of the re-
sulting network are shown in Fig. 1. An important extension was proposed and studied
recently in our work [8], where the links are directed - pointing from the daughter node
to the mother node (and only outgoing arcs are copied).

The degree distributions of these network turn out to follow a power-law distribu-
tion, with an exponent that depends continuously on p - thus the corded ND networks
are scale-free [6–8]. The undirected version is suitable for the study of acquaintance net-
works, in which a newcomer who has a friend in a new community becomes acquainted
with members of the friend’s social group [9]. The main advantage is that the formation
of triadic closures is built into the dynamics of the undirected model. This means that
once the daughter node forms a link to a neighbor of the mother node, it completes a tri-
angle in which the mother, neighbor and daughter nodes are all connected to each other
[10]. The directed ND model, however, captures some essential properties of scientific
citation networks, modeling the fact that a citation of a paper is often accompanied by
citations to some of the earlier papers that appear in its reference list [11].

(a) (b)

Fig. 1. Two instances of undirected corded ND networks of size N = 50, with p = 0.1 (a) and
p = 0.4 (b). Both instances are formed around the same backbone tree (solid lines). Increasing p
makes the network denser.

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



ℓ

0 5 10 15 20 25

P
(L

=
ℓ
)

0

0.05

0.1

0.15

0.2
(a) Theory

Simulation

ℓ

0 5 10 15 20 25

P
(L

=
ℓ
)

0

0.05

0.1

0.15

0.2
(b)

Fig. 2. The DSPL of the corded ND network of Nt = 104 nodes with (a) p = 0.1 and (b) p = 0.3.
The theoretical results (solid lines) agree with the results of computer simulations (circles).

Recently, we obtained exact analytical results for the distribution of shortest path
lengths (DSPL) in the corded ND undirected [12] and directed [8] models. To this end
we derive master equations for the time evolution of the probability Pt(L = `), ` =
1,2, . . . , where L is the distance between a random pair of nodes and t is the time.
Note that the size of the network at time t is given by Nt = s+ t, where s is the size of
the seed network. Finding exact analytical solutions of the master equations, we obtain
closed form expressions for Pt(L = `). An important difference between the two cases
is that while all pairs of nodes in the network are connected (or reachable from each
other) in the undirected case, only a small fraction of pairs are reachable via directed
links in the directed case. Surprisingly, the mean distance in both cases is found to scale
logarithmically with the network size: namely 〈L〉t ∼ lnNt in the undirected case, while
the mean conditioned on reachable pairs Et [L|L < ∞]∼ lnNt , thus the ND networks are
small world networks. This result is in contrast to a common belief in the community
stating that in scale-free networks the mean distance scales as 〈L〉t ∼ ln lnNt [13] -
a behaviour known as ”ultra small world”. Actually, typical distances exhibited by our
ND networks are much longer than those obtained in configuration model networks with
precisely the same degree distribution. In Fig. 2 we present the distribution Pt(L = `)
for an ensemble of the undirected corded ND networks of size Nt = 104, grown from
a seed network of size s = 2, with p = 0.1 and 0.3. The analytical results are found
to be in excellent agreement with the results of computer simulations. The distribution
turns out to be much broader than in other random networks (the directed case exhibits
even a better agreement). In Fig. 3 we present the mean distance as a function of the
network size Nt for both models and representative values of p. The results confirm the
logarithmic scaling with network size.

In summary, we obtained exact analytical results for the distribution of shortest path
lengths in corded node duplication networks. These results provide insight on the large
scale structure of node duplication networks and on the relation between the growth
process and the resulting structure. In particular, one important conclusion from this
work is that the corded ND networks are small world networks rather than ultrasmall.
This means that the large scale structure of networks is far richer than any prediction
based on the degree distribution alone. Furthermore, The corded directed ND network
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Fig. 3. The mean shortest path length, 〈L〉t (undirected) and Et [L|L < ∞] (directed), of ND net-
works as a function of network size Nt . The theoretical results (solid lines) confirm the logarith-
mic dependence on the network size. As p is increased, distances decrease in both cases.

provides some insight on the structure of the scientific citation networks. It indicates
that for a given paper, the typical number of papers that are reachable to it by directed
paths of citations (in the past or future) scales like lnN/N. This provides an insight into
why the scientific literature is highly fragmented in the sense that most pairs of papers
are not reachable via chains of citations. For those pairs of papers that are reachable by
chains of subsequent citations, the DSPL provides the breakdown into direct citations,
indirect citations via a single intermediate paper and indirect citations of higher orders.
This sheds new light on the way the impact of a paper may be evaluated, namely not
only in terms of the direct citations but also in terms of the cumulative effect of all
the secondary citations. Another aspect revealed by the model is that the structure of
citation networks evolves slowly, with a typical logarithmic time-scale. However, it
should be emphasized that this model is only a minimal model of citation networks. In
more complete models a new paper may cite several ’mother nodes’ as well as some of
the earlier papers cited in them. This would increase the number of directed paths but
is not expected to change the qualitative properties of the network.
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Are degree distributions in complex networks
observable?
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Introduction. Given an empirically observed complex network, a typical first step in
analyzing its structure is to harvest node degrees and attempt to determine the law gov-
erning their distribution (assuming the network is large enough to perform a meaning-
ful statistical analysis). A power-law degree distribution is frequently associated with a
‘small-world’ structure, thus allowing a quick glimpse into the network topology.

The prevalent paradigm in network science is that power-law degree distributions
are ubiquitous [1, 2]. This, in turn, governs a lot of theoretical effort aimed at modelling
complex networks. The opposite view has also been expressed [3, 4], in particular Ref.
[4] generating a robust exchange of views [5–7]. Underlying this discussion is a view
that application of suitably elaborate statistical methods is sufficient to answer this ques-
tion one way or another. The crucial, and often unstated, assumption, is that one could
employ standard universal statistical tools like Kolmogorov-Smirnov (KS) statistic [8],
or other methods (e.g. Anderson-Darling, Cramér-von Mises) based on various mea-
sures of distance between the hypothesized and the empirical cumulative distribution
functions (CDFs), in order to determine the ‘goodness’ of a degree distribution fit [4,
9]. The purpose of this note is to draw attention to the fact that an overlooked subtlety
of the statistics of empirical CDFs of node degrees in networks may render the question
of determining degree distribution laws conceptually undecidable.

Let us re-state briefly the textbook foundations of the KS and related methods. Con-
sider a sequence of i.i.d. random variables {Xi}N

i=1 characterised by CDF F(x). We

have Femp(x) =
1
N

N

∑
i=1

1{Xi≤x}, hence E[Femp(x)] = F(x), and N2E[Femp(x)Femp(x′)] =

∑N
i j E[1{Xi≤x}1{X j≤x}] = ∑N

i=1 min(F(x),F(x′))+∑i6= j F(x)F(x′). We thus obtain
1
N min(F(x),F(x′))+ N−1

N F(x)F(x′), and therefore Cov[Femp(x)Femp(x′)]= 1
N min(F(x),F(x′))+

N−1
N F(x)F(x′)−F(x)F(x′) = 1

N {min(F(x),F(x′))−F(x)F(x′)}. Denoting Femp(u) =
Femp(F−1(u), one finds the universal scaling form C (u,v)≡NCov[Femp(u),Femp(v)]=
min(u,v)−uv, independent of the specific form of F(x). Universal applicability of the
KS statistic follows from the convergence of the normalised empirical CDF Femp(u) to
Brownian bridge on u ∈ [0,1], characterised by the covariance function above.

A crucial element in this calculation is the cancellation of O(1) terms generated
by factorization of E[1Xi≤x1X j≤x]. It follows that in the case of dependent variables
very weak correlations leading to an O(1/N) correction to factorization of this term
are enough to produce an O(1) contribution to the universal scaled covariance function,
rendering the statistics of KS distances non-universal.
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Degree distribution of a random network is a marginal distribution derived from
the ‘global’ distribution of the full adjacency matrix, hence a priori there is no reason
why such correlations would not be present, breaking the applicability of any testing
method relying on a measure of distance between empirical and conjectural CDFs to
degree distributions. Note that at issue is not the usual measure of degree correlations
in networks focusing on pairs of adjacent nodes [10], but a more ‘egalitarian’ measure
of correlations among arbitrarily chosen pairs of nodes. We consider three paradigmatic
(undirected) network models: (i) Erdős-Rényi (ER) networks, (ii) Barabási-Albert (BA)
networks, and (iii) inhomogeneous ER networks (iER) and static fitness networks [11,
12], geared towards producing power-law degree distributions. In all cases we show that
covariance function of Femp is finitely different from the i.i.d. case.

ER networks. We define an N ×N ER network as a set of i.i.d. Bernoulli random
variables Si j, where Si j = 1 if nodes i and j are connected (with probability p), and
Si j = 0 otherwise. We therefore have Femp(k) = 1

N ∑k
κ=0 nκ , where nκ = ∑N

i=1 1{di=κ} is
the total number of nodes with degree d = κ . In the dense network regime p∼O(1), we
find the standard result F(k) ≡ E[Femp] = Φ

(
[k− k̄]/

√
N−1σ

)
, where k̄ = pN, σ2 =

p(1− p), and Φ(z) is the CDF of the standard normal distribution N (0,1). Extending
the analysis to degree correlations, we obtain

Cov[
√

NFemp(u),
√

NFemp(v)] = C (u,v)+Φ ′(Φ−1(u))Φ ′(Φ−1(w)) (1)

The exact functional form of the correction term is borne out by numerical simulations
(Figure 1). Similar results are obtained in the case p∼ O(1/N).
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Fig. 1: Scaled variance of Femp for different
values of p using either independent Gaus-
sian variables (lower cluster of curves), or
degree distribution of ER graphs, overlaid
with the plot of u−u2 +Φ ′2(Φ−1(u)) (up-
per cluster of curves), in accordance with
the diagonal limit u = v of Eq. (1).
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Fig. 2: The simulated variance of Femp for
BA graphs, overlaid by the theoretical curve
u−u2 +S(k(u)) , and the Brownian bridge
variance u− u2 (top curve) for compari-
son. Only the rightmost part of the plots is
shown, as the bulk of the nodes in BA net-
works have low degrees.
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BA networks. A standard approach using rate equations [10] can be extended to the

analysis of P(k,k′;N) =
1

N(N +1)

N

∑
τ=0,τ ′=0

τ 6=τ ′

P[d(N|τ) = k∩d(N|τ ′) = k′], where d(N|τ)

is the degree (at discrete time N) of the node preferentially joined to the network at
some previous time τ . The full covariance function of Femp is rather cumbersome, so
we present here the result at coinciding arguments: NVar[Femp(u)] = u−u2 +S(k(u)),

where the correction term is S(k) =− 2k2(7+2k)
(k+1)(k+2)(2k+1) +2F2(k), the CDF of the infinite

BA network is F(k) = 3k+k2

(k+1)(k+2) , and k(u) is the corresponding inverse function. The
exact functional form of the correction term is again borne out by numerical simulations
(Figure 2). Note that in contrast to the ER case, the variance of Femp here is smaller
than for independent random variables.

iER and static fitness networks. We now consider iER networks with P[Si j = 1] =
(λ/N <w>w)wiw j, where the sequence wi is chosen [13] so that the degree distribution
is asymptotically a power law p(k)∼ k−β , λ controls the overall density of links, and <
φ(w) >w= ∑i φ(wi)/N. Denoting f (k,w) = wke−w/k!, and F(k,w) = ∑k

κ=0 f (κ,w) =
Γ (k+1,w)/Γ (k+1), where Γ (n,z) is the (upper) incomplete Γ -function, we find

NVar[Femp(u)] =
〈
F(k(u),λw)−F2(k(u),λw)

〉
w +

(
λ

< w >w

)
〈w f (k(u),λw)〉2w

(2)
where k(u) is the inverse function of F(k) = 〈F(k,λw)〉w.

Figure 3 (bottom curves) shows that in the
iER model (choosing β = 3 to match the
BA case), empirical variance is finitely
smaller than the independent case, and
displays a particularly strong suppression
near F = 1. The top curve in Figure 3
shows numerically simulated variance for
fitness-based [11, 12] tree networks, with
β = 3. Note that the variance in this case
is larger than in the independent case,
despite the same β = 3 power-law degree
distribution as in the BA and iER networks.
[Theory for the variance of Femp is not yet
available in the fitness model.]

u

0.970 0.975 0.980 0.985 0.990 0.995 1.000

0.01

0.02

0.03

0.04

Fig. 3: The simulated variance of Femp for
iER graphs, overlaid by the theoretical
curve obtained from Eq. (2) for β = 3, the
Brownian bridge variance u− u2 (middle
curve) for comparison, and fitness model
(top curve).

Conclusion. We demonstrate that variance of empirical CDF of network degree dis-
tributions is highly non-universal, depending on the details of each of the generative
models explored. Crucially, we have shown that models with the same β = 3 power-
law degree distribution may exhibit both suppression and enhancement of the variance
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of Femp compared to the case of independently distributed variables. Consequently, uni-
versal KS (or similar) test statistic cannot be applied. Furthermore, each empirically
observed network is sui generis, with unknown, and most often unknowable, growth
or creation mechanism. It therefore appears impossible to use any bespoke bootstrap-
ping methods to simulate the distribution of KS (or similar) test statistic for network
degree distribution. The fact that the effect is finite as F→ 1 means that methods based
on tail estimators [6] may be similarly impacted. The results of this study naturally
lead to pose the question whether the full information contained in a single instance
of an observed adjacency matrix (thus abandoning the concept of degree distribution
as a self-contained network characteristic) could be exploited to determine the sign of
the deviation of the variance from the universal case, and hence open the way to some
approximate bootstrapping approaches.

Acknowledgements. Discussions with E. Wit, V.Vnciotti, and I. Artico are gratefully
acknowldged.
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1 Introduction

Change-point detection is a classical problem in statistics which has gained significant importance
and applicability in many fields including medical diagnostics, gene expression, spam email fil-
tering, astronomy and finance. Such problems arise in the analysis of various data types including
sequentially observed normally distributed data, time-series data and multivariate data for detecting
change in different parameters of the data distribution such as mean, variance, correlation, density.

In this article, we tackle the problem of change-point detection in temporal network data. The
observable is a sequence of networks indexed by time. The goal is to check if there is any time-
point, which will be referred to as change-point, when there is a significant change in the structure
of these networks and to estimate the location of such change-points. These problems arise in
many applications including (i) brain image analysis, where one observes scanned images of brains
collected over time and looks for abnormalities, (ii) ecological networks observed over time, where
one checks whether there is any structural change. We stress here that we observe the whole time
series ahead of our analysis, this is thus an offline or a posteriori change-point problem.

Recent work in this area include [6] (Bayesian procedure for hierarchical random graph model),
[5, ?] (use of local graph statistics for anomaly detection in dynamic networks), [2] (eigenvalue
based test to segregate graph models). Although much empirical work has been done, not much
theory can be found (exception is [7]), and most theoretical results focus on particular structures
or specialized models. Some recent works [8, ?] propose methods for change point detection in
networks generated from block models and graphon models with some theoretical results on the
consistency of the detection methods.

The classical CUSUM statistic [4] for univariate change point problems can be used in the
network problem as well, and provides a unified way of constructing estimates of change points.
A preliminary study of its theoretical poperties was carried out in [3]. In this paper, we will further
that investigation in a much more general setting under very mild assumptions.

2 Contribution of the paper

We consider the setup where one observe T networks with adjacency matrices A(1),A(2), . . . ,AT 1)

on the same set of nodes {v1,v2, . . . ,vn}, where the edges in At1) appear independently and EA(t) =
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Pt . The first problem that we address is testing the hypotheses

H0 : Pi = P,1≤ i≤ T, versus H1 : ∃ 1≤ τ ≤ T −1 such that Pi =

{
P 1≤ i≤ τ
Q τ +1≤ i≤ T.

and estimating τ when H1 is true. Let τ ∈ (κ,T −κ) and Λ is the target precision for estimating τ .
Also let D̄ be the sample average degree of a node over all layers. Define

For ` ∈ [T/Λ ], let T` := (`−1)Λ and J` := ∪?∈{+,−}I?
(

T`,T`+1;
1
3

Λ ∧κ
)
,

where I−(a,b;c) := {(a, t] : a+ c≤ t ≤ b},I+(a,b;c) := {(t,b] : a≤ t ≤ b− c}

Γ := n ·min

{
1
2
,

(
log(T/Λ)

D̄3(Λ ∧κ)

)1/2
}
,

Di,` := max
J∈J`

1
|J| ∑

j∈[n],s∈J
A(s)

i j for i ∈ [n] and ` ∈ [T/Λ ],

Algorithm 1: Change Point Detection
Input: Adjacency matrices A(1),A(2), . . . ,A(T ); cushion κ , scanning window Λ .
Output: Change point estimate τ̂ .

Obtain D̄ = 1
nT ∑i, j∈[n],s∈[T ]A

(s)
i j .

Obtain Γ .
For `= 1,2, . . . ,T/Λ do

Obtain T` and J`.
For i = 1,2, . . . ,n do

Obtain Di,`.
Order the values D1,`, . . . ,Dn,` to get D(1),` ≤ ·· · ≤ D(n),`.
Obtain row indices i1, . . . , iΓ such that Dik,` ≥ D(n+1−Γ ),`

Obtain Ã(s) from A(s) for each s ∈ (T`,T`+1] by removing rows and columns with
indices i1, . . . , iΓ .

For t = 1
3(Λ ∧κ), 1

3(Λ ∧κ)+1, . . . ,Λ − 1
3(Λ ∧κ) do

Obtain G(t) := 1
t ∑s∈(0,t] Ã(s+T`)− 1

Λ−t ∑s∈(t,Λ ] Ã(s+T`).

Obtain u = argmaxt∈(T`,T`+1]

∥∥∥G(t)
∥∥∥

If
∥∥∥G(u)

∥∥∥>CΨ
[

D̄
(logn)Λ∧κ log(CT/Λ)

]1/2
, declare u as a change point.

A natural statistic to consider under our single change-point alternative is based on the cumula-
tive averages of estimates of the Pis. Such CUSUM statistics are very widely used in change-point
problems. We use A(t) as an estimate of Pt . Then we obtain submatrices Ã(t) of A(t) by removing
some high degree vertices as described in Algorithm 1. Then we obtain

Gt :=
1
t

t

∑
i=1

Ã(i)− 1
T − t

T

∑
i=t+1

Ã(i) for κ ≤ t ≤ T −κ.
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We accept H0 (no change-point) if maxκ≤t≤T−κ ||Gt || ≤C
√

D̄/T , where D̄ is the estimated average
degree, || · || denotes the spectral norm and C is a large constant. Otherwise, we accept H1 (existence
of a change-point) and obtain τ̂ (our estimate of the single change-pointτ) by

τ̂ := arg max
κ≤t≤T−κ

||Gt ||.

In many univariate settings, such CUSUM statistics are minimax optimal (see, e.g., [1]).

Theorem 1. Let d be the average degree of a node among the networks A1, . . . ,AT . Then |τ̂−τ|=
o(T ) when ||P−Q|| �

√
d/T . Also, if ||P−Q|| 6�

√
d/T , detection is not be possible.

We also address the case of multiple change-points, where there are K (unknown) change-points
τ1 < τ2 < · · · < τK and obtain consistent estimates K̂, τ̂1, . . . ,τK under minimal assumptions on
network parameters.

Comment: Note that, Theorem 2.1 states the optimal condition on operator norm of the dif-
ference between the connection probability matrices, ||P−Q|| for recovery of change-point. The
optimal condition depends on

√
d/T .

Summary. Based on a finite sequence of observed independent network data, we provide an algo-
rithm to test if there is any change-point and estimate the location of the change-points (if any). The
algorithm works effectively whenever the signal (norm of the difference of means of the networks
before and after the change-point) is above the detectability threshold irrespective of whether the
networks are sparse or dense.
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1 Introduction

Activity in the human brain displays features of localization, allowing for multiple tasks
at the same time, and slow relaxation, which means that in localized regions activity is
sustained for long times. This phenomenology can be explained starting from the struc-
ture of brain connectivity patterns, which is that of a hierarchical modular network
(HMN) [1–3]. In this work we address the study of these two features, localization and
anomalous dynamics. To achieve this objective, we use a minimal computational model
for diffusion, as a simple dynamic protocol, able to capture the essence of the dynamic
slowing down due to the hierarchical organization. Diffusion and random walk simula-
tions are tightly related to the concept of spectral dimension of a network. Hierarchical
modular networks are known to have a finite topological dimension. This property has
been variously invoked in the past to explain the emergence of localization and the dy-
namic slowing down in such networks [3, 4]. The topological dimension remains how-
ever a purely structural measure, and its role in generating localized functional patterns
such as rare-region events has been only conjectured. The spectral dimension, instead,
can be computed measuring the return probability of a simple random walk simulation,
providing a direct connection between structure and function (diffusive dynamics in
this case). Our approach thus consists in running vary-large-scale simulations (network
sizes up to 30 million nodes), for the accurate computation of spectral dimension in
HMNs. Our results show that the dynamic slowing down in such systems can be related
to the surprising fact that the spectral dimension for such systems is undefined, i.e. the
return probability for HMNs does not decrease in time as a simple power law, and it
rather exhibits a stretched exponential correction. Since several brain pathologies are
associated with a dimension reduction and/or anomaly (as in a breaking process), our
results may serve as the foundation for topology-based diagnostic tools, in the broader
context of network physiology and medicine [5].
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2 Results

For simplicity, we construct HMNs using the method introduced in [3] and we call α
the connectivity strength of the HMN, being α proportional to both the average network
degree 〈k〉 and (asymptotically) to its topological dimension [6].

As we are interested in computing the spectral dimension Ds of such networks, we
recall that Ds can be measured in random walk simulations. To this end, we define the
average return probability Pii(t) as the probability of a walker to return to its starting
node i after t steps (at time t), averaged over all choices of i. If Pii behaves asymptotically
as

Pii (t)∼ t−
Ds
2 , (1)

then Ds is the spectral dimension of the network. In any other case, the spectral di-
mension is not defined, thus pointing to anomalous (and often very slow) relaxation.
We compute Ds by running large-scale random walk simulations, extracting Pii, and
verifying if the standard behavior in 1 holds. Our findings are exemplified in Figure 1,
where we show a sample curve of the return probability for a HMN. While the expo-
nential cutoff at extremely large values of t is the expected cutoff associated with the
network’s finite size, the initial power-law-like behavior depends non-trivially on the
choice of α and asymptotically exhibits a stretched exponential correction at very large
t, Pii ∼ exp

[
−(t/t0)

β
]

pointing to an excess of return events at very large times. The
exponent 0.5 < β < 1 is found to depend on the connectivity strength α: lower values
of α (and lower topological dimension) produce lower values of β (and more signifi-
cant slowing down). For higher α instead, β approaches 1 and the standard behavior is
recovered. The details of our analysis of the anomalous exponent β are shown in Fig-
ure 2, which allows us to conclude that the standard diffusive scenario associated with
networks of finite spectral dimension does not hold in the case of HMNs. We note that
the initial power-law-like regime in Figure 1 depends surprisingly weakly on α and the
analysis of its role in HMNs will be the subject of future work.

Fig. 1. Sample curve of the return probability of a random walk on HMNs. The initial power-
law-like regime crosses over to a slower regime, whose scaling is analyzed in Figure 2. The final
exponential cutoff is due to the finite size of the network.
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Fig. 2. Analysis of the stretched exponential regime, for HMNs of varying geometries, and for
increasing values of α from bottom to top. (a) N = 225, 23 hierarchical levels; (b) N = 225, 24
hierarchical levels; (c) N = 224, 22 hierarchical levels; (d) N = 224, 23 hierarchical levels.

Summary. We show how the standard diffusive scenario for finite dimensional networks
does not hold for hierarchical modular network models of the brain, where anomalous
slowing down phenomena are encountered. We arrive at our conclusion by computing
the spectral dimension in networks of sizes up to 30 million nodes. We observe that
the asymptotic behavior of the return probability points to anomalous dynamic patterns
occurring at very large times, making the standard measure of spectral dimension un-
defined. This anomalous behavior is due to structural features of the network and may
contribute to the ability of brain networks to host localized patterns of activity and con-
duct multiple tasks at the same time.
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1 Introduction

The brain is a complex network whose function results from multiscale spatio-temporal
dynamics. Techniques such as electroencephalography (EEG), magnetoencephalogra-
phy (MEG), and functional magnetic resonance imaging (fMRI) allow us to record
brain activity and give us a window into brain function [1]. Traditional approaches
to studying brain function (and dysfunction) have primarily focused on the structure of
static brain networks [2]. However, functional brain networks are dynamic because they
depend on time-evolving brain activity (see e.g. [3]).

Recurrence plots (RP) have been introduced in the 1980’s to study time series from
dynamical systems. From the exploration of their properties a number of measures were
developed and recurrence quantification analysis (RQA) emerged [4]. This approach
has been widely used to investigate brain activity. For example, Ngamga et al. [5] used
RQA to identify pre-seizure states from intracranial EEG data recorded from people
with epilepsy. Such approaches have neglected however the spatial correlations between
the brain activity recorded from different brain areas.

We propose to employ RQA on dynamic functional brain networks to study spatio-
temporal brain dynamics. Herein we apply this approach to a resting-state MEG dataset
comprising 26 people with epilepsy and 26 controls. Our purpose is to illustrate the
application of our framework and to explore whether such methodology may unveil
biomarkers of epilepsy.

2 Methods

Resting-state MEG data was recorded from 26 people with juvenile myoclonic epilepsy
and 26 healthy controls. The MEG data was filtered in the classical frequency bands
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(theta (4-7 Hz), alpha (8-13 Hz), beta (15-25 Hz) and gamma (30-60 Hz) bands),
and source-reconstructed using a linear constrained minimum variance (LCMV) beam-
former on a 6-mm template with a local spheres forward model. Sources were mapped
into the 90 brain regions of the Automated Anatomical Label (AAL) atlas [6].

To build time-dependent functional networks, we divided the MEG recordings into
segments of 500 sample points (2 seconds) with 80% overlap between consecutive seg-
ments. We considered 500 segments per individual. For each segment, we constructed
functional networks using two well-established methods: phase lag index (PLI) [7] and
amplitude envelope correlation (AEC) [6].

To apply RQA to dynamic functional networks it is first necessary to build RPs.
A RP is represented by a binary recurrence matrix R = (Ri, j), where Ri, j = 1 if the
functional network at time point i is within a small distance to the functional network
at time j; otherwise Ri, j = 0. We explored a number of different possible distance mea-
sures between networks: Frobenius norm, spectral norm, and log-Euclidean norm of the
difference between adjacency matrices. Furthermore, we also considered distance mea-
sures based on the networks’ Fiedler vectors: cosine dissimilarity, Euclidean norm, and
infinity norm between the Fiedler vectors. To define the thresholds of recurrence, i.e.,
the distance within which Ri, j = 1, we imposed a fixed density of recurrence points in
the RP. In particular, we considered thresholds such that the density was equal to 0.01,
0.05, and 0.10. We then used the Cross Recurrence Plot Toolbox to compute the RQA
[4, 8]. Figure 1 illustrates the key steps of our method.

Fig. 1. Scheme of the data analysis procedure to apply RQA to dynamic functional networks.
(a) Brain activity is segmented into windows. (b) From each window, a functional brain network
is inferred. (c) A recurrence plot (RP) is computed by assessing the distance between functional
networks at different times. Black dots correspond to pairs of functional networks that were
within a distance smaller than a threshold. RQA allows us to then extract information from the
RP.

In this study, we consider four frequency bands, two functional network measures,
and six distance measures. We define a configuration as one combination of frequency
band, functional network and distance measure. For example, theta-AEC-Frobenius
norm is one configuration. Thus, we have 4× 2× 6 = 48 different configurations.
However, different configurations may yield similar information when we apply RQA.
Therefore, we first studied the relations between the 48 configurations using principal
component analysis, k-means clustering, and Pearson correlation. This investigation
aimed at removing redundant configurations from further analysis. We then performed
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RQA with a limited number of configurations: we used Mann-Whitney U test with
Bonferroni-Holm correction for multiple comparisons to assess different recurrence
measures between people with epilepsy and controls.

3 Results

From a preliminary analysis, we found four sufficiently independent configurations of
methodological choices to study the MEG data (AEC networks combined with Frobe-
nius norm, spectral norm, and Euclidean distance between the Fiedler vectors, as well
as PLI networks combined with spectral norm). All frequency bands offered similar
information, and thus we focused our analysis on the theta band.

We observed statistically significantly smaller recurrence times (of both 1st and 2nd
types [4]) in people with epilepsy compared to controls. This implies that functional
networks from people with epilepsy are more likely to recur more often than those
from controls.

4 Conclusions

RQA applied to dynamic functional networks can be used to reveal spatio-temporal
features of brain activity. In particular, when applied to resting-state MEG data from
people with epilepsy, it reveals that their functional networks recur more often in time
than those from healthy controls. This suggests that epilepsy may reduce the brain’s
repertoire of functional states. In future work we aim to examine whether the recur-
rence time of dynamic functional networks may be used as a biomarker of cognitive
impairment.
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1 Introduction

Emergent patterns of neuronal activity are key to a range of processes in the brain in-
cluding brain development [1, 2], and neurological conditions [3]. Experimental studies
have mainly focused on brain network topology, and it would be useful to understand
the connection between this and the observed neuronal activation patterns. Using fMRI
techniques, researchers have found that macroscopic patterns (patterns where entire
modules of nodes synchronise) appear in brain networks [2, 4, 5]. Turing theory, origi-
nally developed to study spatial patterns [6], has been applied to pattern formation on
networks since the 1970s [7, 8]. Turing instabilities (and the related pattern formation)
can only occur when there is a sufficiently large difference between the rates of dif-
fusion of two chemicals: fast-diffusing activators and slow-diffusing inhibitors. In this
work, we study how modularity, a key feature of brain network topology, contributes to
the ease with which Turing instabilities can occur in the Fitzhugh–Nagumo system, a
widely studied model of neuronal activation. This builds on previous work on pattern
formation on directed networks and multiplex networks [9, 10] We find that modular-
ity enables pattern formation to occur in cases where the ratio between the activator
diffusion coefficient and the inhibitor diffusion coefficient is much closer to one than
would permit pattern formation on networks with other topologies, such as small-world
networks.

2 Results

Our main result is that modular networks can exhibit Turing instabilities for cases where
the ratio between the activator diffusion coefficient and the inhibitor diffusion coeffi-
cient is close to one. In this sense, the topology of brain networks is well-suited to the
development of Turing patterns. From [6], Turing patterns can arise in nonlinear sys-
tems of reaction-diffusion equations involving at least two species. On a network, such
systems take the form

∂ui

∂ t
= f (ui,vi)+Du ∑

j
Li ju j

∂vi

∂ t
= g(ui,vi)+Dv ∑

j
Li jv j,

(1)
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where ui is the concentration of activator in node i, vi is the concentration of inhibitor in
node i, L is the graph Laplacian, and Du and Dv are diffusion constants. The functions
f and g represent the net production of activator and inhibitor respectively; in our work,
we use the well-established Fitzhugh–Nagumo equations for f and g throughout. Tur-
ing instabilities arise when a spatially-homogeneous steady state is linearly unstable to
spatially-inhomogeneous perturbations. This can only occur when there is a sufficiently
large difference between Du and Dv. This causes the initially homogeneous steady state
to evolve to a stable inhomogeneous state with different amounts of activator and in-
hibitor on each node: a Turing pattern, as in Fig. 1a.

Turing instabilities are studied by linearising about the homogeneous steady state
and calculating the dispersion relation; in the network case, this relates the eigenvalues
of the Laplacian (which represent different spatial patterns of instability via their as-
sociated eigenvectors) to the eigenvalues of the Jacobian (which represent the speed at
which a small perturbation will grow or shrink). Instabilities will occur if and only if
there is at least one eigenvalue of the Jacobian with a positive real part.

However, observations of natural systems show that Du/Dv is often closer to 1. It
can be shown that as Du/Dv → 1 the range of Laplacian eigenvalues corresponding
to positive Jacobian eigenvalues shifts to be closer to 0. This makes it important to
study Turing instabilities on systems with a small spectral gap, the distance between
the zero eigenvalue and the first non-zero one of the Laplacian matrix. Brain networks
manifest a modular organisation structure which induces a small spectral gap. They
are structured in a hierarchical way where the whole network is organised in modules,
which in turn are small-world graphs [11, 12]. This way, brain networks can still keep
a good level of communicability due to the locally short distances, but at the same time
can self-organise in spatially extended patterns due to the small spectral gap induced by
the modularity. This is a key factor in why a modular organisation is important for the
formation of patterns.

Turing patterns on modular networks also have the property of being macroscopic.
This is because the solutions of the linearised system above are δui = ∑α cα eλα tΦα

i ,
where λ α are the eigenvalues of the Laplacian, Φα are the associated eigenvectors,
and cα depends on the initial conditions. We can plot the normalised eigenvector corre-
sponding to the largest eigenalues of the Jacobian together with the normalised steady-
state pattern and show that the two can match well, see Fig. 1c. When Du/Dv is close
to 1, the largest eigenvalue of the Jacobian will correspond to the modular Laplacian
eigenvalues, the first m− 1 negative eigenvalues, where m is the number of modules.
The eigenvectors corresponding to these modular eigenvalues have the property that
nodes in the same module are associated with similar eigenvector values. This has the
overall effect of leading to macroscopic Turing patterns.

Summary Modularity plays a significant role in the formation of patterns of activity on
brain networks due to the small spectral gap of modular networks. As a byproduct, the
modularity leads to the formation of macroscopic patterns, where the amount of activa-
tor and inhibitor on nodes in the same modules is approximately equal. These are similar
to the patterns reported in the brain, and understanding the mathematical underpinnings
of pattern formations can assist researchers in understanding brain development [1, 2]
and neurological conditions [3].
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Fig. 1: (a) A macroscopic pattern on a modular network. (b) Dispersion relation of the
pattern on the left. (c) Plotting the normalised eigenvector of the largest eigenvalue of
the Jacobian, along with the normalised pattern. Note that the pattern and eigenvector
show a similar structure.
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1 Introduction

The investigation of brain functional organization, as obtained by resting state func-
tional magnetic resonance imaging (rs-fMRI), has revealed differences in brain network
topology in a number of psychiatric disorders, particularly in Schizophrenia [1].Brain
intrinsic functional connectivity, captured by rs-fMRI [2], has shown alterations in spe-
cific brain circuits in schizophrenian [3], and evidenced the variability associated with
this neuropsychiatric illness [4]; changes in global connectivity and alterations of local
properties of the functional connectome have also been found [1, 4].

Recently network neuroscience [5, 6], the application of graph theory [7] to the
study of brain networks, showed a widespread disturbances in the dynamics of large-
scale brain networks [1, 8], and the alterations of the modular structure of the whole
cerebral functional organization in schizophrenia [9]. Nonetheless, a unified description
of the possible sources at the base of this mental illness is still under debate.

Specifically, the alterations in the global functional integration and the local func-
tional connectedness of brain regions reported in literature, appear to be inconsistent
across studies and limited to observations of a final effect.

In this paper, we analyzed the rs-fMRI of forty healthy subjects and fortyfour schizophrenic
patients. We investigated the alteration of the hierarchical participation of brain regions
to the whole network as a function of the correlation between their BOLD signals,
used as edge-weights [10].We use percolation analysis, maximum spanning tree (MST)
representation and allometric scales to study the backbone structure of the subjectwise
functional brain network of healthy subjects and schizophrenic patients in order to as-
sess the possible alterations induced by the illness.

2 Data

The BOLD signal of 40 healthy subjects and 44 Schizophrenic patients was registered
for 6′ (TR = 2”). After a detailed preprocessing of our data (control of time-lock car-
diac and respiratory artifacts by means of linear regression, control for the effect of
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low-frequency respiratory and heart rates, head-motion, slice timing corrections,spatial
smoothin and normalization), we applied an AAL mask [11] to parcellate the human
brain in 116 anatomical regions. We extracted the fMRI signals at voxel level, then we
averaged them in each region of interest ending up with 116 BOLD time-series (180
time-points). We, then, computed their pairwise similarity using the Pearson’s correla-
tion coefficient obtaining a symmetric fully correlation matrix of dimensione 116x116.
We performed a subject-wise analysis due to the observed high level of heterogeneity of
the chort of Schizophrenic patients. In order to not intoduce any arbitrary threshold, we
performed a percolation a maximum spanning tree analysis looking at the whole matrix
of squarred values. Indeed, the debate on the meaning of negative correlation values in
fMRI studies is still open [12] without a general consensus militating in favour of their
inclusion or exclusion in the analysis. We think they do not bring any relevant infor-
mation to the scope of the actual study, therefore we will always refer to the squared
correlation values focusing on the intensity of connection rather then its sign.

3 Results

Our findings demonstrate an augmented homogeneity of the weighted links distribution
(correlation coefficient) in the connectivity intensity pattern of schizophrenic patients
with respect to healthy individuals.

Looking at the percolation curves, schizophrenic functional networks appears more
resistant to disconnection than healthy subjects one: the number of disconnected clus-
ters at a given threshold is systematically greater in healthy subjects than in patients
(fig.1 (a)). The weight distributions are very similar for the two groups of subjects,
not explaining this difference (fig. 1 (b), top); on the contrary, an evident discrepancy
can be found in the distribution of node degree computed for each percolated network
(fig.1(b), bottom). This reveals a more homogenous distribution of intensity of connec-
tions in the human functional brain network of schizophrenic patients with respect to
healthy subjects, sheding light on the difference in the giant component sizes.

The MST of the functional brain network in the two cases appear very similar, as
confirmed by the allometric exponent used as a quantitative measure of the structural
organization of the trees (fig.1(c)). Considering the widespread variation of the con-
nectivity strength in schizophrenic patients, we introduce the concept of MST rank to
deeply explore the topological properties of the MST. With first rank we refer to the
usual MST computed on the functional brain network, the second (third) rank MST
consists in the MST computed on the remaining network after the removal of all links
corresponding to the first (second) rank MST and so on. Given a complete graph with
N nodes it is always possible to decompose it in at most N/2 MSTs and to elicit the
topological properties of trees characterized by weaker connections.

We find that, as the MST rank increases, the corresponding allometric exponent
decreases both in schizophrenic and healthy subjects. However the rate of reduction in
healthy subjects, leading to a net separation of the two groups at the third rank MST
(fig. 1(d)-(f)).

The whole analysis (percolation, MST, MST ranks) suggests that (i) there is a re-
duced hierarchy and modular structure of the functional network due to a broader dis-
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tribution of the connectivity weights; (ii) weaker and stronger links guarantee the same
connection topology schizophrenia patients [1], (iii) there is a higher topological sim-
ilarity of the MSTs of different rank, in schizophrenia patients suggesting that a given
stimulus can engage a single functional connectivity path in healthy subjects, while it
determines the simultaneous involvement of different ones in illness.
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Fig. 1. (a) Percolation curves: number of connected components of the percolated network versus
the related correlation threshold. The two curves represent the average of the individual perco-
lation curves and are reported together with the 95% confidence interval; (b) Top: density of the
distributions of correlation values of the human functional brain networks for all healthy sub-
jects and schizophrenic patients pooled together in two distinct groups. Inset: distributions of
the squared correlation values; Bottom: distribution of node degree computed in each percolated
network and averaged over the total number of subjects in each group; (c)-(f) Allometric scale
from the I to the IV MST rank computed for the MST of each healthy subject and Schizophrenic
patient separately versus the related ROI-root. We reported the average allometric scale for the
two groups together with their 95% confidence interval.
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1 Introduction

We have known since the nineteenth century that the brain constitutes a huge and com-
plicated structural network [1]. The latest advances in the study of complex systems
have motivated new approaches and interpretations applied to brain structural and func-
tional characterization [2].

Eguı́luz et al. showed results of human brain functional networks with data extracted
from temporal correlation between voxels using Pearson coefficients [3]. Two voxels
were defined as functionally connected if their temporal correlation exceed a threshold
value rc. Regardless the value of rc (from 0.5 up to 0.8) the brain functional networks
from functional magnetic resonance imaging (fMRI) where characterized as free-scale
networks [4].

In this work, functional brain networks are characterized through graph properties.
Brain networks are built from functional magnetic resonance images taken at Hospital
Los Madroños, Madrid, Spain. Then data is processed by a new set of two filters. The
first filter computes the correlation between voxels and a type paradigm signal that
represents the activation-deactivation of a finger-tapping task into the MRI equipment
and then a second filter computes a correlation coefficient between voxels. In fig. 1 the
activation zones, the paradigm signal and a voxel signal are plotted.

Once the network is created, the main topological graph measures are computed,
mainly, degree distribution and its Shannon Entropy S, clustering coefficient C, charac-
teristic path L and network efficiency E. See [5] for a description of these graph mea-
sures. Due to the huge size of the resulting graphs order (≈ 2∗105) and size (≈ 4∗109)
a new C library for graph creation and computation has been built. This library supports
different types of data structures (matrix, adjacency list, hash table and double linked
list) for graph manipulation, selecting the optimal type of data for the measure to be
computed. The library has been designed with the main objectives in mind to obtain
a fast computing times with low memory consumption resources. The library (only C
source code) can be downloaded from
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https://www.dropbox.com/s/edqzua4bqn6apb9/small graph.zip?dl=0

We will present results from 12-healthy volunteers under finger tapping task and
blood-oxygen-level-dependent fMRI measurements [6]. Non-scale free networks with
rc dependence were calculated in time and frequency domain.

2 Results

From the node degree distribution distributions and the parameters studied, we have ob-
served behaviors that are repeated in all healthy subjects studied except in a pathological
one.

In our implementation we have made two filters, one first with a paradigm that
describes in a simplified way the tasks performed during the test, and a second filtering
by correlations between each possible pair of voxels that pass the first filter. As we
mentioned in the introduction, according to our knowledge it is the first time these two
filters are applied together.

Observing the node degree distributions of all networks as well as the graph met-
rics studied (C, L, E and S) we have seen that the networks change with the threshold
that we use for voxel-voxel filtering. We have observed the same characteristics both
using motor paradigms as sensory. For low correlations, the networks resemble random
graphs, while increasing the threshold, they become scale-free networks.

Fig. 1. Left: activation zones (yellow), for subject 3 and the left motor paradigm in the Sagittal,
coronal and axial anatomical planes. Right: result obtained with our program Filtering. Below on
the left is the paradigm signal in blue and the temporal trace of one of the selected voxels.

Summary. In this work, functional graph networks has been built using a new sys-
tem of two filters, a first one comparing fMRI signals with a paradigm signal and then
computing a correlation coefficient between voxels activity. Then the main topological
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measures of the graph are computed by means of a new C library for graph computa-
tion capable of managing big networks with low computational time. Once the graph
measures are done, these are compared for the case of normal patients and patients with
some kind of disease such as ischemic strokes.
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2 Université de Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences

Affectives, Lille, France

Human brain function can be represented as a network of brain regions, Regions of
Interest (ROIs). ROIs form the nodes of the network and edges represent correlation of
brain activity between ROIs. In functional brain networks constructed from functional
magnetic resonance imaging (fMRI) data, ROIs consist of several measurement vol-
ume elements, voxels. ROIs are assumed to be functionally homogeneous or, in other
words, each voxel in a ROI is assumed to behave similarly in time. These networks
have long been analyzed as static, i.e. unchanging in time, despite changes in brain ac-
tivity over time [1]. Additionally, ROIs have been seen as static regions between which
edge patterns may change in time but not the shapes and sizes of the ROIs themselves.
According to recent studies, this view may be inaccurate: in various brain parcellations
(divisions of the brain into ROIs), the functional homogeneity of ROIs is low and varies
in time [3, 6]. In other words, voxels in the same ROI show different dynamics and are
therefore hardly more correlated than voxels in different ROIs (see Fig. 1). Evidently,
there is a need for defining brain network nodes in a data-driven way that maximizes
ROIs’ homogeneity and allows their shape, size, and location to change over time.

The multilayer network model of brain function. We incorporated the flexible defi-
nition of ROIs in different time intervals, the connections between ROIs within each
time interval, and the similarity information of ROIs in different time intervals into
one multilayer network [2]. In this network, time intervals correspond to layers and
ROIs (nodes) within each layer can be defined independently of other layers, resulting

Fig. 1. Distributions of Pearson correlation coefficients between voxel time series within and
between ROIs (original = the static Brainnetome parcellation).
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Fig. 2. Schematic illustration of the functional temporal multilayer brain network. The three lay-
ers (t = 1, 2, and 3) correspond to three time intervals in consecutive order. The background grid
corresponds to voxels, and ROIs are defined as contiguous sets of voxels (red, blue, and pink
areas) clustered using data from that specific time interval. The ROIs within each layer are con-
nected by edges representing functional similarity between them. Interlayer edges are weighted
according to the Jaccard index of the sets of voxels in ROIs on consecutive layers. Not all voxels
are necessarily included in the ROIs.

in ROIs that change in time. The multilayer network is constructed as follows: Within
each layer, voxels are clustered into ROIs according to functional homogeneity while
keeping the ROIs spatially contiguous. The increased functional homogeneity of op-
timized ROIs leads to markedly higher correlations between voxel time series within
ROIs than between ROIs (Fig. 1). Inside each layer, the networks are constructed as
is typical in the literature for static brain networks such that ROIs are connected with
edges weighted according to the correlation between ROI time series. Then, the ROIs on
a specific layer are connected to ROIs on the temporally preceding and following layer
with edges weighted according to the magnitude of overlap of the sets of voxels con-
stituting the ROIs, measured e.g. by the Jaccard index J(S1,S2) = |S1∩S2|/|S1∪S2|,
where S1 and S2 are the sets of voxels in the two ROIs on consecutive layers. Fig. 2
illustrates the resulting multilayer network, where the ROIs (red, blue, and pink areas)
change between layers.

Multilayer network motifs. To understand the function of these temporal multilayer net-
works, we disassembled them into smaller building blocks known as graphlets and mo-
tifs [4, 5]. Motifs are defined as isomorphic equivalence classes (isomorphism classes)
of subnetworks that are statistically more or less prevalent in one data set than in another
or in a mathematical null model. Therefore, they can be used to find differences in brain
function between groups of subjects or to analyze the fundamentals of human brain
function with respect to a baseline model. Multilayer motifs represent patterns of net-
work connectivity both within each layer and between layers, making them an ideal tool
for capturing both the interplay of brain regions within layers and the changes in brain
regions from one layer to the next. Since motif analysis requires no mapping of nodes
between different subjects, networks with subject-specific brain regions can be properly
compared. Despite the usefulness of motifs in analyzing the structure of single-layer
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Fig. 3. Time series of the number of isomorphism classes of specific size in multilayer networks
constructed from fMRI images. Each time point is a collection of consecutive layers, and the
horizontal (time) axis advances in steps of one layer. Each isomorphism class has its own color,
shown on the right. The shaded areas show the standard deviation between subjects (N = 25).

networks [4], tools for analyzing multilayer network motifs have been largely absent
before this work.

Proof-of-concept. We constructed temporal multilayer brain networks from an fMRI
data set collected at Aalto Magnetic Imaging (AMI) Center and enumerated the subnet-
works in them. Fig. 3 shows isomorphism class appearance frequencies with respect to
time in a set of subjects for multilayer isomorphism classes of specific size. We com-
pared these time series between subject groups to discern differences in brain function,
and compared the frequencies to ones obtained for a random null model to find motifs
related to brain function in general. The framework enables a more accurate network
representation of time-evolving brain activity and offers new perspectives in the study
of fundamental brain function as well as opportunities for medical applications.
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1 Introduction

The scalp electroencephalogram (EEG) allows one to capture the brain electrical activ-
ity under different mental tasks or event-related stimuli [1] and defines a powerful brain
investigation paradigm. The EEG observations can also reveal information related to
the brain activity organization, which implies in quantifying how this activity is spa-
tially (anti-) correlated in such mental tasks by means of the functional connectivity
evaluation [2]. Besides, the interconnectivity of the brain regions can be modeled as a
complex network and all the framework associated with a graph-based approach can be
applied to elucidate neural mechanisms in healthy and abnormal brain [2].

Recently, it has been shown that graph-based metrics regarding EEG functional
connectivity can distinguish, with a promising performance, motor imagery (MI) tasks
(left- and right-hand MI), aiming the design of more robust brain-computer interfaces
(BCIs), i.e. systems which aim to translate information from central nervous system ac-
tivity into output commands [3]. However, up to now, the dynamics of the MI process
and its non-stationary behavior have not been fairly considered. Some recent works also
suggested that the dynamics of functional connectivity can provide useful information
for movement x rest discrimination [4]. In this context, this work presents a classifica-
tion performance analysis considering the eigenvector centrality and strength metrics in
a 52 subjects dataset [5], seeking to find out whether the graph metrics would provide
high performance to distinguish the left- and right-hand mental tasks regarding the dy-
namic functional connectivity considering a template matching classification approach.
This work may be relevant for designing new strategies for MI-based BCIs, unveiling
new biomarkers to distinguish mental tasks.

2 Material and Methods

A BCI dataset comprising two imagery tasks (left and right hand) for 52 subjects was
used in this analysis. Signals were recorded during 3 s with 64 Ag/AgCl electrodes
sampled at 512 Hz. For each task, 100 trials were available. More information about the
dataset can be found in [5]. During offline preprocessing, signals were filtered spatially
with Common Average Reference and, then, bandpass filtered (8-15 Hz) in which the
mu band, EEG frequencies related to the motor cortex, was conserved [1, 6].
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The dynamic functional connectivity was computed by using a 40-points sliding
window without overlap. Regarding only the 21 motor cortex electrodes (FC5, FC3,
FC1, C1, C3, C5, CP5, CP3, CP1, CPZ, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, CP6,
CP4, CP2 – international 10-10 system), the connectivity was estimated by means of the
Pearson correlation coefficient. Only the positive correlation values were considered,
defining a weighted connectivity matrix for each window.

In this work, eigenvector centrality (EC) and strength (ST) were chosen to charac-
terize the dynamic connectivity among electrodes, which correspond to the nodes of
our graph. Strength is defined as the sum of the edge weights of a node, similar to
the node degree for unweighted graphs. On the other hand, EC metric considers not
only the connections of a node but also the importance of its neighbours in the network
[2]. For comparison, bandpower (BP) was computed through the same sliding window,
defining a dynamic bandpower. In this analysis, only the connectivity of the C3 and C4
electrodes were considered, in agreement with previous work [6].

For the classifier training purpose, time-courses templates matching for each mental
imagery task were obtained for C3 and C4 by computing the median of the graph met-
rics estimated for each window throughout the training trials. The median time course
was then smoothed by a moving average at 10 points to capture the main behavior. In
order to evaluate the classification performance, a 10-fold cross-validation was used.
Lastly, classification was estimated based on template matching by means of the mini-
mum mean square error between a given smoothed time course of the trial (left or right
hand) and the respective (right and left hand) templates of a specific electrode.

The accuracy was presented as mean ± standard deviation. At least 3 statistical
tests were carried out in order to confirm the non-normality of the data. The Friedman
test was applied to evaluate the statistical difference among the groups EC, ST and
BP as well as the post-hoc analysis using Dunn’s multiple comparison test to provide
difference for each paired combination of the groups.

3 Results and Conclusion

Figure 1 presents the accuracy of the approaches considering the 52 subjects in the
dataset for C3, C4 and their combination. Analysing the accuracy obtained by the graph
metrics as well as bandpower for C3 electrode, it was observed significant statistical
difference (p-value < 0.01, Friedman test, N = 52) among the mean of the groups EC
(0.56 ± 0.08), ST (0.55 ± 0.08) and BP (0.52 ± 0.05). Post-hoc analysis unveiled that
the accuracy of the groups EC and ST (p < 0.05) and EC and BP (p < 0.01) were
significantly different.

On the other hand, by analysing the C4 electrode, it was observed statistical differ-
ence (p < 0.001, Friedman test, N = 52) among the group and the mean of EC (0.57
± 0.07) and BP (0.54 ± 0.07) were different (p < 0.0001), but ST (0.56 ± 0.06) was
distinct from BP (p < 0.05) and not from EC as previously observed for C3 electrode.
In addition, analysing the combination of C3 and C4 electrodes, although the mean of
EC (0.57 ± 0.08), ST (0.58 ± 0.09) and BP (0.56 ± 0.10) were statistically differ-
ent (p < 0.05, Friedman test), no difference was found when analysed each post-hoc
combination of the groups.
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From the results, even though EC and ST were not statistically different from BP
when both electrodes were considered, they showed promising results considering the
individual electrodes, specially the EC metric, despite the lower accuracy for practical
BCI applications, in which accuracies higher than 0.80 are typically expected. More
study is required in order to improve the obtained results, but this exploratory work
encourages further evaluation of the dynamic functional connectivity through graph
metrics in MI-BCIs.
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Fig. 1. Boxplot considering the accuracy of the 52 subjects for eigenvector centrality (EC),
strength (ST) and bandpower (BP) for C3, C4 and their combination. * p < 0.05; ** p < 0.01;
**** p < 0.0001
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martins.daniel@ufabc.edu.br

1 Introduction

Brain-computer interface (BCI) systems allow brain activity to control computers or
external devices, with the primary purpose of providing communication capabilities to
severely incapacitated people by neurological neuromuscular disorders, such as amy-
otrophic lateral sclerosis, stroke, or spinal cord injury [1]. Electroencephalography (EEG)
is one of the most popular techniques to record brain signals using electrodes (recep-
tors) placed on the scalp. Compared to other techniques, their main advantages are low
cost, relative ease of use and excellent time resolution (milliseconds) [1].

A complex network can be represented by a graph that consists in a large collection
of nodes connected by edges that can represent the associations of any quantity: people,
computers, biological cells, etc [2]. In a graph there are several measures that can be
generated to analyze complex networks, for example: degree, clustering coefficient,
eigenvector centrality and betweenness centrality [3].

Considering the spatiotemporal distribution of brain activities, the human brain is
like a complex network formed by a large number of connected cortical regions. Infor-
mation related to, for example, motion imagery is constantly integrated and processed
between scattered and specialized brain regions [4]. Thus, to understand brain func-
tioning in a given action, it is necessary to study not only isolated regions, but also the
connectivity between them. There are three brain connectivity types defined in the lit-
erature: Structural, which refers to a set of physical or structural connections between
neural elements, functional, which captures deviation patterns from statistical indepen-
dence between distributed and often spatially remote neuronal units, and effective, sim-
ilar to functional but describes the causal effects network between neural elements [4].

Keeping these concepts in mind, this paper propose a user-friendly interface to an-
alyze functional connectivity from temporal observations (e.g. EEG) and their respec-
tive network measures (degree, clustering coefficient, centralities, etc.). In this sense, it
seeks here the integration of the interface with the data transfer system of the OpenBCI
platform, which is intended for experiments involving EEG, in particular, the develop-
ment of brain-machine interfaces [5]. The interface was developed in JAVA language
and is based on tools already available in the GraphStream toolbox [6], developed in
the same language.
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2 Results

Two structures were developed, a NodeJS-based web service [7] that get signals from
OpenBCI EEG headset and a Java-based interface for getting data from text files or data
buffer in real-time. Fig. 1 shows the integration between them and OpenBCI platform.

Fig. 1. Structures and their interactions

The developed NodeJS-based web service aims to communicate with the OpenBCI
platform by bluetooth and make the EEG signals collected available in network through
HTTP protocol and using JSON format. This way any application connected to this
network can access the data, enabling local and remote processing.

The developed interface uses networked signals to turn them into complex networks
to analyze functional brain connectivity. It allows users to set: a) the use of common av-
erage reference (CAR) spatial filter; (b) the updating graph rate, i.e., data samples for
each time window; c) the number of overlapping samples between consecutive win-
dows; d) Pearsons threshold correlation between the electrodes to define functional
connectivity. Four graph measures can be evaluated by the interface using the Graph-
Stream toolbox: node degree, clustering coefficient, eigenvector centrality and between-
ness centrality. The results with the desired metrics can be exported to a text file.

Fig. 2 show the Java-based interface parts. On the left you can see settings options
commented above, while on the upper right is the graph generated by the interface. The
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bottom right displays a line graph showing the evolution of the chosen measure over
time.

Fig. 2. Java-based interface parts

Summary. This work presents a graphical interface for functional connectivity analy-
sis and brain functional organization investigation. The interface was integrated with
low cost Open BCI acquisition hardware, using a NodeJS-based web service that make
the EEG signals collected available in network, and GraphStream toolbox, a compu-
tational efficient graph analysis environment with high potential application for online
operation, which outlines a natural perspective of this work.
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1 Introduction

Magnetic Resonance Imaging (MRI) brain scans are effectively used for early diagnosis
of neurodegenerative diseases. Such pathologies affect the human brain with heteroge-
neous and complex patterns, but it is possible to identify some common traits; above
all brain atrophy, i.e. the loss of neurons and the consequent increment of cerebrospinal
fluid, is a specific feature typically outlined by MRI scans. Since modifications in the
brain structure can be extremely subtle to detect in early stages of the disease, neuro-
radiologists have to perform extremely time consuming investigations to explore MRI
data in detail, with possible subjectivity issues. Due to the increasing availability of
huge neuroimaging databases, several studies have recently explored the possibility to
design and implement machine learning approaches, in which sophisticated algorithms
try to learn patterns related to disease and provide diagnostic decision support systems.
In recent years, the feasibility of these approaches has been investigated with mixed for-
tunes; international challenges launched to compare different algorithms with common
validation strategies and data have highlighted benefits and limits of these methods [1],
eventually suggesting the need for a more robust pipeline of analysis. In order to obtain
structural features (volumes, surfaces, curvatures, ...) from MRI data and feed machine
learning algorithms, cumbersome pre-processing steps are required. Specifically, brain
scans are typically registered in order to provide a common reference space for all
subjects and are then segmented to focus on anatomical districts of interest, together
with their quantitative features. However, this base of knowledge can be dramatically
affected by registration errors and uncertainties, which prevent the possibility to get
accurate results.

Promising strategies to overcome this issue are provided by Network Physiology, an
emerging framework which relates organs’ states and functions to the collective dynam-
ics of their constituents, using modeling techniques based on complex networks [2–5].
In particular, this approach allows to examine the time-dependent interactions among
brain districts [6], opening up the possibility to unveil the impact of their dynamics on
the occurrence of anomalous aging and neurodegenerative diseases. In order to acquire
new insights into biomarkers of these conditions, we propose a new method within Net-
work Physiology, based on multiplex for early diagnosis of Alzheimers and Parkinson’s
diseases [7, 8] and predictions on brain aging [9].
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Fig. 1. A schematic overview of the proposed framework of analysis. Starting from structural
MRI data (a), we achieve a multiplex description (b) and use this model to compute mathemat-
ical features characterizing the nodes of the network (c); finally, these features are used to feed
supervised learning algorithms, such as Random Forest, Support Vector Machines or Deep Neural
Networks, which perform classification and regression tasks (d).

2 Methods

In our approach, MRI brain scans of different subjects are registered to the common
MNI152 template. Then, every scan is segmented into a three-dimensional grid of rect-
angular boxes, called patches, each consisting of a fixed number of voxels. Patches
represent the nodes of an undirected subject-specific complex network, in which the
link connecting a given pair of patches is weighted by the Pearson’s correlation be-
tween their respective gray level distributions. Hence, link weights yield a quantitative
measure of morphological similarity between brain districts. Since the spatial distri-
butions of white and gray matter and cerebrospinal fluid in the brain change with age
and pathological conditions, we model the whole cohort as a multiplex, with subject-
specific networks as layers. We compute a set of nodal metrics (strength and inverse
participation, together with their conditional means at fixed node degree) for each layer.
Then, to capture inter-subject variation, we construct the aggregate adjacency matrix of
the cohort and compute the multiplex versions of the aforementioned nodal metrics by
weighting each node contribution with its aggregate degree. The single-layer and mul-
tiplex metrics thus extracted for each subject are employed as features to train Machine
Learning (ML) or Deep Learning (DL) algorithms, performing the following tasks:

– classification, to distinguish subjects affected by Alzheimer’s disease (AD), mild
cognitive impairment (MCI) or Parkinson’s disease (PD) from healthy controls
(NC);

– regression, to predict the subjects’ age, which is a continuous variable.

Cross-validation techniques are adopted to test the developed algorithms on the whole
dataset and ensure reliability in performance evaluation. A schematic overview of the
described pipeline is displayed in Fig. 1. The proposed approach requires only a rough
spatial overlap for the scan of different individuals and does not require any a priori
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Fig. 2. Top left. Classification performance for Alzheimer’s disease in terms of area under the
receiver operating characteristic curve (AUC): patients (AD), healthy controls (NC) and subjects
affected by mild cognitive impairment (MCI) are enrolled. Top right. Classification performance
for Parkinson’s disease in terms of AUC: network features (NF) and clinical features (CF) classifi-
cation performances are compared. Bottom left. Regression performance for brain aging: scatter-
plot denoting predicted and chronological age of the subjects, together with Pearson correlation
coefficient (r) and Mean Absolute Error (MAE) of the model. Bottom right. The methodology
also allows to rank the statistically significant features and localize them in the brain (red regions);
the reported case refers to aging.

segmentation, which ensures robustness against errors in registration and segmentation
steps.

3 Results

The pipeline described in Section 2 is repeated by varying the patch size, the employed
algorithms and their tuning parameters, in order to determine the best configurations
for each of the considered classification and regression tasks. We demonstrate for all
studies that an optimal scale exists in relation to the particular disease: performances
are maximized by parceling the brain scans in patches with volume 3000 mm3 for AD
and aging, and 125 mm3 for PD. In all our classification models, nodal metrics undergo
a feature selection process, operated by a Random Forest wrapper. For AD and MCI,
the proper classification task is performed by a further Random Forest block, with re-
sults displayed in the top left panel of Fig. 2. In the case of PD, instead, we compare
the performances of Support Vector Machine, Random Forest, Naive Bayes and Neural
Network classifiers, after optimizing them via parameter tuning. The multiplex model of
brain connectivity yields a robust diagnosis independent of the choice of the classifier,
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although Support Vector Machine reaches slightly better results. As shown in the top
right panel of Fig. 2, the use of network features (NF) in PD identification algorithms
entails a relevant improvement of classification accuracies with respect to the ones ob-
tained from just the clinical features (CF). In order to assess the validity of our classi-
fication algorithms, we compare their performances with those of standard approaches,
in which feature extraction from multiplex is replaced by Voxel Based Morphometry
and Region-of-Interest methods [10, 11]; in all the examined cases, the network ap-
proach provides more accurate results. For the regression task of brain age prediction,
we considered DL and ML approaches (Ridge and Lasso regression, Random Forest
and Support Vector Machine), finding their optimal configurations through systematic
exploration of the respective parameter spaces. The DL regression algorithm, whose
results are shown in the bottom left panel of Fig. 2, yields better performances than the
ML methods. Moreover, the accuracies of our multiplex model compare favorably with
state-of-the-art techniques [12, 13]. The proposed framework enables us to implement
regression algorithms that provide accurate information on brain aging and allow to
rank the structural features based on their statistical significance, associating them to a
specific cerebral patch. Bottom right panel of Fig. 2 shows brain districts, highlighted
in red, that exhibit the most relevant structural changes in aging processes.
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Part XIV

Networks in Finance and
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1 Introduction

A Theory of the Firm is an economic theory to explain the nature of the firm,
including its existence, its behavior and structure, and its relationship to the
markets. A question reflecting the traditional economist’s view on the existence
of firms, is: Why should human behavior cohere into business organizations if
markets are in place to coordinate the supply of goods and services? The an-
swer provided by transaction cost theory is that the entrepreneur assesses the
differential of the transaction cost internal to the firm and external (a market).
When that transaction cost of a business activity is lower ’inside’ the firm, the
entrepreneur is predicted to include it and vice versa [Coase 1937, Williamson
1979]. Note that this argument assumes that the smallest component of markets
and firms is a person.
However, this assumption denies the fact that the influence of an individual per-
son on the behavior of the firm is limited. Evidence for this is provided by the
argument that the impact on the behavior of a firm (as such) of a person tends
to be limited. Also it is more plausible that firms are adopted by a niche than
that they adapt into a niche of choice [Alchian 1950]. Thirdly, recent upheaval in
the banking, pharmaceutical, and automotive industry sectors has proven them
persistent to desired change [cf. Luyendijk 2005]. Lastly evidence shows that the
correlation between individual personal behavior (performance) and firm behav-
ior is weak [CBS 2002, Kahneman 2005]. Current theory of the firm however
assumes a strong influence. A central notion in this hypothesis is that the idea
is separated from the person.
My research concerns the development of a theory to explain the nature of the
firm by answering the question: What is a firm? anew, and, more specifically:
How is it conceived, How does it cease to exist, and What are its structure and
behavior? The final objective is to better explain firms’ behavior vis-a-vis the
people associated.

2 Preliminary Considerations

Let us define ideas as answers to questions. This theory is based on the no-
tion that a variable yet persistent pattern of behavior arises from an evolving

? I thank Prof Heylighen, Dr Lenartowicz and Dr Velóz-Gonzales for their contribu-
tions to the development of this theory under construction.
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coherent system of ideas. More precisely: the ideas in conjunction with the be-
havior they induce evolves, instead of the traditional Platonic view, of a firm
as a mathematical dot related to other such objects situated in markets and
pursuing equilibrium. For example a practical organization of people is often
assumed to an aberration from an ideal organizational type and deviations are
assumed to be manageable to be directed to reach the ideal [Mintzberg 1983 i.a.].
This present hypothesis assumes that the entire firm including its organization
consists of complexes of ideas and coherent behavior of people in the sense of
behavioral patterns instead of ideal objects gravitating towards their ideal.
This implies that the ideas themselves are not essential and symbolised denota-
tively but proscriptive and Just-So [Kipling 1902]. Theory development is there-
fore founded on process ontology: differences and processes instead of objects
and their relations are at the core. In a philosophical perspective: the real is
developed from restriction of the virtual in the actual to produce a new actual,
etc.[cf. Deleuze 1968]. This takes place in processes of individuation, where the
structure of a system leads to its operations and vice versa, and transduction
between the system and its neighbors [cf. Simondon 1958, Deleuze 1968].

3 Theoretical Framework

This theory builds on these concepts and theories: explanatory coherence theory
is applied to ideas to explain how ideas connect to others to form maximally
coherent complexes [cf. Thagard 2007]. Micro-sociology [cf. Knorr-Cetina 1988]
and enactment [Weick 1988] explain how ideas lead to behavior through acting
on what is not there. An abstract view is taken on theoretical ecology (au-
topoiesis) to explain how social systems self-replicate including their functions
to self-replicate [cf. Maturana, Varela 1972]. Invoking this theory requires that
discussions concerning the transposition from the biological to the cultural be
dealt with. One important bridging element is the distinction of the person bi-
ologically evolving to a internal social entity versus the evolution of external
social entities and forms: subjects of evolution but different species [Lenartowicz
2016, Varela 1997].
Social systems theory and importantly the concept of double contingency ex-
plain how events of communication come to be self-replicating autopoietic social
systems [Luhmann 1996, Varela 1997, Varela, Thompson, Rosch 1992]. This is
the basis for the explanation of coherence of human behavior as the behavioral
pattern which make sense and can be made sense of. A body of widespread ideas
originating from Western culture is conjugated with this hypothesis, namely
those encompassed by The Market System and Belief in Progress [Goudzwaard
1982, Galbraith 2004]. These ideas are deconstructed from belief systems in-
cluding humanism (maximize individual control and freedom), utilitarianism
and materialism (own much spend little), belief in progress (improve yourself
and society), Invisible hand (provenance: the market solves), and property and
self-propagation. These ideas enacted develop the society - and the firms - we
experience. The outcomes are represented using chemical organization theory as
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a preliminary pet model [Dittrich, Speroni, di Fenizio 2007]. The firm is modeled
as a complex of coherent ideas co-evolving with other bodies of culture in society.

4 Conclusions

If firms are autopoietic systems then they are operationally closed. The set of
ideas it operates remains stable: roughly speaking does it consume the ideas it
produces and vice versa. The firm perpetuates its autonomous existence through
individual peoples enactments of those ideas. Enaceted ideas not socially ac-
ceptable are selected against. As autopoietic systems firms are themselves au-
tonomous and cognitive, instead of peoples mere instruments. Contrary to com-
munis opinio firms are not controlled by people, not in the same way that a
hammer is controlled by a carpenter. This implies that the autonomy of people
is not binary but relative to that of the firm: some autonomy is relinquished
and other is gained. This is consequential for the relation between firms and
representants of different ideas, their stakeholders. This determines what can be
expected of interventions by people into the operations of a firm.
These outcomes are relevant for a scientific audience including representatives
of economics, business and management science. In addition they are relevant
for people in general associated with firms, virtually everyone on Earth. Even
retreating to a cabin in Alaska does not mitigate dependency. Access to this hy-
pothesis enables a re-assessment of their relations to the firms they do business
with. Just because beliefs of people in a wider cultural sphere are at the basis
of firms, the presented insights can contribute to a more sustainable future.
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1 Introduction

Recent studies have raised concerns about job displacement due to automation [1, 2].
However, history suggests that while some jobs are automated, new jobs are created,
making it essential to understand job transitions. Here we study how automation affects
employment through a model that focuses on the process of labor reallocation. Con-
sider, for example, employment security faced by a statistical assistant vs. a childcare
worker. Forecasts suggest that the statistical assistant is more likely to be replaced by
software technology than the childcare worker [1]. However, the statistical assistant’s
current skills allow her to transition into occupations with low risk of automation and
growing demand. In contrast, as automation displaces workers, many of them may have
the skills required for childcare jobs, and may consequently threaten the job security
of existing childcare workers. Thus, even though the direct replacement effect of au-
tomation is larger for statistical assistants, when we account for possible occupational
transitions and labor demand reallocation, the negative impact of automation is worse
for childcare workers.

2 Results

We study the propagation of an automation shock on a network-based labour market
model. We first construct an occupational mobility network representing the ease with
which a worker can transition between occupations. To do this we follow the work
of Mealy et. al. [3], where they empirical data on occupational transitions. The Occu-
pational Mobility Network (see Fig. 1) is weighted, directed and has self-loops. We
represent the network by its adjacency matrix A with components:

Ai j =

{
r if i = j
(1− r)Pi j if i 6= j.

(1)

where the Pi j is i j−th entry of Transition matrix as defined by Mealy et. al. [3] and
is the probability that a transitioning worker from occupation i moves to occupation j.
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The self-loops of the network have weight r and are the probability that a worker, who
is changing jobs, remains in her original occupation.

We then model the dynamics of employment (ēi,t ), unemployment (ūi,t ), and vacan-
cies (v̄i) for each occupation i. In our model, workers are separated form their jobs with
probability δu and vacancies are opened with probability δv. Additionally, more work-
ers (vacancies) are separated (opened) at a rate γu (γv) depending on the target demand
of each occupation d†

i,t . We comput the target demand of each occupation using current
estimates of the automatability of the occupation [1, 2].

We assume that the skills of the workers determine their possibilities for applying
to jobs and consider that skills of the worker are given by their most recent occupation.
If unemployed, a worker can apply to job vacancies of her last occupation or of similar
occupations. Then, we implement a search and matching mechanism with which work-
ers take job vacancies. The dynamics of our model can be approximately described by
the following equations.

ēi,t+1 = ēi,t −
(

δuēi,t +(1−δu)γu max
{

0, d̄i,t −d†
i,t

}
)

︸ ︷︷ ︸
separated workers

+ ∑
j

f̄ ji,t+1

︸ ︷︷ ︸
hired workers

, (2)

ūi,t+1 = ūi,t +

(
δuēi,t +(1−δu)γu max

{
0, d̄i,t −d†

i,t

}
)

︸ ︷︷ ︸
separated workers

− ∑
j

f̄i j,t+1

︸ ︷︷ ︸
transitioning workers

, (3)

v̄i,t+1 = v̄i,t +

(
δvēi,t +(1−δv)γv max

{
0,d†

i,t − d̄i,t
}
)

︸ ︷︷ ︸
opened vacancies

− ∑
j

f̄ ji,t+1

︸ ︷︷ ︸
hired workers

, (4)

where f̄i j,t+1 is the flow of workers and d̄i,t = ēi,t + v̄i,t is the realized demand. Given a
set of time series for the target labor demand d†

i,t and a set of initial conditions, Eqs. (2
– 4) determine the expected employment, unemployment and vacancies as a function
of time.

In our results we study occupation-specific unemployment and long-term unem-
ployment (27 or more weeks) and demonstrate that our model reproduces the Beveridge
Curve. Workers in highly automated occupations are more likely to be unemployed or
to stay unemployed for a long period. The network structure plays an important role
– workers in occupations with a similar degree of automation can have fairly different
outcomes, depending on the position of the occupation in the mobility network. Au-
tomation may cause bottlenecks in the mobility network, with workers unable to find
jobs for long periods. Our work highlights that retraining schemes must be directed to-
wards workers in occupations with limited possibilities to transition to new occupations
[4].

Summary. Many existing jobs are prone to automation, but since new technologies also
create new jobs it is crucial to understand job transitions. Based on empirical data we
construct an occupational mobility network where nodes are occupations and edges
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Fig. 1. Estimates of automatability in the occupational mobility network. The panels show the
occupational mobility network, where nodes represent occupations and links represent possible
worker transitions between occupations. The nodes are colored by: Left)the probability of com-
puterization estimated by Frey and Osborne [1] and the Right) suitability for machine learning
as estimated by Brynjolfsson et al. [2]. Red nodes have high automatability and blue nodes have
low automatability. The size of the nodes indicates the number of employees in each occupation.
Figure adapted from [4].

represent the likelihood of job transitions. To study the effects of automation we de-
velop a labour market model. At the macro level our model reproduces the Beveridge
curve. At the micro level we analyze occupation-specific unemployment in response to
an automation-related reallocation of labour demand. The network structure plays an
important role: workers in occupations with a similar automation level often face dif-
ferent outcomes, both in the short term and in the long term, due to the fact that some
occupations offer little opportunity for transition. Our work underscores the importance
of directing retraining schemes towards workers in occupations with limited transition
possibilities [4].
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1 Introduction

National economies are linked by international trade and consequently economic glob-
alization forms a giant economic complex network with strong links, i.e., interactions
due to increasing trade. Especially if we view the globalized world economy with high
resolution or microscopic view, we might notice that the giant economic network is
a global supply chain consists of a huge number of firms. Hearnshaw et. al. [1] have
studied the supply chain network in terms of complex network approach and have pro-
posed nine propositions. The nine propositions are related to path length, power-law
degree distribution, clustering coefficient, preferential attachment growth mechanism,
truncated power-law connectivity distribution, power-law distribution of node strength,
community structure with overlapping boundaries, resilience against random failure and
targeted attack, core-periphery structure. They tried to explain various functions of the
supply chain by the structural characteristics of supply chain network.

Here, we focus on topological properties of global supply chain network. The study
on topological properties of global supply chain network is the first step to understand
the globalized world economy with microscopic view. We uncover the community
structure of the network using map equation method [3] and characterized them ac-
cording to their location and industry classification. Furthermore, the composition of
communities in terms of the bow-tie components is analyzed.

2 Results

The global supply chain data was constructed by collecting various company data from
the web site of Standard & Poor’s Capital IQ platform in 2018. The data include com-
pany ID, company name, country and location of company, company type, and primary
industry as node information. The data also include types of business relationship be-
tween supplier and customer as link information.

As the supply chain network is directed in nature, one can define in and out degrees
for the nodes. We observe probability density distributions for both nodal in and out
degrees have a heavy tail nature where the tail of the distributions is characterized by a
power law of the form P(kin/out)∼ k−γin/out with γin = 2.42 and γout = 2.11 respectively.
The high asymmetry in degree distribution can results system wide aggregate fluctua-
tion due to idiosyncratic shocks to large firms. We observe the clustering coefficient in
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the supply chain network is a decaying function of degree having a form 〈C(k)〉 ∼ k−βk

with βk = 0.46 indicates the presence of a hierarchical structure. Furthermore, the aver-
age degree of the neighbors of a node, 〈knn(k)〉, does not depend on k and remain more
or less in constant with k, indicating the absence of nodal degree-degree correlation in
global supply chain network.

We study the connected components when the network is viewed as an undirected
network. The largest connected component of the network is known as the Giant weakly
connected component (GWCC). The network consists of a very large GWCC with N =
407,527 nodes and L = 927,316 links. While the GWCC contains 93.16% of nodes of
the network, the rest of components are very small. The bow-tie structure is uncovered
from the GWCC based on the flow of goods and services (money flows in the opposite
direction) along the directed links. The definitions of the different regions of the bow-tie
structure are given as follows:

– The Giant strongly connected component (GSCC): The largest region where any
two nodes are reachable through directed path.

– IN components: The nodes from which GSCC is reachable through directed paths.
– OUT components: The nodes that are reachable from the GSCC through directed

paths.
– Tendrils (TE): The rest of the nodes in the GWCC.

The number of firms in each component is shown in Table 1. The OUT component
is the largest component and it consists 41.1% of total firms. GSCC, IN and TE are
approximately similar in size and comprise 16.4%, 22.3%, and 20.2% of total firms
respectively. This exhibit sharp contrast with bow-tie structure observed in the Japanese
production network [2].

Table 1. Bow-tie structure: Sizes of different components

Component Number of firms Ratio (%) Ratio in Japanese GWCC [2] (%)
GSCC 66,798 16.4 49.7

IN 90,992 22.3 20.6
OUT 167,509 41.1 26.2
TE 82,228 20.2 3.5

Total 407,527 100 100

“Ratio” refers to the ratio of the number of firms to the total number of firms in GWCC.

We uncover the community structure of the network using map equation method [3]
and characterized them according to their location and industry classification. We study
the significant overexpression of different attributes such as company type, primary in-
dustry, firm’s location, bow-tie components within the communities. Various interesting
features can be observed from the results of attribute overexpression. The largest com-
munity comprises of private companies mainly from automotive retail based in the US.
These firms belong to the OUT component in the bow-tie structure of the global sup-
ply chain network. It indicates the retail firms generally belong to the OUT component
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of bow-ties structure. We construct a weighted and undirected network of countries
from their overexpression in communities. A link of weight 1 is placed between two
countries if they over-express simultaneously within a community. We show the over-
expression network of countries in Fig. 1. Geographical dimension is clearly observed
in this figure.

Fig. 1. Overexpression network of countries

3 Summary

We studied bow-tie structure of the giant weakly connected component in the global
supply chain network. It turned out that the OUT component is the largest component.
GSCC, IN and TE are approximately similar in size. We uncovered the community
structure of the network. The largest community comprised of private companies mainly
from automotive retail based in the US. These firms belong to the OUT component in
the bow-tie structure.
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1 Introduction

The invention of the blockchain and cryptocurrencies opened a great opportunity to
study closer financial transactions, as this kind of information was not previously avail-
able due to its sensitivity. Cryptocurrency data open to the public from blockchain en-
abled researchers to construct and analyze transaction networks, user activity, money
flow, etc. Several studies have contributed to the understanding of bitcoin’s structure,
evolution [1], [2] price formation [3], etc. There is less research done on the ethereum
network, but still study of Chen [6] showed some similarities with bitcoin. The prob-
lem of user structure in the cryptocurrency market was investigated from the anomaly
detection point of view. Pham and Lee [4] used unsupervised machine learning and
outlier detection methods to detect suspicious nodes. However, the behavior of users
in the whole cryptocurrency market is not well understood yet. In this paper we aim
to investigate the user behavior composition in different periods of the cryptocurrency
system - when the price was increasing, decreasing, in a stable period and the price
before big fluctuations. We construct transaction networks in different periods for both
bitcoin and ethereum systems, and analyze their structure and evolution. Then, we cal-
culate various properties for all the nodes in our networks (features) and implement
unsupervised machine learning method to find clusters of users with different behavior.
We have been able to detect users with distinct behavior in both bitcoin and ethereum.
It has been found that user behavior composition is more stable in ethereum regardless
of the period, while in bitcoin the number of clusters changes significantly and different
periods show different user composition.

2 Data and Methods

2.1 Data Description and Network Construction

Bitcoin transaction data was extracted from the full Bitcoin blockchain starting from the
genesis block (dated 3 January 2009) up to block 560000 (dated 25 January 2019). It
was then processed with BitIodine software which implements clustering of addresses
into those hypothetically belonging to the same user based on two heuristics - sev-
eral addresses transacting to one account are considered to belong to one user, and
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the address of a transaction which appears to be a change transaction is considered to
belong to the sender of the transaction. Based on the processed data, the temporal net-
work of interactions of bitcoin users was estimated. Since the clustering algorithm is
heuristics-based, it does not guarantee that all the wallets in the network are clustered
to corresponding users. Therefore, we might expect a certain fraction of non- or poorly
clustered wallets, but still this algorithm results in the significant improvement of net-
work representation of financial interaction in bitcoin. Difference between ethereum
and bitcoin blockchains is that in ethereum’s nodes’ balances are stored directly in an
account. Therefore, when obtaining data from ethereum blockchain we do not need to
do the deanonymization procedure that was necessary for bitcoin.

We then construct temporal, weighted, directed networks where each link (i, j,w, t)
is a transaction between two nodes (users) i and j at time t with the amount of coins w.

2.2 Methods and Feature Extraction

To detect user clusters in networks, we use k-means algorithm that comprises of the
following steps [5]:

1. Initialize cluster centroids µ1,µ2, ...µk. Optimal number of clusters k was calculated
using the elbow method [8]

2. Segment data into k groups assigning each data point to the closest centroid and
changing the centroid to the average of its assigned points so that the distortion
function would converge:

J(c,µ) =
m

∑
i=1
||x(i)−µc(i) ||2

where x(i) is the data point and µc(i) is the cluster centroid

In order to use k-means as a clustering method, for each node in the network we
define a set of features:

– in-degree of a node i in time interval T - total number of interactions where the
node was a receiver of transaction value.

– out-degree of a node i in time interval T - total number of interactions where the
node was a sender of transaction value. These two features (in and out degrees of a
node) help us to get an understanding of how active a node is in sending/receiving
coins.

– outgoing value - total amount of eth/btc sent in time interval T (sum of weights w
of a node i when it was a sender of transaction value).

– incoming value - total amount of eth/btc received in time interval T (sum of weights
w of a node i when it was a receiver of transaction value).

– total balance - net number of coins in the account balance of node i in time interval
T . These three features (incoming and outgoing values and balance of a node) show
the wealth of a node and its preference to accumulate or spend coins.
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– size of a community that a node (user) belongs to - communities in the networks
were detected using the Louvain algorithm [7]. The size of each community was
calculated and assigned to nodes in that community. This additional feature was
introduced in order to get better understanding of the node’s position in the network.
We were not able to calculate clustering coefficients and betweenness centrality
for nodes in the network since the time complexity for these properties in a large
network is extremely high. Therefore, we use the size of community as a feature to
describe the position of a node in the network.

After calculating features for all nodes we then use Principal Component Analysis
to reduce features dimension for better visualization and further analysis using the k-
means clustering algorithm.

3 Results and Discussion

Figures ?? and ?? show the change of clusters in different periods of price evolution.
For each period we perform user structure analysis by first, extracting features for each
node and reducing their dimension by mapping them to principal components. Finally,
using k-means clustering algorithm to detect user clusters as described in the Methods
section.

We then do an inverse transformation from principal components back to feature
space and derive the properties of users in each cluster. In the bitcoin system, in the
stable period and period of price growth, there is a cluster of users with high in-degree
and zero out-degree that hold around 90% of the total wealth in the network (we would
speculate it might be the cluster of investors). Another cluster with distinct behavior
consists of users with high out-degree and low in-degree. The third cluster in these
periods have users with mixed in and out degrees and relatively low balance. In the
period of price decline there is no cluster that behaves like investors, and user compo-
sition becomes more heterogeneous. In the ethereum system we see a constant number
of clusters despite the period. Moreover, the behavior of users in each cluster does not
change significantly in different periods as well as number of users in each cluster.

Overall, despite having similar network structure (like degree distribution and some
global properties as it was shown in [1], [2] and [6]), the system evolution and behaviour
of users in ethereum and bitcoin appeared to be very different. In the future, we would
like to add more periods to our analysis of user composition - before big price fluctu-
ations, after shock events etc. and also validate our speculations about the user types
in each cluster. Moreover, we would like to try different methods of machine learning
techniques for user clustering and compare results.
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1 Introduction

When modeling market mechanisms, standard economic models frequently assume that
information flows on markets are frictionless, or perfect. This means that we work with
models which assume that market actors are perfectly aware of other actors, their de-
cisions (behavior) and other aggregate conditions which may be relevant for making
optimal decisions. Although this seems to be a very strict assumption to work with,
most economic models do not step apart from this.

A prominent example of these models is the monopolistic competition model, which
was initiated by the work of Dixit and Stiglitz [7] and then developed further to become
a key ingredient in different fields of applied economic modeling (see e.g. [5]). The mo-
nopolistic competition paradigm serves as the basis for the very popular New-Keynesian
models (see e.g. [9]), but it constitutes the starting point for endogenous growth mod-
els ([13], [10]), models in international trade ([6], [8]) or the famous center-periphery
model of Krugman [12].

In the monopolistic competition model suppliers compete with each other with
prices while having some monopolistic power which in principle allows for hetero-
geneous prices to be determined. However, the symmetry of the actors and the assumed
complete information and complete connectedness (all suppliers know all buyers and
vice versa) result in homogeneous prices and a perfect awareness of actors of the aver-
age price on the market.

On the other hand, recent research on complex networks has shown that real net-
works show particular structures, which are far from complete in general ([4], [3]),
while socio-economic systems are frequently characterized by scalefree properties. More-
over, it is also clear that the very structure of complex networks has significant effect
on the performance of the whole system, especially their stability and efficiency ([11],
[2], [3]).

Motivated by the previous ideas, in this paper we challenge the standard view of
modeling markets by assuming incomplete connectedness among market actors. This
incomplete connectedness results in a biased perception about market prices and het-
erogeneous prices. In addition to modeling this incomplete flow of information, we take
account of the endogenous formation of supplier-buyer networks, showing that equilib-
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rium networks are not necessarily complete and that under realistic circumstances, they
show scalefree properties.

2 Results

In order to show the significance of incomplete information flows on market outcomes,
we include a slight modification in the standard monopolistic competition model: in-
stead of assuming that all suppliers are connected to all buyers and vice versa, it be-
comes the firms’ endogenous decision to establish links with households depending
on the possible gains coming from the increased demand and the love of variety ef-
fect, while they incur some cost of link formation/maintenance. That is, the equilibrium
network itself is the result of firms’ individual decisions about their network position
(embededness) on the basis of a cost-benefit analysis.

The basic idea behind our model is that if buyers do not interact with all suppliers,
the former have a specific information set on market prices to base their demand deci-
sions on. Rational firms take this information into account being aware that they supply
different segments of the whole market. Depending on possible additional profits, they
can increase or decrease their market coverage, while considering the consequence of
link formation on the behavior of buyers. While suppliers may concentrate directly on
their own sub-market, if the market network is connected, other sub-markets will influ-
ence their decisions indirectly.

Using this framework we derive the optimal pricing and link formation decision of
firms and analyze the resulting network structures together with price heterogeneity and
the efficiency of the resulting market outcomes.

1. Incomplete network structures result in deadweight loss, an efficiency gap com-
pared to standard market models. This gap comes from the monopolistic forces
awakened by incomplete connectedness: less information on the buyers’ side about
competitors (coming from the lower connectedness of the former) mean that sup-
pliers can act more like monopolists on their sub-markets. This deadweight loss is
economically significant, depending on the substitutability of the products, it can
reach 100% of the complete-network utility level. Moving from a Poisson to a more
asymmetric degree distribution welfare may increase or decrease, depending on the
alignment between the degree and productivity distribution of firms.

2. Apart from extreme situations like homogeneous products or zero cost of link for-
mation, endogenous network formation results in incomplete network structures:
it is not optimal for suppliers to cover all their markets, neither is it optimal for
buyers to consider the products of all suppliers even if they prefer variety. This is
important, because it calls the attention to the fact that we can not assume com-
plete connectedness in market models as an equilibrium outcome. It can be shown
that the incompleteness of the equilibrium network is a function of the cost of link
formation and the substitutability of the products supplied on the market.

3. Optimal degree of suppliers depend on their productivity according to a power-law.
More efficient suppliers are able and willing to attract more buyers and this rela-
tionship is not linear, meaning that a relatively small dispersion in the productivity
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levels of firms is able to render the resulting equilibrium market network into a
scalefree structure. This finding has an important empirical relevance as real data
shows that the size distribution of firms is highly skewed and resembles the power-
law distribution (see e.g. [1]).

4. While incomplete connectedness comes with a deadweight loss (inefficiency), in-
terestingly this can be compensated by heterogeneity both in productivity levels and
node degrees. We show that an increasing heterogeneity of supplier productivities
results in a grouping of buyers at the more productive firms which then positively
influences aggregate welfare and this way it can compensate for the welfare loss
coming from the incomplete network structure.

Summary. This paper challenges the standard view of complete connectedness of mar-
ket actors which is a surprisingly common assumption in most applied economic mod-
els. By simple modifications of the standard model of monopolistic competition we add
endogenous link formation and analyze the resulting network structures and market out-
comes. Our results show that endogenously developing market structures are generally
incomplete which calls the attention to revise our knowledge about the basis and results
of standard market models. Also, we show that incomplete market structures result in
welfare loss due to strengthened monopolistic forces, but this can be partly compensated
by heterogeneous productivity levels of the suppliers by rendering the network structure
more asymmetric and providing access to better technologies for more buyers. Further
research may introduce heterogeneous costs and a thorough analysis of inequality.
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The problem of global food security, which remains one of the main challenges facing
humanity, is tightly connected with the structural transformation of the global food sys-
tem. On the one hand, since agricultural food production globally accounts for almost
40% of land use and over 70% of water use, issues related to climate change have a
direct impact on the dimension of food availability. On the other hand, the food avail-
ability, access and stability have been globally influenced by the increasing integration
of international food markets. Indeed, fostered by technological factors and multilat-
eral agreements, the amount of internationally traded food has more than doubled over
the last 30 years and an increasing number of countries rely on food imports to satisfy
their domestic demand. Today, about one fourth of the global food production is sold
internationally.

The implications of the increasing integration of international food markets on
global food security are controversial. On the one hand, it promotes a more efficient use
of global natural resources and allows countries characterized by relatively unfavorable
conditions for food production to fulfill their domestic food demand by specializing in
the production of goods for which they have a comparative advantage. On the other
hand, a highly integrated global food system may be vulnerable to systemic risks, since
natural and political shocks in key countries may trigger self-propagating trade disrup-
tions. Indeed, after the 2008 food-price spikes, calls for “food self-sufficiency” echoed
in several import-dependent countries.

The paper aims at investigating the relationship between international trade and
global food security from a network perspective, combining comprehensive data on bi-
lateral trade flows in agricultural goods with network models of shock propagation. This
approach allows us to analyze global food security from a systemic perspective and to
shed light on the risks and trade-offs implicit in an increasingly globalized food sys-
tem [1–3]. By combining information about individual country characteristics - which
influence the way countries react to external shocks - with a stylized model of shock
propagation, we account for direct and indirect links between countries and thus man-
age to study the shock-propagation mechanisms and to identify systemic fragility.
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We extend the model by [4], whereby countries respond to shocks (lower produc-
tion) by imposing export restrictions, to take into account heterogeneity across coun-
tries: in particular, we postulate that importing countries are not equally affected, but
rather face import restrictions that are inversely proportional to their per capital income.
This assumption captures the notion that higher-income countries may be in a better bar-
gaining position and/or can afford higher prices, and is well supported by the empirical
evidence.

A second departure from the existing literature stems from the fact that, instead of
focusing on a few staple food items (as it is common in the literature), we express food
trade in terms of their key nutritional content (quantity of carbohydrates, lipids and
proteins) and thus consider all food items that are traded internationally. This approach
has two main advantages: on the one hand it allows us to describe food trade in terms of
a small number of networks; on the other hand, it provides us with a clear link between
international trade and food security.

References

1. Ercsey-Ravasz, Maria, and Toroczkai, Zoltan, and Lakner, Zoltan, and Baranyi, Jozsef. Com-
plexity of the International Agro-Food Trade Network and Its Impact on Food Safety. PLOS
ONE 7(5): e37810, (2012), doi: 10.1371/journal.pone.0037810.

2. Sartori, Martina and Schiavo, Stefano. Connected we stand: a network perspec-
tive on trade and global food security. Food Policy, 57: 114-12, (2015), doi:
10.1016/j.foodpol.2015.10.004.

3. Suweis, Samir and Carr, Joel A. and Maritan, Amos and Rinaldo, Andrea and D’Odorico,
Paolo. Resilience and reactivity of global food security. Proceedings of the National
Academy of Sciences, 112(22): 6902–6907, (2015), doi: 10.1073/pnas.1507366112.

4. Burkholz, Rebekka, and Frank Schweitzer. International crop trade networks: The impact of
shocks and cascades. arXiv preprint arXiv:1901.05872 (2019)

426

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Community structures based on multi-attributes in
International Trade Network

P. Bartesaghi1, S. Benati2, G.P.Clemente3, and R.Grassi1

1 Universit Milano-Bicocca, paolo.bartesaghi@unimib.it,
rosanna.grassi@unimib.it

2 Universit degli Studi di Trento stefano.benati@unitn.it
3 Universit Cattolica del Sacro Cuore, Milano, gianpaolo.clemente@unicatt.it

1 Introduction

Community detection is a widely discussed topic in network theory (see, e.g., ([3])). The analysis
of the mesoscale structure of a real network throws light on its inner structure. This plays an
even more significant role when applied to International Trade Network (ITN), in view of its
multiple implications (see, for instance, [1]). In this framework, this work aims at clustering
countries according to similarities in their roles in the global market, rather than using only the
preferential channels of exchange between them. Our contribute to the literature is to provide a
new methodology of community detection that aims at grouping countries in the ITN on the basis
of more than one attribute of node similarity. Network attributes mean more specifically node
properties, represented through, for instance, centrality measures or interconnection. To this end,
we assess the role of each country in the ITN by means of a set of network topological indicators
allowing to sort the relevance of nodes in the network under different configurations. We sum
up this initial multi-criteria assessment, by defining a proper measure of similarity/dissimilarity
between countries using their ranking positions. Next, we cluster data in order to find groups of
nations that have common features in terms of those rankings. In this way, we are able to group
countries characterized by a similar relevance in the network. The main advantage is the fact that
we do not focus on a specific network indicator, but we identify set of countries that have a similar
behaviour in the network from different and wider perspectives. Additionally, we provide a new
heuristic algorithm in order to find clusters, based on the clique partition model, first introduced in
[4],[5] and [2]. The proposed heuristic overcomes problems of existing methodologies, because
not only units can be inserted in a cluster, but clusters themselves can be merged with other
clusters.
An empirical application to ITN in the year 2014 is provided. The optimal solution shows three
big clusters, more or less equivalent in terms of number of members but very different in terms
of intra-cluster density. This has been easily interpreted, since the rate of exchanges between top
countries is far more intense than for poor ones. Being a rather rough partition, we iterated the
same methodology to each cluster and so on. This allows to build a dendrogram tree stemming
at each step by applying iteratively the same methodology. Main results show how we are able to
provide different clusters where countries with a similar relevance in the network are grouped.

2 Main proposal

In this section, we describe a new and more general approach that aims at grouping countries in
the ITN on the basis of more than one attribute of node similarity. Network indicators are numer-
ical values strictly related to the topology of the network and they are often useful in quantifying
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its properties. To this aim, we consider a weighted and directed graph D = (V,E) where V and E
are respectively the set of n vertices and m arcs. In particular, each country in the network is rep-
resented by a vertex, while trade input and output flows are described by arcs. In our analysis, we
take advantage of different indicators of vertex importance and interconnection (namely, in and
out strength, in and out clustering coefficient, hub and authority, in and out Laplacian centrality).
Each measure has peculiarities and characteristics that highlight various aspects of the exchange
relations between countries, capturing in an exhaustive way their complexity. This heterogene-
ity requires an approach that cannot be simply based on the direct comparison among extremely
different measures. To this reason, we focus the analysis on the rankings instead on the absolute
values. Indeed, each indicator induces a ranking which represents the structural importance of
a single node in the network. The comparison is developed by computing a distance function
between rankings. In particular in this work we refer to the Minkowski distance, also known as
Lp-norm distance. Let us order the scores of nodes obtained for each centrality measure k and let
rk
i be the position of the node i with respect to k. The Minkowski distance d(ri,r j) is

d(ri,r j) = ||ri− r j||p =
(

K

∑
k=1

∣∣∣rk
i − rk

j

∣∣∣
p
)1/p

(1)

being ri the rankings vector of node i, K the number of considered centrality measures and p any
real value such that p≥ 1.
We use this distance to construct a complete network Kn having the same node set and weighted
adjacency matrix Ω , whose entries are defined as:

ωi j =

{
1

1+d(ri,r j)
for i 6= j

0 for i = j
. (2)

These weights range in [0;1] and turn out to be effective in describing the similarities between
countries. Indeed, more two countries have a similar behaviour, more the distance is small, and
then the weight is high. At this point, we define the integer linear programming formulation of
the Clique Partition as:

max ∑
i6= j

gi jxi j (3)

subject to




−xi j + xik + x jk ≤ 1, ∀i < j < k, i, j,k ∈V
−xik + x jk + xi j ≤ 1, ∀i < j < k, i, j,k ∈V
−x jk + xi j + xik ≤ 1, ∀i < j < k, i, j,k ∈V

xi j ∈ {0,1}, i < j, i, j ∈V

.

Notice that xi j is equal to 1 if two nodes are in the same cluster and 0 otherwise. Each gain/cost gi j

is defined as the difference between the actual and the hypothetical similarity: gi j = ωi j−2 ωiω j
ω ,

with ω = ∑i j ωi j the total network similarities and ωi = ∑ j wi j the sum of similarities allocated
to unit i.
A specific tool developed for our project is a new heuristic algorithm in order to find clusters,
based on the Clique Partition model. Indeed, we experimented very long computational times
when we tried to solve it through Integer Linear Programming. Therefore, we implemented a
heuristic procedure based on shrinking the vertices of the graph. We found that the algorithm
calculates quickly good quality solution. However, it can be the case that the selected partition
is suboptimal. Therefore, we also integrated the algorithm with a version of the Neighborhood
Search procedure.
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To conclude, we can summarize our proposal in the following way:

1. Given a graph D with n nodes and m edges, we select a set of K centrality measures and we
compute the ranking rk

i for the centrality measure k = 1,2, ...,K ;
2. For each couple of countries, we calculate the Minkovsky distance d(ri,r j) via formula (1);
3. We construct a new complete network Kn having the same node set and weighted adjacency

matrix Ω , whose entries are defined in formula (2);
4. We calculate the gain/cost gi j based on the difference between the actual and the hypothetical

similarity
5. We provide a new heuristic algorithm and we solve the Clique Partition model (3) whose

input are gi j ’s.

3 Main results
For the sake of brevity, we report here only main results obtained solving problem (3) by using
ITN data in 2014. As shown in Figure 1, the initial breakdown in communities gives a general
feeling of the relevance of different macro-regions in the whole trade network. Indeed the top
cluster, characterized by 69 countries at step 1, includes all the most developed European coun-
tries, largest economies in Asia and Middle East, several countries in South America, Canada,
Mexico, USA, Australia and New Zealand. Except for some small countries, this community
includes all the advanced economies identified in the World Economic Outlook (WEO) by the
International Monetary Fund (IMF) and the emerging economies identified by IMF and by other
analysts.
The following steps produce a more granular division of countries. At the end of the procedure,
we obtain that the most central group is composed by China, Germany, Japan and United States.
Higher volumes of trades are indeed moved by this country and at the same time, they also show
highest levels of interconnections.
In the second group, we have countries which either are positioned at a slightly lower level (as
GBR, FRA, ITA and NLD) or are outstanding for one specific indicator, but, on average, shows
a less relevant role in the network. For instance, Canada has the second position in terms of hubs
centrality, but shows an average ranking around 14, because of a lower clustering.

Fig. 1. Structure of communities at different steps. Darker colours are associated to communities
with an higher average ranking. The number of communities is respectively equal to 3, 8, 16, 22.
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1 Introduction

Diversification is a well-understood strategy to reduce unsystematic portfolio risk but
its systemic implications are less clear. During periods of high volatility more stocks are
required to diversify effectively [1] but more generally it is not obvious how to achieve
optimal diversification. During crises many investors exit risky positions and enter po-
sitions into what are considered safe investments [2, 3] and it is important to understand
what happens when investors allocate similar portfolios. We move from the hypothesis
that, while diversification reduces risk at the portfolio level, the differentiation of the
investments across portfolios reduces risk at the systemic level.

2 Results

We consider US equity mutual funds as a case study of major interest [4]. We parse data
from the CRSP Mutual Funds Bias-Free Database and aggregate information on port-
folio composition to recover quarterly snapshots of the network of portfolio holdings.
This is represented by a weighted bipartite graph, one vertex class corresponding to
funds’ portfolios and the other to their assets. The edge weight Wiα stands for the total
value of security α in portfolio i, the total net assets (TNA) is given by Si = ∑α Wiα
and the network value by Stot = ∑i,α Wiα . We measure portfolio diversification in terms
of the inverse Herfindahl–Hirschman index hi = [∑α w2

iα ]
−1, with wiα =Wiα/Si, which

estimates the number of leading assets. Portfolio overlap is measured by the cosine
similarity si j = wi ·w j/‖wi‖‖w j‖, that considers what assets two portfolios have in
common as well as their proportions.

We find that the number of different assets in the network has increased steeply
over years and that portfolio diversification has slightly increased (≈ 20%) across the
Global Financial Crisis (GFC). The probability density function (PDF) of portfolio di-
versification does not provide evidence of any characteristic scale: most funds invest in
few assets, some have thousands and a spectrum of intermediate behaviors exists. The
network has very popular assets which are likely to be found in virtually any portfo-
lio (hubs). Heterogeneity characterizes the portfolio similarities: the PDF extends over
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several orders of magnitude and a probability exists for very similar, nearly identical
portfolios. This suggests the existence of strong correlations between the investments
of different funds.

We may suppose that large similarities are due to finite size effects (limited number
of assets in the investment universe) or the presence of hubs. We exploit two null models
of random investments to rule out such possibilities. In the random holdings model (RH)
original holdings are re-assigned choosing assets uniformly at random. In the Degree-
Preserving Random model (DPR) original holdings are shuffled by double-edge swap.
Both models preserve the portfolios’ TNAs and the fund degree sequence. The original
values of portfolio diversification are preserved as well because the edge weights are
unchanged. The degree sequence of the assets and the hubs are preserved only by model
DPR. Comparison of the similarity probability distributions shows that unconstrained
randomization suppresses portfolio overlap and, more interestingly, that very similar
portfolios are not observed for model DPR either, despite hubs. We conclude that the
similarity distribution, and especially its tail, are not compatible with random scenarios,
not even when controlling for the effects of very popular assets. This is indirect evidence
of non trivial correlations between investments.

To measure systemic riskiness, we introduce a basic model of propagation for ex-
ogenous shocks to asset prices, inspired by the documented flow-performance rela-
tionship for funds [5]. After negative portfolio returns individual investors ask for re-
demption of their fund shares and asset managers liquidate a fraction of the assets to
repay leaving investors. The increase of offer has a negative market impact on asset
prices, which depends on asset liquidity characteristics. We model the impact as a lin-
ear function δα(t +1) = ∆Vα(t)/λα , where ∆Vα(t) is the total amount of α liquidated
by the end of trading period t and this results in a relative variation of the asset’s price
δα(t +1)≤ 0. The parameters λα are called the market depth of the assets and depend
on the number of outstanding shares. Assuming the total value of the asset as a proxy of
liquidity, we also take λα ∝ Vα = ∑i Wiα . Due to the market impact, portfolios undergo
a new round of losses and, because of the overlap of investments, some portfolios that
were not hit at first will be during the following periods in a cascade of negative port-
folio returns and subsequent asset liquidations. The model features contagion effects
due to common exposures as well as heterogeneity in asset liquidity characteristics. We
perform simulations for a shock of -30% to the 10 most common assets. The dynamics
is iterated over a number T of trading periods and the systemic damage is computed as
the relative total loss of value of the portfolios D(t) = Stot(t)/Stot(t−1)−1.

To validate the hypothesis that portfolio overlap is connected to systemic riskiness,
we first look at the corresponding time series for the real network (panels A, B of Fig. 1)
and actually we find they are strongly correlated. We then simulate the shock propaga-
tion and compare the values of D(t) in the three cases (Fig. 1 C). Model RH has no
strongly connected assets and it has weak overlap between portfolios; correspondingly
it provides the most robust configuration. Most noticeably, model DPR is more fragile
than RH but still it is more robust than the real network. The latter is the most risky and
we see that a large shock can propagate quite rapidly. By comparison we conclude that
the observed riskiness is not explained by strongly connected assets and, more gener-
ally, it depends on portfolio overlap. Since the random benchmarks also preserve the
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Fig. 1. Portfolio overlap (A) and systemic damage (B) are strongly correlated for the real net-
work (ρ = 0.91). Comparison of the systemic damage for the real portfolios and the random
benchmarks (C) shows that systemic riskiness is explained only partially by the effects of hubs.

original values of portfolio diversification, we also conclude that portfolio similarity is
responsible for a systemic risk component that is independent of portfolio diversifica-
tion and hubs.

Summary. The network of US mutual funds is a heterogenous system and during GFC
portfolios have become more diversified and less similar. We find that observed similar-
ities are more likely than expected by chance and finite-size effects. Stress tests show
that the real network is risky with respect to random scenarios to parity of portfolio
diversification and that riskiness can be justified by hubs only partially. More generally,
a systemic risk component originates from portfolio overlap independently of popu-
lar assets and diversification. We exploit deliberately simple random models that serve
the purpose of performing a comparison of the observed similarities and measuring the
effects of the topology and portfolio overlap on systemic fragility. Future work will
be devoted to study realistic scenarios that take into account the actual availability of
shares on the market as well as the the roles of the funds’ and companies’ sizes in
shaping investment strategies and determining portfolio similarity.
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1 Introduction

In a highly developed industrialized society, mass production using machines is at the
center of economic activity. This mass production arguably stands in contrast to produc-
tion methods such as the flexible division of labor [1] that characterizes the collabora-
tion of companies and the manufacturing system of traditional craft industries in Japan.
As early as 1980, such a traditional flexible division of labor has attracted attention as a
substitute model to replace American-style mass production in regional economies, as
for example in and around Kyoto. However, in recent years, due to changes in consumer
demand, accompanied by generational transformations, the traditional craft industry in
Kyoto witnesses substantially diminished sales. It seems, the hitherto effective flexible
division of labor, the production equipment, the know-how, and the conventional pro-
cedures of skilled labor in practitioners of traditional crafts now increasingly become
unable to cope with market fluctuations and technological changes caused by economic
globalization. In this paper, we address this issue by working towards establishing a
method to clarify the structure of supply chain networks between individual companies
within the current traditional craft industry in the Kyoto region. Our goal is to eventually
understand the underlying structures and dynamics, to eventually nurture sustainability
and ensure the survival of the traditional cultural industry within the larger existing
and changing market environment. As a result of our research, we expect a valuable
contribution towards raising production efficiency while preserving desired qualities in
traditional procedures and products.

2 Network Analysis

The data analyzed in this paper is a subset of 5,943,072 supply chain transaction re-
lationships between 1,668,567 individual Japanese companies (including the company
name, location, industry, number of employees, etc.), as investigated by Tokyo Shoko
Research, Ltd in 2016. From this data, we construct a supply chain network, where each
individual company is a node, and links connect pairs of companies with at least one
transaction relationship, for the purpose of our present analysis resulting in a directed
graph. Because of a limitation of the dataset, links have no weights. Choosing compa-
nies in Kyoto and companies that have business relationships with companies in Kyoto
from the full dataset, our analysis in this paper focuses on 80,508 nodes and 153,066
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links. Given this subset of data, the field of network science offers a toolset to iden-
tify specific industrial communities and to analyze relevant topological structures of the
supply chain network[2]. Specifically, to identify industrial communities, we use the
map equation method, where a set of nodes is regarded as belonging to a community
based on a random walker staying within the respective set of nodes with high proba-
bility [3]. Analyzing the network on the system level, we quantify the average shortest
path length and assortativity. Previous research proposed the hypothesis which is the
shorter the average shortest path length is, the more efficient a given the supply chain
appears[2]. In terms of assortativity we quantify the degree correlation. Analyzing the
network on the node level, i.e. focusing on individual companies, we quantify the IN-,
OUT-, and undirected degree centralities as well as the betweenness centrality. As a first
approximation, we assume nodes with high IN-degrees to play the role of integrators
that design and/or process items of transaction in acts of combination. Nodes with high
out-degrees, again in first approximation, are considered to distribute limited resources
to consumers. Node with high betweenness centralities will perhaps play a central role
in regarding the speed of supply chain flow.

3 Results

First, we identify communities in the traditional craft industry in Kyoto using a map
equation. As a result, the 80,508 companies related to Kyoto is divided into 1313 com-
munities. Each community has a hierarchical structure, which consists of subcommu-
nities in a lower hierarchical layer. From the hierarchical structure, we chose the three
communities as representative of the larger Kyoto traditional craft industry, covering
the Nishijin silk fabrics industry, the Kyoyuzen dyeing industry, and the Kyoto-ningyo
(i.e. Kyoto doll) industry. Fig.1 shows the embedding of all three chosen craft industries
within the Kyoto supply chain network as a whole. Sub-community 3-1-1 is identified
as the Nishijin silk fabrics Industry; similarly, the sub-community 3-1-30 corresponds to
Kyoto Yuzen and sub-community 3-7 to Kyoto-ningyo. Here, a-b-c means that commu-
nity a includes sub-community b and sub-community b include further sub-community
c. Next, we compared the three traditional craft industries with subdivisions of modern
industries, including the electronics industry and the industry of civil engineering. Table
1 indicates the topological features and centralities of the traditional and modern indus-
trial communities. The Nishijin silk fabrics industry, it turns out, has a longer average
shortest path length than other industries. This perhaps indicates that the Nishijin silk
fabrics industry has a less inefficient supply chain structure. In addition, we find that
there are many wholesalers with high centralities in the Nishijin silk fabrics network.
As pointed out in previous qualitative research[4], the structure of wholesalers has a
strong influence in the Nishijin silk fabrics industry. Common wisdom that is subject to
further analysis has it that the efficiency is higher if manufacturers sell their products
directly. Looking at the profits of companies with high betweenness centrality, many
companies are in the red. This affects the sustainability of the industrial community, as
the bankruptcy of a company with high betweenness centrality potentially has a signifi-
cant impact on the entire network, pointing to a critical situation in case of the Nishijin
silk fabrics Industry. The Kyoto-ningyo doll industry has the same characteristics as the
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Nishijin silk fabrics industry, with a long average shortest path length, and high cen-
trality of wholesalers. We, therefore, conclude that the doll industry likely has similar
issues as the Nishijin silk fabrics industry. In contrast, manufacturing companies are
more highly central in the Kyoyuzen dyeing industry, while still being subject to a long
average shortest path length. We, therefore, assume that this last case ranges in-between
the other two traditional and the two modern cases in terms of supply chain efficiency.

Fig. 1. Community structure of Kyoto supply
chain network (Community 1:Electronics Indus-
try, Community 2: Civil Engineering, Commu-
nity 3: Traditional Industry)
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Table 1. Comparrison of traditional industries
with modern industries. Path length and clus-
tering coefficient calculated for network with
degree-preserving randomization in parentheses

4 Summary

We characterized features and issues regarding the supply chain networks of three com-
munities of traditional craft industries in Kyoto, further compared with two modern
instances. We found that the traditional craft industries in Kyoto have a longer aver-
age shortest path length than that of modern industries in their supply chain networks.
We also found wholesale companies more central in two of the three traditional cases,
which confirms previous qualitative research. In ongoing research, we will aim to de-
termine how these features are related to the inefficiencies and issues underlying the
known reduction of sales within the traditional industries.
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1 Introduction

Every nation takes priority for inclusive economic growth and development of all re-
gions. However, we observe economic activities are clustered in space, which results in
a disparity in income per capita among different regions. A complexity based method
was proposed by C. A. Hidalgo and R. Hausmann [1] for explanation of large gaps in in-
come per capita across countries. Subsequently, A. Tacchella et. al. have introduced the
fitness-complexity algorithm [2] based on the conceptual framework of C. A. Hidalgo
and R. Hausmann to calculate the intangible properties like the fitness of countries and
the complexity of export products. Although there is an extensive study on countries’
economic complexity using international export data, economic complexity at regional
level [3] is relatively less studied. Here, we study the industrial sector complexity of
prefectures in Japan based on the basic financial information on more than a million
firms. In this study, we aim to explain the economic performance of prefectures with
the quantitative measure of complexity.

Our data is based on a survey conducted by Tokyo Shoko Research (TSR), one of
the leading credit research agencies in Tokyo, and was provided to us through the Re-
search Institute of Economy, Trade and Industry (RIETI). We use “TSR Kigyo Jouhou”
(firm information), which contains basic financial information on more than a million
firms. The data set was collected in July 2016. We only considered “active” firms that
have employee and current year sales information. It contains N = 1,033,518 firms.
We aggregate the data as a bipartite network of prefectures (P = 47) and industrial sec-
tors (S = 97). We have used Japan Standard Industrial Classification, November 2007,
Revision 12. The bipartite network is represented by the binary matrix Mps , where
Mps = 1, if the prefecture p has a significant number of firms of industrial sector s, and
0 otherwise. A prefecture p is said to have a significant number of firms from industrial
sector s if its Revealed Comparative Advantage (RCA) is greater than unity. The RCA
is defined as [3]

RCAps =

nps
∑s nps

∑p nps
∑p,s nps

Where nps is the number of firms in prefecture p from industrial sector s.
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2 Results

The fitness-complexity algorithm is one of the quantitative methods to calculate the
fitness of countries and the complexity of products. Here we use the method to study
Japanese industrial sector and prefectures relationships.

Mathematically the model can be described by the following self-consistent iterative
coupled equations with fitness Fp of prefectures and complexity Qs of industrial sectors:

At any arbitrary iteration step n

F̃(n)
p = ∑

s
MpsQ

(n−1)
s

Q̃(n)
s =

1

∑p Mps
1

F(n−1)
p

with normalization in each step: F(n)
p =

F̃(n)
p

<F̃(n)
p >

; Q(n)
s = Q̃(n)

s

<Q̃(n)
s >

The initial conditions are Q̃(0)
s = F̃(0)

p = 1 for all p and s.
The convergence properties of the algorithm depends on the structure of Mps [4]. We

have investigated the triangular structure of the binary matrix Mps by ordering the rows
and columns according to their fitness complexity rank. The structure of the ordered
Mps shows the diagonal line does not pass through the external area, which ensures
that the fitness values of the prefecture and complexity values of the industrial sectors
will converge to the non zero fixed values with iterations [4]. Fig. 1 (left) shows the
evolution of the prefectures’ fitness with iterations. It shows that the distribution of Fc
gradually broadens and finally each fitness converge to the fixed point values.
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Fig. 1. The evolution of prefectures’ fitness towards fixed points is plotted with iteration
(left). The variations of sales per employee is plotted with fitness for the prefectures (right).
The dotted line represents expected level of sales per employee, which is the best power law fit
to the data with an exponent 0.63.

We show the relationship between sales per employee and fitness values for the pre-
fectures in Fig. 1 (right). It shows that there is a strong positive correlation between the
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two quantities. The Pearson’s product-moment correlation between sales per employee
and fitness values is found to be 0.885 with p-value < 2.2× 10−16. The deviations of
real sales per employee data from the expected values are informative and it gives an
indication of the economic performances of the prefectures. The prefectures appearing
below the expected values of sales per employee, have the potential to grow faster in
the future. Furthermore, we have also observed high correlation with gross prefectural
product per capita. To check the robustness of our results, we have compared it with the
results obtained using Hidalgo and Hausmann method [1].

Summary. We have studied the economic complexity at prefecture level in Japan. The
computed economic complexity for the prefectures shows high correlation with macro-
economic indicators, such as sales per employee and gross prefectural product per
capita. Further studies in this direction can predict the macro-economic indicators for a
prefecture.
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1 Introduction

Correlations between stock returns play a central role in finance, for example, in port-
folio optimization. Buiding optimal mean-variance portfolios [6] requires very good
estimations of trends, covariances, and correlations. It is has been long recognized that
portfolio optimization without proper filtering is akin to error maximization [8]. The
main reason is that a precise estimation of a full unfiltered correlation matrix between
N assets requires T � N points per asset. Regrettably, the non-stationary nature of fi-
nancial markets imposes T to be as small as reasonably possible but in any case propor-
tional to N. The impossibility to approximate the T →∞ limit while keeping N constant
is known as the ‘curse of dimensionality‘ as correlation estimators remain noisy even in
the N and T →∞ limit at fixed ratio q= T/N. Ad-hoc filtering techniques include linear
shrinkage [5], block-diagonal ansatz for the correlation matrix [7] and random matrix
theory-based eigenvalue clipping [4, 9]. The latter works reasonably well for T > N.
More recently, the Rotational Invariant Estimator (RIE) was shown to be optimal in the
large N and T limit at constant ratio q = T/N > 1 [1], however, RMT and RIE assume
stationary Gaussian returns and N < T .

Here, we focus on non-stationary correlation structures of possibly non-Gaussian
returns when N > T and aim to predict the sign of asset correlations.
Our approach is related to Heider balance theory [3], which aims at explaining the atti-
tude changes of interacting individuals. In the modeling framework of this theory, only
two possible interactions between two individuals are possible: the latter can be friends
or enemies. The general observation in social science that ‘the enemy of my friend is
my enemy’ becomes particularly relevant when extended to triadic relationships: for
example, triads where a is a friend of b and c but c is an enemy of b tend to be unstable.
As a consequence, one interaction type is likely to change and lead to a stable triad: a
could become an enemy of b, or c could become a friend of b. In a similar way, a triad
composed of three individuals that are enemies of each other is considered unstable as
two individuals could join their forces against the third one. In summary, this theory
identifies four possible triads, two stable ones and two unstable ones, and adds the in-
tuition is that unstable triads, due to social stress, tend to evolve into stable ones.
Recently, in Ref [2], the authors proposed to measure the global social balance with
a Hamiltonian whose minimal energy level coincides with the maximal stability and
studied the possible paths that drive the system towards minimal energy levels, i.e., to
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the maximally stable triad states. Inspired by their work, we defined a new metric ∆i j
which aims to to identify the correlation pairs that tend to revert their sign. Such a met-
ric provides a quantitative measure of the social stress that a correlation sign induces on
the whole system according to Heider balance theory.

2 Results

We validate our approach on daily adjusted close-to-close returns of equities from US
and Hong Kong stock markets, for a period spanning from 2000 to 2018. According to
our hypothesis, the correlations that are involved in a large number of unstable triads
are the most susceptible to revert their signs (Fig. 1(a)). To assess the overall ability of
∆i j to predict the sign stability, we used the Receiver Operating Characteristic (ROC)
curve. We compare the ROC curves associated with ∆i j as discrimination variable, and
the other associated with the absolute value of the correlation |Φi j| (Fig. 1(b)). As a
summary of the performance of a discrimination variable, we use the Area Under the
Curve (AUC). We computed the performance both predictors for a wide range of cal-
ibration and test window lengths chosen in order to include partial-rank and full-rank
correlation matrices. Although the difference between the methods is not constant over
time (Fig. 1(c)), our approach outperforms |Φ | whenever N > T (Fig. 1(d)).

Summary. In the high-dimensional regime, correlation matrices become pathologically
noisy, and their coefficients cannot predict when their sign is likely to change. Using
fewer bits of information per price return but accounting for more complex relation-
ships between correlations makes it possible to predict the sign change of correlation
coefficients deep in the high-dimensional region, even when there are ten times fewer
data points than assets. More precisely, triadic relationships suggest a stability mea-
sure of each sign of correlations which was shown to outperform the absolute value of
correlations. In short, higher-order nonparametric structures lift the degeneracy of the
high-dimensional correlation matrices.
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(a) (b)

(c) (d)

Fig. 1. (a) The lower subplot is the probability to preserve the in-sample sign in the out-of-sample
on 2011-18-04 for different values of the discrimination parameter binned in steps of 0.05, and the
upper subplot is the related marginal distribution. (b) ROC curve for 2011-18-04 for calibration
and test windows of 155 days; (c) evolution of AUC for the two models for calibration and
test windows of 155 days; (d) heatmap of the difference between the average AUC of the two
discrimination variables ∆ and |Φ | for different calibration and test window lengths.
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Extended Abstract

How money flow among users of Bitcoin is an interesting question in order to under-
stand the dynamics on the complex network of Bitcoin transactions among users. We
employ the data of blockchain in the Bitcoin from 2013 to 2018 (compiled by a Hungary
research group [3, 2, 1]), utilize a simple algorithm [4] to partially identify anonymous
users from addresses, and construct snapshots of temporarily changing network with
the users as nodes and the transactions as directed edges. The nodes are selected as ”big
players” by a certain criterion about the amount of money involving those nodes. In
order to understand (1) circular flows and (2) upstream/downstream in the entire net-
work, we use the so-called Hodge decomposition (or Helmholtz-Hodge decomposition)
to uncover the structure of (1) and (2). We can find about which big players are located
at upstream and downstream side of money flow, how circular flow is present among
them, and possibly how such dynamics is related to the exchange market of Bitcoin.

Results: Topology in terms of the so-called “bowtie” structure is given in Fig. 1.
The “core” (strongly connected component) is relatively small, with a similar size as
the “IN” and “OUT”, nodes reachable to and from the core, respectively. Note that the
maximum shortest distances from the core to IN and OUT are surprisingly large. Flow
in terms of the Hodge potential is given in Fig. 2. Probability distribution has heavy
tails at large positive values (upstream) and small negative values (downstream) (see
left figure). Also one can observe that each node’s potential can quantify the location in
the upstream/downstream of the flow (see right figure).

Appendix: method of Hodge decomposition

Consider a directed network with an adjacency matrix Ai j, i.e.

Ai j =

{
1 if there is a directed edge from node i to node j
0 otherwise

(1)

Aii = 0 by assumption. Denote the number of nodes by N. Define a flow Fi j by

Fi j = Ai j−A ji (2)
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Fig. 1. Daily flow of Bitcoin cryptocurrency (sample of October 10, 2017) in terms of the so-
called “bowtie” structure, namely strongly connected componet (“core”), nodes reachable to the
core (“IN”), nodes reachable from the core (“OUT”), and the rest of nodes (“Tendrils”). IN and
OUT can be regarded as upstream and downstream of the flow.

Fig. 2. Left: Probability distribution of Hodge potentials for all the nodes. The average of all the
potentials is zero by definition. Right: Each node’s Hodge potential (horizontal axis) and shortest
distance from the core (strongly connected component).
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and a weight wi j by
wi j = Ai j +A ji (3)

Note that wi j is symmetric:
wi j = w ji (4)

and non-negative in the sense that
wi j ≥ 0 (5)

for any pair of i and j.
Hodge decomposition is

Fi j = wi j(φi−φ j)+F (loop)
i j (6)

where φi is a potential of node i, and F (loop)
i j is divergence-free by definition, i.e.

∑
j

F (loop)
i j = 0 (7)

for i = 1, . . . ,N. From (6) and (7), given Fi j and wi j, one has a linear equation to deter-
mine φi:

∑
j

Li jφ j = ∑
j

Fi j (8)

for i = 1, . . . ,N. Here
Li j = δi j ∑

k
wik−wi j (9)

and δi j is Kronecker delta:

δi j =

{
1 if i = j
0 otherwise

(10)

Obviously, from the symmetry (4), Li j is symmetric:

Li j = L ji (11)

It is easy to extend the above procedure of Hodge decomposition for a binary di-
rected network to a weighted directed network. We apply the method to the Bitcoin
money flow among big players in order to identify which users are located in the up-
stream or the downstream parts of the network based on each user i’s Hodge potential
φi.
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1 Introduction

The realization that the global economic system is, and must be analyzed as, a complex
system is becoming common sense ([9], [10]). Many attempts have been recently made
to reveal how the microstructure of the economy affects aggregate outcomes, especially
in the field of intersectoral transactions ([1],[2]), interregional trade ([14]) or the bank-
ing system ([3], [4], [7]). In addition to these efforts, the structure of the global economy
as represented by different flows and connections between countries has also been on
the agenda for a while. Along this line, the study of international trade networks gained
special attention due to the easily available data and the importance of these economic
connections ([8], [15]). A vein within this literature argue that overall instability in the
complex global economic system and the 2008 crisis in particular is a result of increased
globalization and complexity of the underlying notworks ([16], [13], [11]). Apart from
investigating trade networks, attention is also directed towards how national economies
affect each other at the global level and how shocks propagate through the system of
the global economy ([12], [5], [6]). Also, interconnected risks in th eglobal economy
and cascades on this risk network has been analyzed recently ([17], [18]).

In this paper we augment the understanding of shock propagation in the global econ-
omy using network analysis. We construct a dataset reflecting the network of countries
where the ties show estimated contribution of economic changes (as measured by the
change in GDP) in one country to changes in the other. Using available longitudinal
data we have a dataset covering more than 40 years for 27 countries (allowing for a
long-term analysis) and a shorter period comprising the last 20 years for 40 countries
(which allows for a before-after analysis of the recent financial crisis). We estimate
shock propagation by (i) lagged correlation between GDP growth rates and (ii) esti-
mating Granger-causality on GDP growth rates. The long time coverage allows for a
dynamic evaluation of the world economy through the lense of contagion as well as
analyzing snapshots around the recent economic crisis in 2008-2009. Using our dataset
we try to answer the following questions:

– To what extent did the contagion structure of the world economy change over the
past decades? Can we detect a sign of globalization in this respect?
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– Is the recent crisis a special event with regards to its consequences on the topology
of contagion, or does it fit into the pattern of previous turmoils?

– What are the central countries with respect to contagion and does this position
correlate with their openness?

2 Results

In order to investigate the previous questions, we used a rolling window of subsamples
on our 40 year long panel of GDP growth rates. Every time window consisted of 52
quarters which allows us to estimate Granger-causality (ensuring also stationarity of
the within-time-window series). From the estimated causalities we mapped a contagion
network where a tie exists if the GDP growth rate of country A Granger causes the
GDP growth rate of country B. Rolling these 52 quarters time window through our total
sample, we are able to show the evolution of this contagion network over time. Figure
1 shows how the density of this contagion network changed over time, as measured by
the ratio of observed links to the possible number of links in the network. It is easy
to observe that (i) there is a positive overall trend in the density which underlines the
increasingly complex nature of the global economic system and (ii) the recent crisis had
a huge effect on the network structure.

Fig. 1. The evolution of the density (number of observed connections over the possible number
of connections) of the global economic contagion network, based on Granger causality. The hori-
zontal axis depicts rolling time windows: one tick corresponds to a time window of 52 quarters on
which Granger causality is estimated. Different colors reflect estimations at different significance
levels.

Using the dataset with 40 countries in the last 20 years, we run an analysis where we
analyze the differences between the before-, under- and after-crisis periods with respect
to the recent financial crisis in 2008 and 2009. An inspection of the structure of these
snapshot of the contagion network reveals that central countries are different from in
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the three periods. It is also interesting that large countries does not necessarily come up
as central ones in this network.

Finally, we run an analysis where three centrality measures (degree, betweenness
and PageRank) were correlated with a measure of economic openness (share of exports
and imports in GDP) of the countries. The results show that there is a clear positive
relationship between openness and centrality in the contagion network, i.e. the extent
to which countries are transmitters of shocks in the global economy. This pattern was
overrun by the turmoil in 2008-2009 rendering the relationship insignificant, but since
2010 the positive correlation is visible again (refer to Figure 2 for scatter plots of Page
Rank centrality versus openness in the periods before and during the crisis – after crisis
patterns are similar to those before the crisis).

Fig. 2. Correlation between closeness (horizontal axis) and page rank centrality (vertical axis)
before and during the 2008-2009 crisis.

Summary. In this paper we used a longitudinal dataset to shed light on the evolution of
the contagion network across national economies of the world. Using lagged correlation
and Granger-causality test we constructed a dynamic network of ties representing shock
contagion across economies. The analysis of this network reveals that the contagion
network become increasingly dense over the past decades, evidencing the increasingly
complex nature of the global economy. Also, we found that the 2008-2009 crisis had
an outstanding effect on this network by increasing its density. Finally, we have shown
that centrality within this contagion network correlates with economic openness.
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1 Introduction

Stock cross-holding was used to prevail over listed firms in Japan. Such a conventional
capital transaction method is fading away under the governmental guidance. However,
the corporate ownership is still so complicated because listed firms are interconnected
through holding shares one another in a multilateral way. The objective of this study is
to shed empirical light on the “Who possesses whom” structure making full use of the
latest methods in network science.

2 Ownership Network

Fig. 1. Bow-tie diagram of the Japanese
ownership network in 2009. The figure
associated with the designation of each
component is the number of nodes in
it and the figure in the parentheses, the
number of listed firms among them.

Here we use the major shareholder database
compiled by Toyo Keizai Inc. [1] during the pe-
riod from 1985 to 2009. The proprietary database
provides us with the top 30 (20 before 2002)
shareholders’ information for all listed firms in
Japan. From the database we construct a directed
network each year in which firms and share-
holders constitute nodes and ownership relations
from shareholders to firms, directed links with
the proportionate fractions of the market capital-
ization value of firms as their weights. Note that
the results shown below are those obtained for
the data in 2008.

Figure 1 depicts the bow-tie structure [2] of
the Japanese ownership network in 2008. The
network has a giant strongly connected compo-
nent (GSCC) to which about one third of listed
firms belong. Any pairs of nodes in the GSCC are
connected in both ways, that is, the two nodes are

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



on a loop of ownership. The GSCC thus represents multilateral cross-holding, making
the ownership relations obscure.

To resolve the fundamental issue stemming from the existence of the GSCC, we in-
voke on the Helmholtz-Hodge decomposition [3]. It uniquely breaks up the flow struc-
ture on a directed network into gradient and circular flow components. The gradient
flow component illuminates the hierarchical structure in the GSCC; the multilateral
cross-holding embedded in it is totally canceled out by the circular flow component.
Although a number of works have already been carried out to elucidate the stock own-
ership structure at a country level and on a global scale, the use of the Helmholtz-Hodge
decomposition distinguishes this work from the previous ones.

3 Ultimate Owners of Firms

Fig. 2. Demonstrative hierarchical
network describing how to compute
the ultimate ownership.

Once we replace the flow structure in the GSCC
with its gradient flow component obtained by the
Helmholtz-Hodge decomposition, we can trace the
stock holding relations of a given listed firm back
to its ultimate owners. The procedure is schemati-
cally shown in Fig. 2, where the target firm, num-
bered as 7, is assumed to be worth 100 in some mon-
etary units and its value is ultimately ascribed to firm
1, firm 2, shareholder of firm 3, and shareholder of
firm 5 according to the proportional division.

To characterize the shareholders’ distribution,
we divide the nodes in the ownership networks into
the following seven categories: 1) Japanese listed
firms in financial sector, 2) Japanese listed firms
other than in financial sector, 3) the rest of Japanese
firms, 4) overseas firms, 5) employee stock owner-
ship, 6) executives, and 7) others. We then quantify
the difference between the distribution, p = (p1, · · · , p7) with p1 + · · ·+ p7 = 1 (0 6
pk 6 1), of the original owners and the distribution q of the corresponding ultimate
owners for listed firms using the normalized L2 distance defined by

d(p,q) =
‖p−q‖2

‖p‖2 +‖q‖2 6 1, (1)

where d(p,q) takes its maximum when the two vectors are orthogonal.
The results are summarized in Fig. 3. Here the median of d(p,q) is listed for each

industry as a representative value of the difference between the two distributions to get
rid of outliners. We see that the constitution of the ultimate owners in industries such
as shipping, steel, transportation equipment, mining, and air transport are significantly
different from that of the primary owners. This is because firms in those industries are
mainly located on downstream side in the ownership hierarchy.
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4 Hierarchical Market Value

In the course of computing the ultimate ownership, we have devised a new measure for
evaluating firms from the market values. We recall Fig. 2. For instance, firm 3 can be
regarded as a partial owner of firms 4 through 8, which are firms sitting at lower posi-
tions in the hierarchical ownership tree. We coin hierarchical market value to refer to
such hierarchically accumulated financial assets of a firm. Figure 4 compares the hier-
archical market values for listed firms with their actual market values calculated from
the current stock prices and the total numbers of issued shares. Remarkably, we find
a non-negligible number of extraordinary firms whose hierarchical market values are
comparable to or even higher than the corresponding actual market values. Those may
be hidden firms for which the market overlook their additional value yielded through the
complicated ownership network, or large firms suffering from conglomerate discount.
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Summary. We have analyzed the stock ownership relations in Japan from a network
theoretic point of view. The Helmholtz-Hodge decomposition eliminates the circular
ownership relations to allow us to determine the ultimate owners of listed firms. Also
we have devised a new measure to evaluate value of firms by taking advantage of the
computation of the ultimate ownership. This work was supported by Nomura Founda-
tion and JSPS KAKENHI (17KT0034, 18K03451).
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1 Introduction

Fire sales in financial markets play a crucial role in initiating and deepening financial
crisis. If an important financial institution (hereafter bank), like Lehman Brothers, col-
lapsed, the financial assets held by the failed bank would be sold (i.e., liquidated) in the
financial market to repay its debts to the creditors. The sales of financial assets cause the
prices of the assets to go down, which could in turn lead other banks to default because
of the capital losses they incur through overlapping portfolios. This feedback between
bank defaults and decline in asset prices can be considered as cascading failures on a
bipartite network where nodes are banks and financial assets and edges represent the
asset holdings (i.e., portfolios) of banks (Fig. 1(a)).

(b) Bank dynamics (binary state)
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Fig. 1. Schematic of fire sales. (a) Bipartite network of banks and financial assets. Edges represent
the asset holding of banks. (b) Dynamics of binary bank state. S and I stand for solvent and
insolvent, respectively. (c) Dynamics of asset price. Each asset takes one of the s discrete values
(i.e., asset prices), depending on the fraction of defaulted banks among all the banks that hold the
asset.
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Over the past decade, many attempts have been made to characterize fire sales by
simulating a threshold model on a bipartite network [1–3]. However, unlike the stan-
dard threshold models [4], it is difficult to solve the model of fire sales in an analytical
manner for two reasons; First, in practice, the prices of assets can take any positive
value. The multistate property of asset prices prohibits us from exploiting the solution
methods that have been developed for the standard binary-state cascade models [4, 5].
Second, there are two types of nodes, banks and assets, whose possible states are intrin-
sically different. While asset prices can take continuous values, the state of each bank
is binary, namely solvent or insolvent. Due to these difficulties, previous studies on fire
sales based on a model of asset-bank bipartite network rely on numerical simulations [1,
3, 6].

Here, we offer a model of multistate contagion to study fire sales, namely the inter-
action between bank defaults and asset price declines, in an analytical manner. To do
so, we attempt to capture the continuity of prices as a limit of multistate cascades on
bipartite networks [7, 8].

2 Model

In the model, each bank takes one of the two states: solvent (S) or insolvent (I). A bank
changes its state from solvent to insolvent if the total loss exceeds rb (Fig.1(b)). Asset
price p takes one of the s values: p ∈ {1,(s− 1)/s,(s− 2)/s, . . . ,1/s}. An asset price
becomes 1− i/s if the fraction of insolvent banks among all the banks that hold the
asset exceeds ra

i (see, Fig. 1(c)), where

ra
i = 1−

[
1−
(

i
s

)α] 1
α

, i = 0,1, . . . ,s−1. (1)

α is a parameter that modulates the elasticity of asset prices.

3 Results

To investigate the model analytically, we extend the theory of multistate dynamical
processes [7, 8] to a model of complex contagion with heterogeneous states. Specifi-
cally, we use an approximation technique based on the approximate master equation
(AME) [8] to simultaneously calculate both the expected fraction of banks that are
defaulted due to cascading declines in asset prices and the shares of assets in state
i = 0, . . . ,s−1.

The average final fraction of insolvent banks calculated by our method is shown in
Fig. 2. The figure reveals that our theory matches the numerical result fairly well. By
increasing the mean number of assets held by a bank, z, the possibility of global default
cascades begins to rise continuously at z ≈ 2.8. By increasing z further, the possibility
of global cascades then disappears in a discontinuous manner at z ≈ 4.5. Our theory
well captures these two different kinds of transitions.
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Fig. 2. Theory and Monte Carlo simulations for the configuration model with N = 4000 banks
and M = 8000 assets. Crosses denote the size of global cascades (i.e., fraction of insolvent banks)
averaged over 10 numerical simulations, conditional on more than 5% of banks being insolvent.
The solid line represents the fraction of insolvent banks in theory. We set the number of asset
states at s = 5, the elasticity of asset price at α = 0.8, and the threshold of bank default at rb =
0.15. At t = 0, a fraction ρ0 = 0.001 of banks are insolvent and all assets are in state 0 (i.e.,
p = 1).

4 Summary

In this work, we offer a model of multistate contagion to study the interaction between
bank defaults and asset price declines in an analytical manner. We present an analytical
approach by extending the theory of multistate cascades [7, 8] to a model of complex
contagion with heterogeneous states. The advantage of our approach is twofold: First,
as the number of states for asset prices increases, the analytical result can better describe
continuous prices. Our method could therefore save a considerable computational effort
to calculate the true cascade size. Second, our model allows to derive analytical cascade
conditions with which we can identify the parameter region that would lead to global
cascades.
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1 Introduction

Cryptocurrencies are distributed systems that allow exchanges of native tokens among
participants [1]. The availability of their complete historical bookkeeping opens up the
possibility of understanding the relationship between aggregated users’ behavior and
the cryptocurrency pricing in exchange markets. Here we analyze the properties of the
transaction network of Bitcoin over a period of nine years since the Bitcoin creation
and involving 16 million users and 283 million transactions. To this aim, we consider
both the User Network and the Address Network representations at two different time
scales (i.e. daily and weekly). Addresses are pseudo-anonymous alpha-numeric strings
which are public signs on every transactions to establish bitcoin ownership, users are
clusters of addresses produced after heuristic rules inferred by the bitcoin protocol[2].
By analyzing these networks, we show the existence of causal relationships between
Bitcoin price movements and changes of its transaction network topology.

2 Results

Stylized facts While the number of nodes and links increases with time, link density
has a steady decrease: regardless of the considered representation the networks become
sparser over time, as a consequence of the the average degrees being tightly bounded
around 10 over the whole period considered.

The degree distributions are heavy-, right-tailed: a vast majority of nodes with low-
degree coexists with few hubs, in line with the disassortative empirical evidences of
all representations. We investigate the power-law nature of the networks by employ-
ing a double Kolmogorov-Smirnov statistical test [4]. The out-degree distribution bore
the most interesting results: the power-law hypothesis cannot be refused (with a .05
confidence) in 54% cases before 2014 and drops to 26% afterwards.
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The two regimes Studying the standard deviation of the degree distributions evolution
over time, two different regimes emerge before and after 2014. In the first period the
degree distribution tends to be sharper during price surges and wider during the price
drawdowns, while after 2014 all moments tend to become larger in value. Our interpre-
tation is that in Bitcoin beginnings a sort of herding mechanism was identifiable: when
many users behave similarly (low standard deviation and skewness) price increases;
when the price peak is crossed (i.e. a drawdown starts) individuals connectivity gets
more heterogeneous, widening the degree distribution. After 2014 the situation gets
less readable, and it’s harder to relate the moments to the prices : 2014 stands out as
a natural threshold year for in February the in-famous Mt.Gox happened, triggering a
huge price drop and fostering a dramatic change in Bitcoin ecosystem.

Reciprocity seems to evolve in a similar way: until 2014 it is highly volatile, oscil-
lating between 0.01 and 0.05 and showing an interesting overlap with the Bitcoin price
bubbles identified in [5]. After 2014 it revolves around a 0.02 slowly descending to an
all-time low of less than 0.01 around the end of the well known 2017 bubble.

Networks on price Price on networks E ects in the tails
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Fig. 1. The Granger causality tests results. From the left: effects in mean of network variables on
price returns (A,D), effects in mean of price returns on network variables (B,E), mutual effects
in tail between network variables and price returns (C,F). The tests are performed on the four
network representations, where AN stands for addresses network and UN for users network.
Thickness of the lines shows the magnitude of the effect.y

Causality analysis We performed a Granger causality test[6] over the two sub-samples
induced by the two degree distributions regimes (before and after 2014), in order to
investigate the mutual influence of network variables and price dynamic(represented by
the log return of the BTC-US dollar price).

As a result we identify two different feedback-loops in action. On a weekly scale
the number of nodes growth leads to a increase in the Bitcoin price, which in reverse
leads to an increase in the number of nodes, in a slow feedback mechanism over several
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weeks. On the other hand, an increase in the out-degree kurtosis leads to a price increase
on the weekly timescale, which by the first loop causes the number of nodes to increase.
Observing that the number of nodes and the out-kurtosis are positively correlated, we
are able to close the second loop, which although being weaker, has interesting conse-
quences. By the Granger tail analysis[7] we find out that abnormal sudden increase in
the out-kurtosis actually causes price abrupt decrease: a possible explanation for the fre-
quent crashes of 2014 is given by the second feedback loop reaching an unsustainable
growth rate, leading to violent mean reversions in the market.

3 Summary

Our results distinguish two different phases in the evolution of the Bitcoin ecosystem.
Especially in the first period, we detect topological hints of an herding mechanism
driving BTC-US dollar price in a repetitive course of steady surges and fast crashes.

Focusing on the growth mechanisms, we identified feedback-loops between BTC-
US dollar price and some structural properties of the Bitcoin network.
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1 Introduction

Value of firm is a monetary representation of how well a firm is doing its business,
and is recognized as one of the important indicators in management judgment of firms
and investors. There are several ways to express value of firm, one of which is stock
price. The stock price is considered to reflect the future profitability of the firm and the
value of the assets held. Since firm assets include stock assets, if firm B has shares in
firm A, it can be considered that the shareholders of firm B will indirectly own part
of value of firm A. Such a relationship is actually a very complex network, and it is
not obvious who is the true holder of corporate value. So, we attempt to clarify the
structure of stock ownership by empirically analyzing the network constructed from
Thomson Reuters global equity ownership data, which is a proprietary database daily
financial transactions of firms over the world.

2 Data and Methods

From Thomson Reuters global equity ownership data in 2017, we constructed the stock
ownership network with firms and shareholders as nodes and stock ownership relation-
ships as links. The direction of the link coincides with the direction of ownership (from
owner to stock issuer), and the weight is the current price of shares of the owner. We
deal with only the largest connected component (96.7%). The network constructed in
this way is a weighted directed network with 203,182 nodes and 4,295,669 links. To
elucidate flow structure in the network, we begin with a bow-tie decomposition of the
network as has been widely used to understand the structure of various complex net-
works. The decomposition classifies nodes in a directed network according to the way
in which they are mutually connected. Table 1 shows the results of the bow-tie decom-
position. Basically the network is hierarchical as it should be. However, we note that
there exists a giant strongly-connected component (GSCC). Although the GSCC con-
stitutes only 1.6% of the whole network, it occupies the central core of the network
as shown in Fig. 1 below. Furthermore, the GSCC, in which any pairs of nodes are
connected in both ways, contains loop flows and hence gives rise to complexity in the
ownership relations.
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To unfold such entangled ownership relations, we adopt the Helmholtz-Hodge de-
composition [1, 2] which decompose the network flow into hierarchical and circular
flow components. The Helmholtz-Hodge potential of nodes in a directed network iden-
tifies their hierarchical positions in the flow structure. In contrast, the circular flow com-
ponent illuminates feedback loops built in the system.

Table 1. Bow-tie components
IN 43,704 (21.5%)
IN tendril 5,716 (2.8%)
GSCC 3,168 (1.6%)
OUT tendril 96,791 (47.6%)
OUT 9,163 (4.5%)
Tube 2,701 (1.3%)
Other 41,939 (20.7%)
Total 203,182 (100%)

We estimate the indirect ownership relationship by
the way as follows. Suppose the firm A has 50% of the
firm B’s stock, and the firm B has 50% of the firm C’s
stock. At this time, it is considered that the firm A holds
50% of the value of firm C owned by the firm B, and
finally holds 25% of the value of firm C. In this way,
it is traced which shareholder finally holds the value of
the firm. We call the owner who finally owns the cor-
porate value of a company ultimate owner of that com-
pany. However, since the calculation may not converge
if the network contains loops, we use Helmholtz-Hodge
decomposition for removing the loops. Removing loop
flow components obtained by Helmholtz-Hodge decom-
position makes the network completely hierarchical.

3 Results and Discussion

Figure 1 shows the whole network and GSCC visualized in 3D space. The GSCC is
mainly occupied by nodes belonging to Japan and the United States (Japan 69.4%,
the United States 21.3%), and the United States stands hierarchically higher position
among these countries. The reason is that there are 17,083 links from the United States
to Japan in the GSCC, whereas there are only 42 links from Japan to the United States.
In addition, there is a difference of about 100 times in the total weight. This kind of
hierarchical position bias is not limited to Japan and the United States. Figure 2 shows
the comparison of direct holdings and ultimate holdings in G20 countries. The ultimate
holdings increase as compared to the direct holdings for countries such as Italy, Ger-
many and Canada, and vice versa for Japan, South Africa and Argentina. These results
show that the ultimate owners, determined by taking into around the indirect effects of
share ownership, are significantly different from the direct owners even at the country
level, and provide a new perspective on corporate value. In some countries,

This work was supported by Nomura Foundation and JSPS KAKENHI (17KT0034,
18K03451).
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Fig. 1. Visualized in three-dimensional space with different points of view. Nodes are aligned in
the z direction according to their values of the Helmholtz-Hodge potential; basically, flows from
top to bottom. On the other hand, the x and y coordinates of nodes are determined by the energy
minimum principle with a spring-electric model. Left and middle panels are whole network, and
right panel shows only GSCC.

Fig. 2. Comparison between ultimate and direct owner. The left panel shows the amount owned
of the direct (black) and ultimate owner (ash) for each G20 country. The right panel shows the
rate of increase of amount owned of ultimate owner compared to the direct owner for each G20
country.
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The aim of this work [1, 2] is to study firms’ technological portfolios using tools bor-
rowed from complexity and network science. In particular, we analyze the relationship
between the coherence of such portfolios and firms’ performance, and we show that
such tools can be also used to make specific predictions about firms’ patenting activity.
The first issue we investigate is whether the accumulation of knowledge and capabilities
related to a coherent set of technologies leads firms to experience advantages in terms of
productive efficiency. We analyzed both the balance sheets and the patenting activities
of about 70 thousand firms that have filed at least one patent over the period 2004-2013.
Each patent contains a number of codes that identify the respective technological sec-
tors. We then define a network of technological sectors, whose links are obtained by
counting the co-occurrences of the respective codes in companies’ portfolios, and then
normalizing such countings in a suitable way. The general idea is that two nodes will be
close if many companies are patenting in both sectors, and so co-occurrences are used
as proxies of the presence of common capabilities.
The network structure can be used to study firms’ patenting strategy. More specifically,
we introduce firms’ coherent diversification, a quantitative assessment of each techno-
logical portfolio that counts the fields in which a firm is active weighting them with
their coherence with respect to the firms global knowledge base (see Figure 1). Such
a measure favors companies that patent following blocks of closely related fields with
respect to companies with the same breadth of scope, but more scattered, or incoherent,
portfolios. In this sense, coherent diversification contains both a diversification element,
being correlated with the simple counting of sectors, and a specialization element, be-
ing based on the idea that technological portfolios should focus on related sectors (those
that are close to each other in the network).
We find that our measure of coherent diversification is quantitatively related to eco-
nomic performance. In particular, we prove on a statistical basis that it explains labor
productivity better than standard diversification.
As a second step, we study the time evolution of firms’ technological portfolio. We
show that by leveraging the concept of coherence we are able to forecast the techno-
logical sectors in which a specific company will patent in the next years. Moreover,
studying specific data regarding merging and acquisitions, we show that companies are
willing to pay more for those acquisitions that include technological fields that are co-
herent with respect to their actual patenting activity.
In conclusion, there is empirical evidence that this evaluation of technological portfolios
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captures relevant information about the productive efficiency and the future patenting
activity of firms. As a consequence, it can be also used to investigate possible synergies
within firms and to recommend viable partners for mergers and acquisitions.

Fig. 1. Schematic illustration of how the intra-firm coherence of technologies may change when
two different companies (one on the left, one on the right) are considered. The opaque triangles
indicate technological fields in which the two firms hold patents. The two have the same techno-
logical diversification, however, the fields in which firm 1 is active are all close in the network,
while the portfolio of firm 2 is scattered through the graph. As a consequence, the same technol-
ogy t1 is coherent with the portfolio of firm 1 (on the left), and not firm 2 (on the right). Such
increase of coherence is visualized using the concentric orange circles.
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Summary. The British party system is known for its discipline and cohesion, but it
remains wedged on one issue: European integration. This was observed both in the
days of the EEC in the 1970s and the EU-Maastricht treaty in the 1990s; This work
aims to investigate whether this holds true in the Brexit era. We utilise social network
analysis to unpack the patterns of dissent and rebellion among pairs of MPs. Using data
from Hansard, we compute similarity scores between pairs of MPs from June 2017 until
April 2019 and visualise them in a force-directed network. Comparing Brexit- and non-
Brexit divisions, we analyse whether patterns of voting similarity and polarity differ
among pairs of MPs. Our results show that Brexit causes a wedge in party politics,
consistent to what is observed in history.

The British party system is arguably one of the most successful in the world, and
many scholars consider the party discipline in the House of Commons as a model that
many Governments should follow [1]. Throughout its contemporary history, the strong
party values and ideologies that define its two main parties —Labour and Conserva-
tive—has lent credibility to the Parliamentary process, setting the landscape for the
effective implementation of policies in the British government. It is notable, however,
that the cohesion and unity in the modern British party system is persistently wedged by
one issue, which is that of European integration [2, 3]. We analyse the voting records of
the MPs during the 57th parliment and quantify within party conflicts and cross-party
alliences based on voting similarity score (see Figure 1).

We show that Brexit is consistent with the other issues of European integration in the
past, in that it creates a wedge in Parliament. We report that there is a strong disparity in
MP voting on Brexit divisions compared to non-Brexit. The network analysis showed
that while there are two distinct (ideology) clusters on both the Brexit and the non-
Brexit case, the inter-connectivities across these clusters differ significantly. In non-
Brexit divisions, it is almost certain that MPs follow the party rhetoric, and defying the
party whip is largely negligible. As demonstrated by the network visualisation, most
cross-party alliances happen within one cluster only and rarely does it ever cross to
the other side. Meanwhile, within-party conflicts are also very minimal. On the other
hand, in the Brexit divisions, there was a visible blurring of the party line, and cross-
cluster interaction is obvious and apparent. There exists strong repulsion across various
node pairs, and while in the non-Brexit case, cross-party alliances only happen within
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Fig. 1. Network projection of dissent and rebellion for non-Brexit (top) and Brexit (bottom) divi-
sions, for the 8 political party case. Each node denotes an MP, connected by an edge to another
MP. The colour of the edge represents whether the connection is a repulsive (pull) or attractive
(push) force. Node colours denote party affiliation.
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a cluster, it is evident that in the Brexit case, cross-party alliances could happen across
two clusters that intuitively have polarised ideological beliefs.

We are able to focus on the results at the node level which allows us to investigate
the MP’s identified as rebels. We found that these MPs were the subsequent members
of the breakaway party Change UK, a few notable MP ”troublemakers” and some MPs
who were faced with a moral decision to either support their party lines, or their people’s
vote.

In Figure 2(top), we replicate the visualisation of the two-ideology network, how-
ever with greater emphasis on the MPs that were identified as rebels.

Fig. 2. Upper panel: The rebels as identified by the network projection. The node colour repre-
sents ideological position: red for Left-wing; blue for Right-wing. Lower panel: The identified
rebels using visual inspection, and rebellion score (highlighted in yellow).
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1 Introduction

Multiparty parliamentary democracies are characterized by government formation pro-
cesses that are often complex and protracted [1, 2]. Indeed a candidate cabinet needs the
confidence of the parliament to rule, which implies that if there is no clear winner after
the elections (i.e., no political party has secured a majority in the parliament) then a ne-
gotiation process has to start between the parties in order to achieve a coalition cabinet
backed by the majority of the parliament.

In this work we consider the parliamentary elections in a total of 29 European coun-
tries, in a time interval that goes from 1978 to 2019. Differently from previous works [3,
4], we want to bring a new signed network perspective in the analysis of the government
formation process, which we describe as a nonlinear model for decision-making [5–7]
over signed networks: our aim is to predict both the duration of government coalition
talks and the successful cabinet coalition outcome of the negotiations. We show that
when the frustration (i.e., the amount of “disorder” [8]) encoded in the parliamentary
network is high, then the period of negotiation talks between the parties will be long,
with average values of correlation (duration of negotiation talks vs frustration) ranging
from 0.42 to 0.68, depending on the amount of information encoded in the edges of the
signed graphs. Moreover, the accuracy of our predictions on the cabinet composition
after the elections ranges between 68.4% and 80.4%.

2 Methods

A parliamentary network is a graph where each node represents an elected Member
of Parliament (MP). We assume that the network is complete, undirected and signed:
each pair of MPs is linked by a (weighted) edge, whose sign represents the relationship
between the two, cooperative (positive weight) or competitive (negative weight). If we
gather all the MPs from the same political party in a single cluster node (assuming
homogeneous party behavior), we obtain a clustered network G , which translates into
the adjacency matrix A of the network being a block matrix, as can be seen in Figure 1A.
To construct the adjacency matrix we consider three scenarios, representing different
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party grouping criteria and weight selection methods. I: unweighted “all-against-all”
networks, that is, ai j ∈ {−1,+1} with ai j = +1 only if the MPs i and j belong to the
same party, see Fig. 1A. II: weighted according to the left-right position of each party in
the political spectrum given by their electoral manifestos (the so-called “rile” index [9]),
a positive weight is assigned between parties which formed a pre-electoral coalition. III:
weighted according to a randomized and optimized left-right position, and pre-electoral
coalitions. For each country and election, the signed parliamentary networks we obtain
are in general not structurally balanced. Their frustration is calculated according to

ζ (G ) =
1
2

min
S=diag{S1,...,Snp}

Si=±1·Ici

∑
i, j 6=i

[|L |+SL S]i j, (1)

where | · | indicates the absolute value, L = I − (diag{|A|1})−1A is the normalized
signed Laplacian of the network, np is the number of parties in the parliament, ci is the
number of seats won by the i-th party and S is a diagonal signature matrix (“spin” of
the MPs). Our predicted government coalition, denoted Pbest,maj, is given by the group
of parties achieving a majority in the configuration Sbest yielding the minimum in (1).
Let Pgov be the party coalition obtaining a confidence vote for the same election. The
following index (here card(·) indicates the cardinality of a set) evaluates the overlap
between our prediction and the cabinet formed after the election

ρgov =
card(Pbest,maj ∩Pgov)

card(Pgov)
. (2)

3 Results

For the 29 European nations of Fig. 1B, data for number of seats and position in the
left-right political spectrum for each party, “rile” index, pre-electoral alliances, compo-
sition of the government formed after the elections and negotiation days were collected
from various sources, such as WIKIPEDIA, the Manifesto Project Database [10], the
Parliaments and Governments Database [11], and the new Parline (IPU’s Open Data
Platform) [12]. As we see in Fig. 1B the frustration correlates well with the duration
of the government negotiation talks (calculated as the number of days from the gen-
eral election to the date the government is sworn in) with average values ranging from
0.42 in scenario I to 0.68 in scenario III. Similarly, we obtain that our estimates repre-
sent well the actual cabinet composition, with average values for the index ρgov varying
between 68.4% (scenario I) and 80.4% (scenario III).
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A

B

Fig. 1: (A): Constructing a parliamentary network (pi = political party) and the corresponding
adjacency matrix in scenario I: all parties against all parties and weights equal to +1 (blue) and
−1 (red). (B): Results for the 29 countries and three scenarios (average values are reported above
the plots). (left): Correlation between frustration and duration of government negotiation talks.
(right): Index ρgov, i.e., overlap between predicted cabinet and party coalition in the government.
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Chilean presidential elections, using Twitter Data
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1 Introduction

During election periods electoral analysis are common, usually via surveys, and maybe
attempting to some kind of electoral forecast or prediction. In this work, we propose a
new way to observe the political scene by using Twitter Data to build a complex net-
work and using the weighted and non-weighted eigenvector centralities to measure the
influence of each candidate before the election. This will not give us a prediction as
such, but yield us important information about the analyzed system.
The proposed model consists of building a complex network from the interaction be-
tween Twitter users. The nodes of the complex network are Twitter users, and these are
connected if they are mentioned or replied to each other. Also, the frequency of inter-
action between users is taken as the link weight.

We chose to analyze the Chilean presidential elections of 2017 which had the fol-
lowing key dates. August 21st: the electoral campaign period began, September 20th:
the electoral propaganda period began; November 19th: first-round election, and De-
cember 17th: second-round election.
Using the scrapper GetOldTweets3 we downloaded Twitter data from August 21st of
2017 to December 20th of 2017, that is, from the start of the electoral campaign period,
until a few days after the second round election. In particular were downloaded every
tweet issued by the presidential candidates accounts, and every tweet that mentioned
such accounts, or replied to them. Following we show the candidates names and their ac-
counts: Eduardo Artés (@eduardo artes), Marco Enriquez-Ominami (@marcoporchile),
Carolina Goic (@carolinagoic), Alejandro Guillier (@guillier), José A. Kast (@josean-
toniokast), Alejandro Navarro (@senadornavarro), Sebastián Piñera (@sebastianpin-
era), and Beatriz Sánchez (@labeasanchez).
In total, 605201 tweets were downloaded from 114761 different Twitter accounts.

Then, the Python module NetworkX was used to build the complex network during a
given timeframe, calculate metrics for that timeframe, and follow the temporal evolution
of such metrics. Specifically, we take time windows of 7 days length, moving in steps of
one day. This in a similar way as in [3], but with larger networks that overlap each other.
For each timeframe, we calculated the nodes degree, strength, eigenvector centrality,
and the weighted eigenvector centrality.
We chose to calculate both eigenvector centralities as a measure of the importance or
influence of each node (that is, of each Twitter user [4,5]) since we want to consider
the indirect influence of nodes over the entire network, and not only over their first
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neighbours. In particular we analyzed them for each candidate node.
The eigenvector centrality [1,2] can be calculated as

A = λx

where A is the adjacency matrix, λ its greater eigenvalue, and x its respective eigenvec-
tor. Then, the centrality for the vth node is the vth entry of the eigenvector x.
The Weighted version of the centrality is defined in a similar way, but using the weighted
matrix instead.

2 Results

The following figures show the evolution of the eigenvector centrality and the weighted
eigenvector centrality starting from the begin of electoral campaign period to the first
round election day. We call this the first period.
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Fig. 1: Weighted and non-weighted wigenvector centrality measured in 7 days timeframes, mov-
ing with one day step, in the first period. The x axis shows the first day of the current frame.

We can observe that Twitter Data give us an interesting interpretation of the political
scene, not too far from the reality. In fact, as the date approaches the election day, the
order that the candidates centrality looks more like the order of the candidates in the
election [6].

Then we consider the complex network in a second period, from the first round
election day to December 20th, getting the following figures.
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Fig. 2: Weighted and non-weighted eigenvector centrality measured in 7 days timeframes, moving
with one day step, in the second period. The x axis shows the first day of the current frame.

In this period, the weighted centrality is more representative of reality because Ale-
jandro Guillier, who also passed to second round election, shows a competitive score
against Sebastian Piñera. Instead, in the non-weighted centrality he appears to not re-
main in competition. On the other hand, Sebastian Piñera near the first round election
day, and then, in every moment previous to the second round election (Dec 11 frame),
is the user with higher centrality, also he got the greatest amount of votes in both elec-
tions. Indeed, he finally got elected President of Chile.
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1 Introduction

Governance requires massive, decentralized and coordinated information processing by
governments. Lawmakers must evaluate the state of the world, identify issues worthy
of government attention, prioritize among these issues, identify and evaluate plausi-
ble policy solutions, and then make a collective decision. In democratic systems, this
must all be done while incorporating the preferences of lawmakers’ constituents and
other interest groups who both hold private policy-relevant information, and also have
a stake in the outcomes of the governments decisions [11]. In the contemporary Amer-
ican context, lawmakers rely on a network of actors to gather and make sense of this
diffuse information, and the output of these actors serves as inputs to the policymaking
process.

As Bawn et al. articulate, we can understand political parties in the United States
as extended networks of policy demanding constituencies, organizations and interest
groups[1]. This theory is usually applied to the role these networks play in setting party
agendas or nominating and supporting candidates for elected office. To be sure, the
nomination and election process serves a fundamental role in identifying and prioritiz-
ing issues for government attention. However, I argue that policy research and planning
organizations, often called “think tanks,” serve the policy-apparatus of these extended
party networks of policy-demanders. As such, we should expect them to coordinate
along ideological dimensions in their attempts to support and influence partisan and
ideological lawmakers[8]. While think tanks have been largely overlooked by scholars,
recent work has begun to address their role in American Politics. What Think tanks
pay attention to reflects partisan issue ownership[3]. Both think tank’s ideological per-
spective and proximity to power shape how their work is used by Congress[6]. More-
over, congressional staffers both disproportionately trust policy evidence from partisan-
aligned think tanks[4], and are more likely to favorable evaluate petitioners presenting
evidence from aligned think tanks[5].

This paper is an inductive look at how these central—yet understudied—actors in
the American political landscape coordinate among themselves. I conduct the largest
mapping of the Washington D.C. think tank ecosystem to date[2]. Following an ap-
proach common in organizational sociology, I leverage interlocking directorates of or-
ganizations to examine patterns of organizational coordination[7]. Two organizations
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are said to have an “interlock” between their directorates when one (or more) people sit
on the boards of both organizations. This signifies a strong organizational tie between
these two groups. I construct and analyze the board interlock network for 277 Washing-
ton D.C. based organizations, those with average annual budgets over $100,000 which
are classified as subtype “Research Institutes & Public Policy Analysis” according to
the IRS’ National Taxonomy of Exempt Entities (NTEE) system. I obtain memberships
of the board of directors for these organizations using from IRS Form 990 disclosures
for 2008-2015 from GuideStar.

While I expect a priori that organizations will be more likely to foster ties with
other organizations that are ideologically aligned with them and those that have access
to greater financial resources, I do not have strong prior beliefs about the direction or
magnitude of the relationships between other dyadic and organizational factors and the
probability of connection. Common explanations for strategic interlock in the corporate
context include preferences for diverse connections to increase information gathering
breadth, and preferences for connections to other similar organizations to monitor com-
petition, or engage in collusion[7]. Similar explanations map to this case: Organizations
may seek to build cross-issue coalitions increasing the scope of their information net-
works (issue heterophily), or they may choose ties within their local issue space to
increase efficiency and avoid duplicated effort (issue homophiliy). Similarly, we might
imagine justifications for either homo- or heterophilic preferences in other dimensions
of organization type, like whether the organization engages in lobbying, has dues pay-
ing members, or hires contractors.

2 Results

In this section, I present the results of an Exponential Random Graph Model on the
think tank board interlock network shown in figure 1[9][10]. Edges are dichotomized to
code for the existence of an interlock tie between organizations. Convergence and fit of
this ergm model was good, but diagnostics are excluded from this abstract for space.

As expected, think tanks are substantially more likely to have interlocking boards
as the revenue of the organizations increase; particularly successful fundraisers appear
to be more attractive targets for interlock. Think tanks are less likely to be connected
to those that are ideologically more distant from them. However, the magnitude of this
effect is quite small (perhaps due to attenuation from measurement error induced by
substantial missingness in my ideology measure). On the other hand, organizations are
much more likely to interlock within their issue area (e.g. Medical Research; Agricul-
ture, Food, Nutrition; or International, Foreign Affairs, and National Security). Think
tanks are also more likely to interlock if they both engage in lobbying, and both en-
gage in contracting. One possible explanation for this is that contractors and lobbyist
may serve as potential vectors of informal relationships between organizations, which
ultimately facilitates later institutionalization via interlock. However, organizations are
substantially less likely to interlock if they both are membership organizations or are
both non-membership organizations. Instead, organizations connect to those that are
dissimilar along this dimension, suggesting that they find benefit in the differential ex-
pertise and resources that the other can provide. However, the amount of lobbying an
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Think Tank Board Interlock Network
Exponential Random Graph Model

Parameter Estimate Standard Error
Ideological Distance -0.0181 0.0018
Match NTEE 1.1681 0.0040
Match Membership Org -0.3769 0.0031
Match Lobbying Org 0.0759 0.0037
Match Contracting Org 0.1564 0.0025
Log(Revenue) 0.2944 0.0008
Membership Dues 0.0000 0.0000
Lobbying Fees 0.0000 0.0000
Null Deviance 52992 on 38226 DoF
Residual Deviance 1782 on 38214 DoF
Table 1. Exponential Random Graph
Model of D.C. Think Tank Board In-
terlock. Parameter estimates and stan-
dard errors rounded to 4 decimal
places

Fig. 1. D.C. Think Tank Board Interlock Network (iso-
lates excluded)

organization does, or the membership dues it collects are not associated with whether
these organizations connect. These results present a first, inductive look at coordination
among understudied, elite policy planning organizations in the U.S.
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1 Introduction

User interaction on social media platforms has been used extensively to monitor and
analyse political discourse and the spectra of political opinion, serving as an empirical
basis for modelling and investigating opinion dynamics. Due to the accessibility of data
and the ‘public-by-default’ nature of the platform, Twitter serves as the first choice
for many researchers. But most previous studies on polarization and user interaction
on Twitter have mainly focused on the retweet network of posts concerning a certain
topic or coming from a specific base set of users. There, separate clusters of users can
very often be identified, and users of a cluster might then be assigned a certain political
leaning on the topic under investigation.[1, 2] Moreover, very weakly connected clusters
are often taken as evidence for a very polarized political discourse.

While this procedure might produce meaningful results in terms of identifying po-
litical coalitions on social media (retweets are seen as endorsements of opinions or
appreciation and distribution of information/arguments), it ignores direct interaction,
that is, replies between users, which can be positive or negative. We will show in this
contribution that a retweet network alone often lacks crucial information about political
discourse, and that a reply network, constructed from the replies of users between each
other, provides valuable insight that should not be neglected. We analyse tweets about
the Saxonian state elections of 2019 in order to substantiate this claim. We find that, con-
trary to the clustering found in the retweet network, direct user interaction in the form
of replies is strong between the different retweet clusters; for the nature of this interac-
tion, a classification of user opinion based on the retweet network can serve as a proxy:
Different-cluster interaction might in most cases be characterized by disagreement or
negative feedback, while same-cluster interaction signals agreement. Interestingly, the
direct feedback is asymmetric in the sense that many users of one cluster (associated
to the AfD party) tend to reply to users of the other, while the reverse is not true. We
conclude that, by only considering retweet networks, one ignores a mode of interaction
which is not related to argument or information diffusion, but rather to accessing and
controlling public political discussion.

2 Results

We collected Twitter data about the Saxonian state elections which took place on Septem-
ber 1, 2019. We used a seed sample of 208 Twitter users composed of candidates of the
most prominent political parties taking part in the election, bloggers and journalists with
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a focus on Saxonian politics, and users that contributed to discussions on the election
extensively on Twitter. We collected, in the three months preceding the elections, all
tweets produced by this group as well as all tweets that mentioned said users in any
way: Retweets, replies and mentions. We constructed a retweet network out of all col-
lected retweets. Using Force Atlas 2, a physics-based layout algorithm,[3] we arranged
the network in a two-dimensional space, arriving at two separate clusters; we classi-
fied the users of the two clusters accordingly. In the first one (blue in Figure 1), mainly
politicians of the AfD party and users retweeting their content were placed; in the other
big cluster, politicians of the other big parties were found (red).1 We then built all the
complete reply trees in the sample of the last month preceding the election and visual-
ized them, as shown in Figure 1. The cluster classification now served as a proxy for the
type of interactions that took place in a reply tree: A user of one cluster replying to a
user of another cluster probably disagreed with the opinion of the latter, while chains of
posts from users of the same cluster were interpreted as agreement. Around 65 percent
of the tweets and 50 percent of the users involved in the reply trees could be classified.

Fig. 1. Exemplary reply trees (top left) and the corresponding reply network (top right). The
corresponding retweet network, upon which the classification indicated by the blue and red colors
was performed, is shown below. The black vertices in the reply network are users which did not
show up in the retweet network and hence could not be classified.

Previous research on reply trees has mainly focused on generative models (see [4]
for a review). The above classification could enrich generative models as a feature, but
also might substitute as a proxy, in suitable cases, computationally and effort-costly

1Note that this is a tentative clustering procedure that we seek to systematize soon, giving
conditions under which this interpretation is valid. Alternative community detection measures
such as modularity separate the two clusters as well, but in more than two communities.
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approaches to gain insight into the type of user interaction such as sentiment analysis.
Moreover, a reply network can be constructed out of the reply data, assigning a directed
edge between two users if one has replied to the other. The structure of this network
is fundamentally different from the retweet network: We have many cross-group inter-
actions between users. This yields (again using Force Atlas 2) a non-polarized graph
(cf. Figure 1), in which the users are arranged in one big cluster. The different ‘opin-
ion clusters’ are asymmetric in their interaction patterns: While the users of one cluster
reply to users of the other group very frequently (much more often than among each
other), it is the opposite for the other cluster (see Table 1).

Table 1. The number of users and replies within and between the different opinion clusters.

# of users # of replies # of repl. within cluster # of repl. to other cluster
Cluster 1 3334 16465 4375 9153
Cluster 2 5001 25085 13468 4039

Hence, retweeting happens in relatively isolated clusters. But direct interaction, that
is, discussion among users, does not. The relation between the two calls for further
interpretation. One hypothesis could be that argument and information diffusion occurs
within the own opinion community, while the competition for public opinion dominance
really is public. For modelling approaches in opinion dynamics, this should be taken
into account and might point into the direction of multi-layered interaction. Moreover,
this contribution serves as an example that different networks can enrich each other;
here, the retweet network presents only a one-sided view on online communication,
while the reply network is particularly insightful if assisted by information from the
structure of the retweet network.

Summary. We analysed the retweet as well as the direct reply interactions between
users on Twitter for the 2019 Saxonian state elections. We found that while the retweet
network analysis indicates polarized opinion clusters, user interaction in terms of direct
replies does not. There is interaction between users placed in separate retweet clusters,
which, interestingly, is asymmetric in the sense that one cluster replies much more
often to the other than to users of the own; the reverse is not the case. These results
need interpretation and might influence future modelling efforts.
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1 Introduction

Recently, much attention has been given to what is perceived as a strong increase in
political polarisation (between parties) and decreased heterogeneity (within parties).
Such diversion is argued to happen both at the discourse and voting levels. However,
this has mostly been studied through quantitative analysis of voting patterns, particu-
larly in two-party systems, such as the one found in the USA, where representatives
have independence of vote, with the underlying assumption that discourse and voting
patterns are aligned. As quantitatively studying discourse or subtle forms of political
dissent is difficult; most analysis have been limited to small scale case studies or voting
networks of two-party systems. However, the majority of parliaments have more than
two parties and several have limited freedom of vote, hence there are clear limits to the
generalisation of current tools, mostly developed to study the US system.

Here, we focused on the Portuguese Parliament (PP) as it offers interesting chal-
lenges both at the political science and computational levels, representing an excellent
case study to approach multi-party systems. From its peaceful revolution in 1974, to
joining the EU, Portugal has had some very rich 40 years of political history, while
maintaining a democratic regime. It is a relatively small parliament, with a varying num-
ber of parties, that does not favour voting freedom. The two major parties (centre-left
PS and centre-right PSD), both considered moderate, alternate in forming government,
with the support of (or in coalition with) smaller parties to the right (CDS) or to the left
(BE and PCP).

Here, we describe a novel quantitative and computational approach to the study of
parliaments and to test the assumption of alignment between voting and discourse. First,
we extracted all plenary debates of the PP for the past 40 years, and built a pipeline to
automatically identify all speakers and parties. To do this, we created a network of
MPs, including information such as gender, age, party, or formal education; we curated
all plenary debates, and created a pipeline for automatically identifying the speakers on
all public sessions. All discourse for each speaker (when possible) and party, was then
analysed using readability [1]) as a complexity measure.

In parallel, we scraped the Parliament website to get votes for all available legisla-
tive initiatives. These votes are tallied by party, with only the MPs who diverge from
their party being named. We analysed voting patterns using Multiple Correspondence
Analysis (MCA) [2], which allowed us to reduce dimensionality and measure changes
in distance between parties over time.
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We find that different parties can have almost completely aligned political positions
(as gauged from voting patterns) while having substantial differences in discourse. To-
gether, and to our knowledge, our work provides the first example of a large-scale com-
parison between speech and votes, and a new a tool that can be applied to the study of
different multi-party systems, offering important insight into the differences between
discourse and actual policy

2 Results

We started by investigating whether we could measure an increase in polarisation, or
voting distance, with time. Two lines of evidence point to such an increase. First, the
proportion of bills that passed without any vote against decreased from 85 % in the
early 1980s to 31% in the latest legislature (binomial regression p < 0.0001). Next, we
compared the co-voting frequency of all parties with the Communist party (PCP). We
chose PCP because they have had parliamentary representation since the first legisla-
ture, and because they have traditionally always been among the most left-leaning MPs.
As can be seen in figure 1A, the frequency of co-vote between PCP and the two tradi-
tionally right-leaning parties (CDS-PP and PSD) has been steadily decreasing (logistic
regression p < 0.0001 for either PSD and CDS-PP).

In order to go beyond parwise comparisons, we used MCA to reduce the dimen-
sionality of voting patterns. We used the MCA python implementation developed by
[3]. Each party is classified as either voting for, against or abstaining for each bill pre-
sented in each legislature. Bills where not all parties were recorded were removed from
the analysis (about 20 % over all legislatures). The MCA algorithm then extracts the
factors that capture most of the variation in the data (similarly to principal component
analysis but using categorical data). For all legislatures the first factor captured at least
70% of the variance and this is the factor we show in figure 1B.

Aside from the increased polarity in voting, the analysis also revealed that the two
leftmost parties, PCP and Bloco de Esquerda (BE) almost always vote together (on aver-
age 85 %). This raises the question of how these two parties are both kept in parliament
when they make the same decisions regarding bills. There are at least two hypothe-
ses to explain their maintenance. One is that they appeal to different constituencies by
discussing policies differently. The other is that the few bills where they disagree are
enough to polarise the left-wing voters. To test the discourse hypothesis, we looked at
speech complexity, measured as readability. A text with high readability has few words
per sentence and few syllables per word. Originally this measure was devised for En-
glish [1] as a linear scale from 0 to 100 where texts higher than 50 are considered to
be readable by people who finished high school and texts below 30 only by college
graduates [4]. We validated this measure for Portuguese (not shown) and tested it in the
Portuguese Parliament discourse using the adaptation proposed by [5]. Figure 1C shows
readability over time for all parties. In general, readability is low in the PP (between 30
and 50). Surprisingly, readability for PCP is quite low, despite the fact that Commu-
nist MPs on average attended fewer years in University, and much higher for the other
left-leaning party, BE. This suggests that readability is perhaps indicating more about
the MPs’ speech proficiency and less about who their target audience is. In either case,
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readability indicates that PCP and BE are probably being understood differently by vot-
ers. In general, we can see in figure 1D that speech and votes are not always aligned.
Indeed, data shows that the parties with the higher readability are parties which are close
to either an older party (PCP) or bigger party (PSD) and hence may need to differentiate
themselves to appeal to their electorates.

Fig. 1. Comparison of speech and voting patterns in the Portuguese Parliament. In all cases the
color of the background represents which of the two major parties was in government, either
center-left PS (pink) or center-right PSD (orange). A: Frequency of co-votes with PCP per leg-
islature, per party. B: First factor in MCA per party per legislature. C: Readability per party per
legislature. D: Correlation between voting patterns (measured by MCA factor 1) and readability
in the latest legislature. To facilitate the comparison, both axes were normalised.

We demonstrate that, in the Portuguese Parliament, divergence between left and right is
increasing. In contrast, two left-wing parties with almost identical voting patterns have
been coexisting for 20 years. By measuring speech complexity, we suggest that these
two parties are appealing to different voters. In general, we propose a methodology
to compare voting and speech and show that parliamentary debates can be used to
understand speech dynamics within a human network.
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1 Introduction

International relations are a typical example of signed networks that evolve over time
as some countries are friends while others are foes and relations can quickly turn from
cooperative to antagonistic and vice versa. Underlying mechanisms of the dynamics
have not been fully understood while it often has a significant impact on international
security. A well-known theory for the evolution of singed social networks is Heider’s
structural balance theory, which was originally proposed in social psychology and later
translated into and studied as mathematical models of networks (e.g., [1]). According to
the balance theory, signed social networks evolve to increase balanced triads, in which
either the enemy of your enemy or the friend of your friend is your friend. In other
words, triads with zero or two negative edges (hereafter denoted by +++ and +−−
triads, respectively) are balanced, while those with one or three negative edges (++−
and −−−, respectively) are imbalanced, and balanced triads are expected more stable
than imbalanced ones.

The balance theory is supported in various studies of social networks [2, 3]. How-
ever, few studies have tested the balance theory in international relations [4]. There-
fore, we investigated the network of international alliances and rivalries and examined
whether its evolution from 1816 to 2009 is consistent with the balance theory. We con-
structed the network of alliances and rivalries between sovereign states for each year
between 1816 and 2009, by combining datasets about the membership of the sovereign
state system [5], alliances [6], and rivalries [7]. Nodes are the sovereign states that ex-
isted in the year. Two sovereign states have a negative edge if they have a rivalry in the
year while they have a positive edge if they do not have a rivalry and have a military
alliance (either defensive or offensive) in the year.

2 Results

We found the evolution of the alliance and rivalry network is clearly different across
three periods, 1816–1866, 1867–1941, and 1942–2009 (Fig. 1). While the number of
nodes (sovereign states) increased over all the periods, the average degree dropped
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Fig. 1. The number of nodes (left top), the average degree (right top), the fraction of positive
edges (left bottom), and the fraction of balanced triads (right bottom).

down in 1867 and jumped up in 1942. By the same token, the fraction of positive edges
and the fraction of balanced triads (+++ and +−−) are constantly high (i.e., positive
edges and balanced triads are the majority) during 1816–1866 and 1942–2009, while
both fractions suddenly dropped down in 1867 and gradually increased between 1867–
1941. Therefore, the balanced triads are not always the majority and their fraction did
not always increase.

Furthermore, we compared the empirical network with surrogate networks in which
signs of edges are randomly shuffled without changing the topology of the network (Fig.
2). During the first (1816–1866) and third (1942–2009) periods, the empirical network
and the surrogate networks are clearly different and the difference is consistent with the
balance theory (i.e., balanced triads are more common than expected from the network
topology and the fraction of edge signs). On the other hand, the difference between the
empirical and the surrogate in the second period is much less clear, therefore the support
for the balance theory is weaker in the period.

Our analysis revealed that the consistency of the balance theory with the empirical
evolution of the international network of alliances and rivalries totally depends on the
period. A possible reason is that sovereign states can split and merge, while previous
studies that support the balance theory examined social networks of individuals [2, 3],
in which split and merger of nodes are unlikely. For example, when nodes densely
connected by positive edges merged into a new node, the balance of the network can
drastically change. It is also likely that war plays a key role as the beginning of the third
period (1942–2009) is during the Second World War. This study implies that we need
to incorporate not only the balance theory but also these additional factors when we
model the long-time evolution of international relations.
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Fig. 2. The density of the triad of each type (+++, ++−, +−−, and −−−). The density is the
ratio of the number of the triads of the type to the number of all possible combinations of three
nodes, i.e., N(N −1)(N −2)/6, where N is the number of nodes. Solid lines represent the values
for empirical networks and broken lines represent those for randomized networks averaged over
100 samples. Shaded areas show the standard deviation.

Summary. We investigated the evolution of the signed network of alliances and rivalries
in international relations. The balanced triads are dominant and clearly more common
than randomly signed networks in 1816–1866 and 1942–2009, consistently with the
balance theory. On the other hand, the difference with randomly signed networks is
not clear and the imbalanced triads are dominant in 1867–1941. The result shows the
balance theory is only partly supported, implying that we need to incorporate other
factors when we build a generative model of the evolution of international relations.
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Dynamics of Commenters’ Networks across Time and
Political Spectrum
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1 Introduction

Millions of people comment daily on current events on a variety of platforms ranging
from diverse social media to the news sites themselves. Reading others’ comments can
shape one’s own opinions about the story, its author, and the media outlet (see [4]), and
help spread opinions and claims which counter the mainstream narrative [5]. Here1 we
investigate the social network of commenters on four well-known U.S. news sites that
span the political spectrum from left to right. Studying the structure of the commenters’
social network can reveal whether discussions are influenced by relatively few com-
menters, or whether they are shaped by many different commenters and thus more in
line with Habermasian ideal of public discourse [1].

We focus on two factors that could affect the dynamics of influence in commenters’
social networks. The first factor is the political orientation of a site’s audience. Right-
leaning political orientation has been linked to increased deference to authorities [3].
Consequently, social networks of commenters on right-leaning sites might be charac-
terized by a larger inequality between commenters in terms of their influence on others,
with some being disproportionately influential.

The second factor is the contemporaneous societal situation that can pose more or
less threat to a certain side of the political spectrum. For example, just before the 2016
U.S. Presidential Election, Clinton was favored as the election winner, which might
have been perceived as a threat among the Trump-supporting voters. In contrast, af-
ter the 2016 election and Trump’s victory, the Clinton-supporting voters might have
felt threatened. Studies show that groups under threat tend to become more homoge-
neous and follow thought leaders [2, 6], suggesting that some commenters might be-
come much more influential than others as the perceived threat to their group increases.

2 Methods

We collected all comments posted a month before U.S. 2016 Presidential Election from
October 7 to November 8 and a month after from November 8 to December 9 to four
U.S. news sites, including two on the left side of the political spectrum - Mother Jones

1This work was supported by a grant from the National Science Foundation (DRMS
1757211). The funder had no role in study design or interpretation of results. We thank Joshua
Garland, Kenan Turbic, and Henrik Olsson for helpful discussions.
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(M) and Atlantic (A), one more moderate - Hill (H), and one on the right side - Breitbart
(B). All sites used Disqus commenting platform. We analyzed all comments posted to
an article on the day the article first appeared. Table 1 shows the number of unique
commenters and comments included in the analysis.

Table 1. Commenter and Comment Counts from Different News Sites and Time Periods

Before Election After Election
News Site Commenters Comments Commenters Comments

Mother Jones (M) 4,504 75,240 4,839 70,852
Atlantic (A) 10,512 170,048 9,545 138,960

Hill (H) 33,055 1,250,003 34,861 1,054,394
Breitbart (B) 50,263 1,747,853 59,579 1,857,076

The social network of commenters is directed, with edges occurring when one com-
menter responds to the comment of another. Edges are weighted by the number of times
each two pairs of commenters replied to each other in a given time frame. We inves-
tigate two measures of commenters’ influence. The first is commenters’ in-degree, the
number of unique commenters who replied to their comments within a given time pe-
riod. We normalize the distribution of in-degrees d by the number of commenters N on
a site s in time period t (ds,t/(Ns,t − 1)). To compare proportions of commenters with
different degrees p(d) on different sites, we normalize them by the lowest proportion of
commenters with a certain degree on each site (p(ds,t)/min(p(ds,t)). The second mea-
sure is commenters’ PageRank centrality PR weighted by degree weights, representing
a more nuanced measure of commenters’ importance than in-degrees. To compare PRs
across sites with different number of commenters, we normalize them with the lowest
possible PR for a given site and time period (PRs,t/min(PRs,t).

3 Results

Is inequality of influence larger on right-leaning sites? Our results suggest a more nu-
anced pattern. In-degree analysis (Fig 1 left) shows somewhat larger in-degrees for
left-leaning sites (M and A) compared to moderate (H) and right-leaning (B) sites. In-
equality of in-degree distributions is larger on the most left-leaning site (M) than on the
most right-leaning site (B) (Fig 2 left). PageRank analysis (Fig 1 right) suggests that
moderate and right-leaning sites have more very influential commenters. Furthermore,
inequality of influence is higher on both extremes of the political spectrum (M and B)
compared to more moderate sites (Fig 2 right).

Is inequality of influence larger when a group feels threatened? Our results offer
some support for this hypothesis. Overall, commenters on right-leaning B have reliably
larger in-degrees on average before than after the election (KS test, p < .001, Fig 1
left). In addition, analysis of distributions of in-degrees and PageRank indices for top
100 commenters (Fig 2) suggest that inequality of these distributions tends to increase
for left-leaning sites and decrease for moderate and right-leaning sites from before to
after the election.
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Fig. 1. Distribution of Influence for top 100 commenters: Normalized in-degrees (left) and PageR-
ank centralities (right), before (triangles) and after (squares) the election.

Fig. 2. Inequality (measured as skewness) of in-degree (left) and PageRank distributions (right)
for top 100 commenters, before (empty bars) and after (full bars) the election.

4 Discussion

Our results suggest that commenters on political sites on the extremes of political spec-
trum tend to have a higher inequality of influence than commenters on more moderate
sites, with some commenters being much more influential than others. Furthermore, we
find the tendency for higher inequality of influence at times when supporters of a partic-
ular site feel threatened. Further work will explore the characteristics of most influential
users and the role of commenters posting normative or antagonistic comments.
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What is going on Brazil? A Political Tale from Tweets
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1 Introduction

Brexit in Europe, Trump in the U.S., and Bolsonaro in Brazil are examples of the in-
creasing polarization of political debates across the world [2]. Concurrently, we have
been witnessing the key role played by online social platforms as they become the main
media for campaigns, debates, and recruitment [1, 4, 5].

Here we use social media data and network analysis to understand and highlight
population-level political behavior in Brazil, as groups evolve from campaign competi-
tors to new government and opposition blocks. Our analysis reveals a transition from
a phase before the vote with many polarized groups to a phase after the vote in which
these votes coalesced around a government and an opposition cluster.

2 Results

We used the Twitter streaming API to track the 14 Brazilian presidential candidates of
the 2018 elections and the Brazilian Superior Electoral Court (@TSEjusbr). For each
candidate, we followed four terms: the official account ID and handle (e.g.,
@jairbolsonaro), a hashtag associated with the campaign (e.g., #Bolsonaro17),
and the full name (e.g., “Jair Messias Bolsonaro”). This yielded a collection of 104 mil-
lion tweets from 3.8 million accounts between Aug. 30, 2018 and Aug. 26, 2019.

The Twitter timeline in Fig. 1A highlights some visible changes in political en-
gagement. The activity increases until election day, followed by a drop in the period
between the election results and inauguration day, and finally, the number of tweets and
users stabilizes with few peaks around important events.

Fig. 1B shows a 10% drop in the retweet rate from 71% before the final election
to 61% after inauguration day. The inset shows a relative drop of 60% in the number
of original tweets. The number of replies, on the other hand, more than doubled, from
14% to 30%. These changes may represent two distinct behaviors: propaganda during
the campaign, and debate during the mandate.

Despite the steady daily activity, Fig. 1C shows that nearly five thousand new ac-
counts join the Brazilian political conversation every day. This suggests an account
churn rate of roughly 5%. In future research, we plan to investigate who are the ac-
counts leaving the conversation. One possible interpretation is that the dynamics are
driven by many bots, which are replaced by new ones when they are suspended by the
platform. In the present analysis we did not evaluate bot activity.

To analyze polarization, we created daily weighted networks in which nodes repre-
sent accounts and an edge connects two accounts if one mentions, retweets, quotes, or
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A

B C

Fig. 1: A Political Tale from Tweets. (A) One-year Twitter timeline related to Brazilian politics.
Peaking days are highlighted, e.g., Bolsonaro’s murder attempt (1) and the worldwide protests
against Amazon forest fires (7). The number of tweets and unique users is correlated (ρ = .95).
(B) 30-day moving average of percentages of types of messages. Retweets and replies are neg-
atively correlated (ρ = −.94). (C) Growth in number of users involved in the Brazilian politics
conversation. The median growth is 4.6k new users per day.

replies to the other; the weight represents the number of interactions in a day. We also
considered longer periods, with similar results.

Fig. 2 displays examples of the k = 15 network core, with colors representing high-
modularity communities. Fig. 2A shows that on the eve of the first-round election mod-
ularity was high, with several clusters representing the candidates and their support-
ers. The inauguration day network (Fig. 2B) has lower modularity, but we can identify
clusters corresponding to the new government (blue), the opposition (green), and the
international community (pink and orange) bridged by the Brazilian Minister of For-
eign Affairs (@ErnestoAraujo). The last example shows the network on August 23,
2019, during worldwide protests against Brazilian agro-business policies and the fires
in the Amazon forest. The French president was heavily criticized by supporters of the
Brazilian government for posting a photo of the fires that was later revealed to be old
and not from the Amazon. That is why @EmmanuelMacron appears in the center of
the network.

Fig. 2D shows that network modularity was highest before the election, during the
campaign. A similar pattern has been observed in data about Italian elections [3]. After
fluctuations over the first quarter of the new government, the modularity seems to be
increasing again. This could be an indicator of growing government disapproval or an
early sign of the next campaign cycle.

Finally, we analyzed how the Brazilian political scenario attracts international at-
tention. We measured the percentage of messages per country and per day, using the
country code metadata present in some of the tweets. Fig. 2E shows the standardized
attention timeline, computed by the z-score of the relative volumes, for USA, Chile,
Argentina, France, and Portugal. The timelines highlight the days with most activity
for each country, suggesting that international attention was unevenly distributed due
to distinct events. For instance, attention from the U.S. peaked on inauguration day,
whereas attention from France peaked around the Amazon fires.
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A Oct. 6th, 2018—Election Eve

B Jan. 1st, 2019—Inauguration
C Aug. 23rd, 2019—Amazon Fires

D E

Fig. 2: Network Perspective. Examples of k = 15 discussion network cores: (A) The eve of
election’s first-round; (B) Inauguration day; (C) Amazon fires. (D) 30-day moving average of
daily network modularity. (E) Peaks in international attention towards Brazilian politics.

Summary Our analysis reveals two distinct phases in the online discussion around the
Brazilian election: a first phase prior to the vote, dominated by retweets and with higher
degree of polarization around the many candidates; and a more conversational phase
following the vote, with two main clusters around the government and the opposition.
Although this analysis is based on a huge sample of online users, we do not know how
representative Twitter data is of the Brazilian political spectrum.
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Quantifying Success
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Quantifying predictability in Football through network
analysis; A historical approach
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Summary. Football is a major sport with worldwide popularity. In recent years exces-
sive monetization of the game has been argued to have affected the quality of the match
in different ways. In this work we take a data-heavy network science approach to mea-
sure predictability of football over 26 years in major European leagues. We benchmark
our model against betting house predictions and after establishing its robustness we
show that over time, the games in major leagues have become more predictable. We
provide further support for this observation by showing that inequality between teams
has increased in accord with the trends in predictability and the home field advantage
has been vanishing ubiquitously. This is a first attempt to study football at a large scale
and within a historical framework.

1 Introduction and Model

Football is worthy of extensive studies, as it is played by roughly 250 million players in
over 200 countries and dependencies, making it the world’s most popular sport [1]. A
major question in relation to such a massive entertainment enterprise is if it can retain
its attractiveness through surprise element or, due to significant recent monetizations, it
is becoming more predictable and hence at the risk of losing popularity?

There has previously been a fair amount of research in statistical modelling and fore-
casting in relation to football [2–4]. A rather new approach in predicting performance is
based on machine learning and network science. Most of the past research in this area
however either focuses on inter-team interactions and modelling player behaviour rather
than league tournament’s results prediction, or are limited in scope—particularly they
rarely take a historical approach in order to study the game as an evolving phenomenon.
In the present work we use a network science approach to quantify predictability of
football in a simple and robust way and by calculating the measures in 26 years of 11
major European leagues we examine if predictability of football has changed over time.

We build a directed network of all the matches within the training window, in which
the edges point from the loser to the winner, weighted by the amount of points the
winner earned. In the next step, we calculate the network eigenvector centrality score
for all the teams. The recursive definition of eigenvector centrality, that is that the score
of each node depends on the score of its neighbours that send a link to it, perfectly
solves the problem of the dyadic scoring system mentioned above [5]. An example of
such network and calculated scores are presented in Figure 1. We can calculate the score
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difference between the two competing teams for any match after the Nth match. We will
have (T −N) matches with their respective outcomes and score differences. Finally, the
logistic regression model will provide the probabilistic assessment of the score system
for each match, allowing us to understand how correctly the outcomes are being split as
a function of the pre-match score difference.

Fig. 1. The network diagram of the
2018-2019 English Premier League
after 240 matches have been played
(calculating centrality scores based
on the last 190 matches).
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2 Results and Conclusion

A positive trend in predictability is observed in most of the cases; See Figure. 2(left).
Increasing Inequality: In analysing the predictability of different leagues, we ob-

serve that predictability has been increasing for the richer leagues in Europe, whereas
the set for which the indicator is deteriorating is composed mainly by peripheral leagues.
It seems football as a sport is emulating society in its somewhat “gentrification” process,
i.e., in richer leagues ricer teams are becoming even richer and stronger. We calculate
the Gini coefficient of a given league-season’s distribution of points each team had at
the end of the tournament. Figure. 2(middle) depicts the values for all the leagues in the
database, comparing the evolution of predictability and the evolution of inequality be-
tween teams for each case. The middles panels of Figure. 2 closely resemble the trends
in left panels.

Home Advantage and Predictability: We calculate the home advantage from his-
torical data by counting the total number of points that the home and away teams gained
in each season. The trends in the share of home teams for different leagues are shown in
Figure. 2(right). It is clear that the home field advantage is still present, however it has
been decreasing throughout time for all the leagues under study. Increase in the number
of foreign players, diminishing the effects of territoriality and its psychological factors,
as well as observing that fewer people are going to stadiums, traveling is becoming eas-
ier, teams are camping in different pitches and players are accruing more international
experience, can explain the reported trend; stronger (richer) teams are much more likely
to win, it matters less where they play.
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Fig. 2. Predictability (left), inequality (middle), and home advantage (right) for three major foot-
ball leagues over time.

In conclusion: Relying on large-scale historical records of 11 major football leagues,
we have shown that, throughout time, football is dramatically changing; the sport is be-
coming more predictable; teams are becoming increasingly unequal; and home field
advantage is steadily and consistently decreasing for all the leagues in the sample. Fu-
ture work should, as speculated in this work, try and assess: the role money is playing
in removing the surprise element of the sport; expanding the sample barriers beyond the
European continent; and ultimately, but not exhaustively, should test the money impact
over predictability on different sports and leagues that – theoretically – should not be
affected by it, namely leagues and sports that impose salary caps over their teams, such
as the United States of America’s Professional Basketball League (the NBA).
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The Evolution of Digital Technologies: A Network
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1 Introduction

The rapid technological development due to innovations in Information and Commu-
nication Technologies brings vast economic opportunities. At the same time, it might
lead to major shifts in the labour market due to technology-enabled offshoring or au-
tomatisation of jobs [1]. In particular, digital technologies such as ’Machine Learning’
are predicted to have a profound impact on the economy [2]. However, their constituent
parts and relations to other technologies are often ill-defined [3]. It is important for
technology-specific investments and retraining programs to better understand their evo-
lution and relation to other digital technologies.

Here, we construct a network of technologies related to machine learning based
on data from Stack Overflow, the world’s largest question-and-answer website for pro-
gramming questions.1 This network reveals the changing centrality of machine learn-
ing topics, libraries, and related programming languages over time as the network links
rewire when novel technologies are introduced. It thus allows for understanding the
development of the field as combinatorial technological evolution [4], shaped by the
replacement of older technologies by novel ones. The data can be used to test network
models on innovation and novelty [5, 6], and on creative destruction [7].

2 Data and Methods

Stack Overflow provides more than 18 million questions on thousands of different
programming-related topics.2 Most of these topics refer to technologies such as Python,
MATLAB or to technology domains such as Machine Learning.3 Each question is as-
signed one or more tags. Here, I focus on all questions tagged with the label ’machine-
learning’. A question is represented as a binary vector containing a one, if tag A is
present and zero otherwise. The total dataset contains N = 119,926 questions (rows)
and T = 2793 tags (columns) posted between 2008 and 2019.

∗ORCID-ID: 0000-0002-7671-1920
1It is presumed that it is feasible to represent the relations between digital technologies based

on co-occurrences on the online platform.
2All Stack Overflow data are publicly available at https://archive.org/details/

stackexchange.
3For simplicity, I assume that each tag refers to a technology; in its wider meaning as a ’a

means to fulfill a purpose’ [4]. Thus, I will use the terms ’tag’ and ’technology’ interchangeably.
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On this dataset, we applied Association Rule Learning [8] to construct a network
at yearly intervals. The associaton rule concept lift is used, as it provides a balanced
measure of proximity between two technologies (tags) in the Technology Space, similar
to Hidalgo et al.’s [9] proximity measure of products in the product space. Formally, the
lift between two technologies A and B is their joint ocurrence probability divided by the
technologies’ unconditional probabilities:

liftA,B =
P(EA∩EB)

P(EA)P(EB)
,

where EA and EB are the events that questions refer to technology A and B, respectively.
A lift > 1 implies that two technologies tend to occur together. Accordingly, this is the
threshold for a link to be established between two technologies (nodes) in the network.

In the resulting yearly networks, I calculate the normalised betweenness centrality4

of the individual technologies as a measure of their importance.
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Fig. 1. (A-C) Networks of Stack Overflow tags related to ’Machine Learning’ (ML) in 2008 – 2010, 2014, and 2019. Node
size corresponds to betweenness centrality. The network became larger and denser over time as more ML-technologies are
introduced. The centrality of four important programming languages, which can be used for ML, changes over time.
(D) Normalised betweenness centrality of four general programming languages (left panel) and four topics related to machine
learning (right panel) from 2011 to 2019 (logarithmic scale). With the shifting focus from statistics to deep learning, Python’s
importance increased together with Python-based deep learning tools such as TensorFlow.

4The Betweenness centrality of the nodes is divided by the average betweenness centrality of
all nodes in that year to allow comparison between networks.
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3 Results
Figure 1 shows the network of technologies (tags) related to ’Machine Learning’ in
2008 – 2010, 2014, and 2019 based on the Stack Overflow data. Four important pro-
gramming languages (Python, R, Java, MATLAB), which can be used for machine
learning applications, are highlighted by coloured circles. The early network in 2008 –
2010 is comparatively small and sparse, and the four programming languages have
comparable positions in terms of their centrality. Within one decade, the set of tech-
nologies related to machine learning has changed considerably: Python has become the
dominant programming language, closely related to the shift towards deep learning as
a main paradigm in machine learning. Accordingly, Python benefited from the rise of
Python-based deep-learning applications such as TensorFlow. The other languages have
largely been displaced by Python within the domain of machine learning, due to its ’fit-
ness’ in generating productive ’offspring’ technologies.

Summary. The development of digital technologies such as Machine Learning can be
described empirically as a co-evolving network based on online platform data. Reveal-
ing the changing network relations is important to understand innovations in the digital
sphere, as combinatorial possibilities between digital technologies are likely to be con-
ditioned by their proximity in the Technology Space. The described network dataset pro-
vides a unique perspective on the technology space as it evolves in real-time. This per-
spective might help to better understand the geographical distribution of digital knowl-
edge [10, 11]and innovations [12] in the digital sphere.
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1 Introduction

Despite improvements scholarly activity is poised with gender-related inequalities. For example,
female scientists still earn less [1], have access to less funding [2], are less likely to become full
professors [3], their work receives fewer citations [4], and they benefit less from co-authorship
[5]. These disparities persist, notwithstanding the evidence that female members increase the
overall intelligence of teams [6] and that gender heterogeneous scientific teams are more creative
and produce higher quality science [7].

It is believed that science dissemination is the crucial first step in exposing scholars’ work
to other scientists and the public. It is unclear, however, whether the online sharing of scientific
articles mitigates, perpetuates, or reinforces inequalities that exist offline between male and fe-
male scholars. Since its inception in 2010, Altmetric.com has been heralded as an appropriate set
of data sources and indicators to capture early interactions of scientific and lay audiences with
scholarly output. Higher Altmetric scores have been shown to correlate with the number of cita-
tions [8], but little is known about potential inequalities in the online coverage of female scholars’
work. Therefore, our main research question is: Which dimensions of gender inequalities charac-
terize science dissemination online?

We studied differences in the dissemination of the articles of 371,800 scientists who had at
least one article shared online in 2012. To identify factors associated with differences in dis-
semination, we collected meta-data about these scientists and their scholarship. In particular, we
gathered their publication history and collaboration network for the five preceding years from
the Open Academic Graph [9]. We also used Web of Science data 4 to determine scientific fields
based on the references of individual publications [10] and to generate topics using article titles
[11]. To investigate gender’s effect on science dissemination, we inferred author’s gender with
a method based on their first names [12]. The used gender inference algorithm handles interna-
tional names well and yielded 58% men, 25% women, and 17% unknowns among the considered
scientists.

Here we present two main parts of our results: First, we show differences in the online cov-
erage of research fields and topics, and their connection with gender. Then, using regression
models, we highlight the importance of gender-related characteristics of collaboration networks
in determining online popularity.

4 This work uses Web of Science data by Clarivate Analytics provided by the Indiana Univer-
sity Network Science Institute and the Cyberinfrastructure for Network Science Center at Indiana
University.
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2 Results

Inequalities in online popularity across fields and topics We found striking inequalities
in the dissemination of scientific articles based on research fields and topics. Out of the articles
registered on Web of Science those belonging to fields such as Psychology and Medical Sciences
received the most coverage (quantified by the number of shares), while Engineering and Social
Sciences are disseminated least. Similarly, when we correlated the number of articles written
overall about a certain topic with the number of shares of articles about the same topic, we found
that in fields with a higher ratio of women such as Medical Sciences and Psychology, co-author
teams where the fraction of female scholars was higher than the median percentage of females in
the field, tend to be better at selecting topics with a larger online popularity. In Medical Sciences
and Psychology, for example, articles written by female-majority co-author teams correlated most
with number of article shares online (ρ=0.65 and ρ=0.45, respectively). Note that majority here
is defined in comparison with the median female representation in the field, meaning that a three-
author team containing one female scholar would be considered a female-majority team in e.g.
Engineering and Physics. The most highly shared topics that female-majority teams write about
are medical records, radiation, childhood leukemia and chronic pain in Medical Sciences, and
aggression, autism, and the marshmallow test of delayed gratification in Psychology. In Math-
ematics and Computer Science only diverse teams topics correlated positively with the number
of article shares online. Popular topics that diverse teams in Computer Science study are social
media mining and sentiment analysis, while diverse Mathematician teams focus on high-ordered
curved mesh generation and graphs. Despite these trends, women benefit less from being part of
a team that publishes on popular topics as they are clearly under-represented among the scholars
with highest online coverage (Figure 1). Accordingly, while there are differences between fields
(e.g. we found fewer popular female Physicists online than Medical Scientists), there are less
women among the most highly shared scholars across the board even when compared with their
ratio in the population of scientists whose work is shared online. This trend holds both at the level
of the top 5% scholars (superstars based on article shares) and top 25% (popular scientists).
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Fig. 1. Ratio of women among the top 25 and 5% of the most popular scientists by research field.
Dashed lines indicate the ratio of men among all authors who published in the given field and
were mentioned on Altmetric in 2012.

Predicting online popularity Both at the level of superstars and popular scientist we predict
popularity as quantified by online coverage using logistic regression models. Interestingly, we
can predict male scholars’ popularity with higher precision than female scholars’ popularity (top
25% : AUCwomen = 0.866 and AUCmen = 0.89; top 5%: AUCwomen = 0.86 and AUCmen = 0.88 ),
which indicates a clearer behavioral template for men than women to achieve success in this con-
text. Our models show that productivity (number of articles published in the preceding 5 years)
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and research fields are the basis of online popularity. For superstar women (top 5%), productivity
is more important than for men (Figure 2). The same factors matter for popular and superstar
scientists, but the effect sizes in these groups are different for the two genders. Both men and
women are negatively affected by the lack of gender-diversity in their ego networks (male and
female homophily in ego network), but benefit from having same-gender collaborators (ratio of
male and female co-authors). Due to power-relations, similarly to others’ results in a different
knowledge production context [14], we found that men tend to become less popular when work-
ing with women. Smaller co-author teams (average number of co-authors in the last 5 years) are
associated with higher online popularity for both genders, but dense ego networks (brotherhood
or sisterhood-like collaborations) penalize only women.

We presented evidence that the gender portfolio of scientists’ collaboration networks pre-
dicts online popularity, which makes it harder to overcome gender inequalities that exist of-
fline among scholars. Men are over-represented among popular scientists, although diverse and
female-majority research teams pick more popular topics. Our results also suggest less variance
in the factors associated with male scientists’ online popularity. The most important predictors
of success are still based on academic merit and productivity, but gendered collaboration tie-
formation differentiate men and women: successful scientists in social media, are embedded into
opposite-gender academic circles, while maintaining same-gender personal relations.
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Ratio of female co-authors

Ratio of male co-authors

Ego network density

Productivity

H-index at 2012

Top 5%

women men
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Fig. 2. Odds Ratios of selected variables for top 25% (popular) and top 5% (superstar) scientists
based on article shares online. Models were ran separately for men and women and contained
additional controls for fields, paper attributes, and publication history.
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1 Introduction

Social media are massive marketplaces where ideas and news compete for our atten-
tion [2]. Previous studies have shown that quality is not a necessary condition for online
virality [3] and that knowledge about peer choices can distort the relationship between
quality and popularity [4]. We investigate [1] quality discrimination in a stylized model
of online social network, where individual agents prefer quality information, but have
behavioral limitations in managing a heavy flow of information. We measure the rela-
tionship between the quality of an idea and its likelihood to become prevalent at the
system level. We find that both information overload and limited attention contribute to
a degradation in the market’s discriminative power. A good tradeoff between discrimi-
native power and diversity of information is possible according to the model.

2 A model for choices in a networked environment

We aim to examine the conditions in which the “best” ideas are those that capture a
greater portion of collective attention, and whether this happens at the expense of the
diversity of ideas. To this end, we propose a simple agent-based model inspired by the
long tradition of representing the spread of ideas as an epidemic process where mes-
sages are passed along the edges of a network [5]. Agents are represented by the nodes
of a static network where the links embody social connections. The network dynamics
in the model capture the salient ingredients common to popular social media platforms.
Each message, or post, carries a “meme” or “idea,” i.e., the unit of information that
spreads from person to person [6]. Different messages may carry the same meme.

We imagine that each meme is characterized by an intrinsic quality value. We as-
sume that the probability that an agent shares one of these memes, allowing it to spread,
is proportional to the meme’s quality. The quality might represent different properties
that make the meme more likely to be shared: the originality of an idea, the beauty of
a picture, and the truthfulness of a claim are valid examples. Messages carrying new
memes are continuously introduced into the system in an exogenous fashion at a rate
rate µ , a parameter that measures the information load of the agents.

Agents produce messages containing new memes and reshare messages originated
or forwarded by their neighbors. When resharing, an agent is capable of paying atten-
tion to only a finite number α of messages at a time. If we think of messages from
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neighbors as appearing in, say, reverse chronological order on a social media feed, a
user during a session will scroll down the feed to view α recent posts. Further details
about the model are presented in [1].

3 Results

Fig. 1. a, Discriminative power τ (colour scale bar) as a function of information load and finite
attention. b, Diversity H/H(µ = 1) (colour scale bar) as a function of intensity of information
load and attention. c, Illustration of the tradeoff between the discriminative power of the system
in spreading quality memes and diversity of content in the network. Nodes represent agents, their
colour represents the last shared meme and their size indicates the quality of that meme (the
bigger the node, the higher the quality). Edges represent social connections among agents, such
as followers on Twitter or friends on Facebook. When the information load µ is small, only high-
quality memes are present, with low diversity. As µ increases we observe higher diversity and
lower discriminative power. Here N=128 and α=10.

We can summarize the dependency between the quality of memes and their success
in a single discriminative power measure by looking at the correlation between quality
and popularity, defined as the number of reshares a given meme has received during its
lifetime. We employ the Kendall rank correlation coefficient τ [7]. High τ indicates
that fitter memes are more likely to win, granting the system discriminative power; in
the extreme case τ = 1 the two rankings are completely concordant. Small τ signifies a
lack of quality discrimination by the network.

Discriminative power in spreading quality content is a desirable property of a social
network. A second desirable property of an ideal communication system is the preser-
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vation of information diversity, i.e., the possibility to have many distinct memes alive
simultaneously. To measure the amount of diversity in the system at the steady state, we
start from the entropy H = −∑m P(m) logP(m) where P(m) is the portion of attention
received by meme m, i.e., the fraction of messages with m across all of the user feeds.
The sum runs over all memes present at a given time and is averaged over a long period
after stationarity has been achieved. The minimum entropy is zero, when all nodes have
the same meme (µ = 0). The maximum entropy, obtained in the extreme case µ = 1,
depends on α . Discriminative power and diversity are in contradiction — the price as-
sociated with the capability of the network to let a high-quality meme prevail is a loss
in diversity, with many memes receiving relatively small attention despite their intrinsic
quality.

The tradeoffs between discriminative power and diversity is illustrated in Fig. 1.
For any value of finite attention α > 1 we observe a transition from relatively high
discriminative power and low diversity (when information load is low) to high diversity
and low discriminative power (high information load). The amount of attention α has
a significantly effect on the tradeoff: for a given level of diversity the discriminative
power improves when people can pay attention to multiple memes, and vice versa the
network can sustain a larger diversity without loss in discriminative power. When α is
large, there is a region where the network can sustain very high diversity with relatively
small loss in discriminative power.

The proposed model is quite minimal and relies on few parameters, but it captures
salient behavioral features that shape the diffusion of information in online social net-
works. This allows us to study how information load and limited attention affect the
discriminative power of the network, i.e., the likelihood that the best memes will suc-
ceed at reaching many people. Our main finding is that the survival of the fittest is far
from a foregone conclusion where information is concerned. Both information load and
limited attention lead to low discriminative power, so that it becomes very difficult for
the best memes to win. Meme diversity can coexist with network discriminative power
when we have plenty of attention and are not overloaded with information. For a full
account, please see [1].
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1 Introduction

The representation and the construction of the self has been thought to involve multiple
components since the early days of self research in psychology and social-cognitive
science [1]. Researches suggested that there exist three self-aspects [2]: individual, re-
lational, and social. Moreover, different self-aspects form distinct cognitive structures.
The individual identity refers to the conception of oneself as autonomous and unique,
having a clear boundary from others. Social identity refers to the self-definitions de-
rived from one’s membership in groups or social categories. Here we focus on the the
relational identity, which refers to aspects of the self associated with one’s relationships
with significant others. In the tradition of social network analysis, this aspect is asso-
ciated with the study of ego-networks [3]. Dunbar and collaborators [4, 5] showed that
alters in ego-networks are organized in different layers of decreasing strength in relation
with the ego, with a strong inner circle of more or less 5 persons, and that the structure
of online social networks mirrors those in the offline world [6]. From the point of view
of social psychology, in the late 90s, Aron et al. [7] proposed the Including others in the
self model for the relational self. This model proposes that, to some extent, people treat
the resources, perspectives, and identities of significant others as their own. By com-
bining these two perspectives, in this work we go beyond ego-networks and propose
the definition of relational identity graph (RIG) as a graph-theoretical operationaliza-
tion of the concept of collective identity emerging from relational self-construals [1].
To do so, we need to build new instruments in the realm of graph theory, expanding
some classical definitions and algorithms. Finally, we show how the internal structure
of the relational identity can be characterized by means of graph metrics, with special
attention to metrics that quantify social identity complexity [8].

2 Relational Identity Graphs

Definition 1. Given a set of social actors V , define:

(a) a social function H(x,y) : V ×V → R
(b) a relevant condition r
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(c) a binary relevant relation: R : (x,y) ∈ R if and only if H(x,y) satisfies r.

The social function has to provide a measure of the strength of the relation between
two social actors in V , while the relevant condition defines a threshold, in general de-
pendent on x, above which the relation is considered relevant for x. Thus, R defines
a directed graph such that there is an edge from social actor x to social actor y if y is
relevant for x, with respect to the function H and the relevant condition r. In general
the social function H has not to be symmetric, i.e. H(x,y) 6= H(y,x) and thus the graph
associated to R is directed. Note also that, even in the case H(x,y) = H(y,x) this does
not necessarily imply that both satisfy the relevant condition, and therefore the result
may still be a directed graph. From a graph-theoretical point of view, a social function
H defines by itself a weighted graph and the graph associated to R is an edge-induced
subgraph of it. Thus, R can be interpreted as the backbone of a social network with
weights H(x,y) [9].

Let’s define the relevant neighbourhood of a social actor as the operationalization
of the concept of significant others.

Definition 2. Consider a social actor x, we call the relevant neighbourhood of x in V
the set R(x) = {y : (x,y) ∈ R}

That is, the relevant neighbourhood R(x) is the out-neighbourhood of x in the graph
G associated to R. We are now able to give the definition of the Relational Identity
Graph of a social actor.

Definition 3. We call the Relational Identity Graph of x w.r.t. R, RIG(x), the maximal
strongly connected component of the vertex-induced subgraph G(S(x)) that includes x,
where S = R(x)∪R(y)∪R(z),∀y ∈ r(x) and ∀z ∈ R(y) .

A RIG(x) operationalizes the concept of the relational identity of a social actor.
Building on graph-theoretical concept, a number of structural properties of a RIG(x)
can be defined and related to the relational identity. We can give a generalizations of the
concept of separator [10] from undirected to directed graphs. Minimal strong separators
are of great importance in the contest of RIGs since they are the minimal set of social
actors in the relational identity that can break the identity and form a new one, and they
are directly related to social identity complexity.

3 Results: On-line Political Relational Identities

We study the RIGs of the leaders of major Spanish political parties and of political
activists on Twitter. The multiple components of the representation of the self can be
recognized also when looking to online identities. The bio, the profile picture, and other
elements always present in any online social platform, are a representation of the indi-
vidual self. Relational identity is represented in the interaction patterns. Focusing on
Twitter, three types of interactions are possible: mentions (a user mentions another user
in her post), likes (an expression of appreciations to another user post), and retweets (the
user reposts another user post). The including others in the self model, i.e. the hypotesis
that people treat the resources, perspectives, and identities of significant others as their
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own, is just one of the proposed mechanism of relational identification and there is still
a lot of debate around it. However, when looking to online social self, the proposed
mechanism is much more natural. Actually, sharing others posts complitely describes
the including others in the self mechanism, like retweetting on Twitter. For this reason,
we will focus on retweets.

(a) (b)

Fig. 1. Retweets statistics of major party leaders -panel (a)- and political activists -panel (b)-.

We define the relevant condition as being an outlier in the retweet statistics,i.e. ac-
counts that recive a number of retweets that exceeds the third quartile by more than
1.5 times the interquartile range. The distribution of such outliers is quite different (see
Fig.1) for party leaders and political activists. We construct the RIG of each actor and
compare their characteristics.
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Transporters: Spring-systems in disguise. A physics
model for analysing transporter networks.
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1 Introduction

Transport networks are systems that move resources from the point where they are
generated to the point where they are demanded or consumed, and are ubiquitous in
modern society. this class of networks include the physical transport network moving
people and goods but also other network types such as telecommunications systems
moving information, or utilities networks such as gas or electricity. One of the greatest
issues facing transport networks is that of cascading failures [8] caused by random
events or targeted attack. A popular metric used in research relating to the robustness of
a network is system tolerance (α) [8, 7]. The tolerance of line i is given by f max

i =αi | f c
i |

where f c
i is the power flow over line i under initial conditions, and αi is the tolerance

of line i. The system tolerance α = 1
n ∑n

i=1 ai, where n is the total number of lines,
can be used as a proxy for network robustness. However, system tolerance does not
take account of the network’s topological structure or the distribution of line tolerances.
The work presented here combines line tolerance and the topological structure of the
network into a single intuitive metric.

The core idea of this study is to re-represent a transport network as a system of
springs, in order to provide insight into the network’s robustness under attack. Spring
systems are a useful physics model for explaining the complex relationships found in
networks [4]. In this paper, the spring system begins as a 2D network, where the nodes
are constrained to only move perpendicularly to the plane. Generation exerts an up-
wards force while demand exerts a downward force. As the generation and demand
are equal, the system finds a 3D equilibrium when the forces generated by the nodes
are balanced by the restorative force of the springs. The generation and demand at the
nodes is converted to force using an arbitrary constant. The stiffness of the springs is
calculated using k = r(1− 1

α )+ c where c and r are arbitrary constants that define the
range of stiffness k.

In this paper two key metrics are derived from the spring system; the height em-
bedding of the nodes relative to each other represents the amount of generation support
in that part of the network; the mechanical strain of the springs represents the robust-
ness of the network. Strain, a common measurement within engineering, is defined
as ε = ∆H−D

D , where ∆H is the extension of the spring under a tensile force, with D
representing its original length. The height and strain embeddings are found using an
algorithm based on the equations of motion. The relationship between the nodes is sub-
ject to the n-body problem [3], and so the equilibrium is found through iteration, a
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feature of this class of network algorithm [6]. The force experienced by each node is
used to find the acceleration, velocity and distance for each time step ∆ t. The equation
z = vt−1t + 1

2 att2 + zt−1 calculates displacement from the origin, where the velocity is
given by vt = vt−1+

Fnet,t
m t and the acceleration by a = Fnet

m . t, m, and Fnet represent time,
arbitrary mass and net force acting on the node, respectively. A damping factor is also
included to ensure that the system loses energy and converges.

This paper demonstrates the value of the embeddings created by the spring system
using IEEE-118 [2], the UK high voltage power grid generated from the ETYS dataset
[1], and five non-flow networks demonstrated in [9].

2 Results

Using a 4 node toy network, I demonstrate that strain can express differences between
networks in a way that system tolerance α cannot. In the toy example strain varies by
up to 72% whilst α and the total system flow capacity remain constant.

I attack the IEEE-118 network until collapse under different load/generator profiles,
using a DC power flow simulator [5]. For each load profile I set α to one of twelve
values, then permute the excess capacity of the lines to generate 480 unique system
α’s, I then perform 100 simulations where I randomly attack the network to collapse,
on each unique α . This creates 48,000 attack to failure simulations per load profile.
I predict the point at which the network collapses using a loess model [10] where the
independent variable is either strain or α . I find that strain (R2 = 0.97) explains a greater
proportion of the variance of the collapse point of the network than α (R2 = 0.92), and
RMSE is 38% lower for strain. This finding is consistent across load profiles.

I then find the strain of the UK power grid under base loading conditions and iden-
tify points of potential weakness, as shown in figure 1. In addition, visualising the UK
high voltage network shows a North-South slope consistent with the movement of elec-
tricity on the UK mainland.

Finally I show that not only can the system be applied to non-flow networks, but
strain does not suffer from the same issues as assortativity as described by [9] and
can successfully distinguish the Peel’s quintet. I do this by generating 100 examples
from each graph class of the quintet, projecting the nodes into a space defined by mean
node height and network strain. I train 100 logistic regression models, using 10 sets of
10-fold cross validation, the mean classification accuracy of the models is 97.6%. The
accuracy is the result of the algorithm integrating topology and load and is despite the
graph classes in the quintet having identical, assortativity, number of nodes, number of
edges, and number of links between node classes.

Summary. This study demonstrates a novel approach to analysing the robustness of
transport networks. It does this using a physics model that integrates the line capacities
and the network topology into a single metric. The method provides a local and system-
wide overview of embedded strain allowing the network to be tuned for robustness.
The information produced can be intuitively interpreted by visualising it on a map. The
method can also be applied to networks without flow or line capacity, even distinguish-
ing between networks that have that have been designed to be identical using traditional
network science metrics.
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Height and Strain of the UK high−voltage power grid under base load generation

Fig. 1. The topology of Great Britain where height is the embedded height of the nodes as well
as the strain and tolerance of the lines. Values at geographical points between nodes have been
interpolated using kriging with spherical distance model
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1 Introduction

Stability has been a central topic of research in complex systems across disciplines.
From financial systems to socioeconomic models of political regimes or genetic reg-
ulatory circuits, the study of dynamical stability keeps attracting the attention of the
scientific community. This interest has been particularly prominent in ecology, where
it has promoted decades of research [1–6]. Understanding the stability of ecological
communities has become a matter of increasing importance in the context of global en-
vironmental change, yet, it has proved to be a challenging task. Multitude of metrics
are used to assess the stability of ecological systems but different choices may result
in conflicting conclusions. Estimating how many and which metrics need to be mea-
sured holds the key to improving our ability to evaluate the stability of natural systems.
This can be achieved by studying how many ‘dimensions’ of stability there are, i.e. in
how many independent components stability metrics can be grouped. We tackle this
challenge from a theoretical perspective by investigating how stability metrics are in-
tertwined in trophic ecological networks. Combining structural food-web models [7]
with bioenergetic consumer-resource models [8, 9], we simulate the dynamics of mul-
tispecies trophic communities under three different perturbation scenarios: pulse per-
turbations (instantaneous changes in species’ biomass after which the recovery o the
community is studied), press perturbations (lasting changes after which the pre and
post-perturbed communities are compared) and environmental stochasticity (continu-
ous small external changes). We quantify the stability of our simulated communities
to these perturbations with 27 metrics frequently used in the ecological literature, and
build a network representation of the correlations of stability metrics in complex trophic
communities, the ‘stability network’. In this network representation, the nodes are the
different metrics, and the links their unsigned spearman’s correlation rank: the higher
the value of the correlation between a pair of metrics, the thicker the link between them.
By studying these correlations we can evaluate whether the different metrics considered
provide similar information about the stability of an ecological community or whether
they form distinct groups that reflect partly independent ‘dimensions’ of community
stability.

2 Results

Applying an algorithm of community detection, based on maximizing the modularity,
to the stability network revealed that stability metrics can be lumped into three main
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groups of relatively independent stability components: ‘early response to pulse’, ‘sen-
sitivities to press’ and ‘distance to threshold’. Interestingly, the three emergent groups
split metrics in terms of both the temporal scale of the response and the type of per-
turbation. Indeed, the ‘early response to pulse’ group only contains metrics describing
transient behavior, while the ‘sensitivities to press’ and ‘distance to threshold’ groups
contain metrics describing long-term (asymptotic) dynamics. Furthermore, the ‘early
response to pulse’ and ‘sensitivities to press’ form two contrasting groups containing
metrics that respectively refer to pulse and press perturbations, while metrics in the
‘distance to threshold’ group refer to both types of perturbations. Therefore, these three
groups can be interpreted as different stability components that reflect different ‘dimen-
sions’ of the stability of trophic communities [10], i.e. features that should be measured
in an ecological community to accurately assess its stability. Selecting metrics from
each of these groups allows a more accurate and comprehensive quantification of the
stability of ecological communities.

Our results contribute to improving our understanding and assessment of stability in
ecological communities. However, although our study focuses on the stability of food
webs, the relationships found here could be of interest to understand the stability of
other types of networks, in ecology as well as in other disciplines. After all, directed
networks of many kinds describe transport of matter, information, or capital in a similar
way as food webs describe fluxes of biomass from primary producers to apex predators.
The framework we propose is flexible enough to accommodate to different conditions
and opens a way towards simplifying the study of stability in any type of complex
dynamical system.

Fig. 1. Network of stability metrics (i.e. stability network) showing the three emergent groups of
stability metrics. The nodes represent the different metrics used to quantify the stability of the
trophic communities, and the links their unsigned spearman’s rank correlation (the thicker the
link, the stronger the correlation).
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While the need to consider the multidimensionality of stability has been clearly stated
in the ecological literature for decades, little is known about how different metrics of
stability relate to each other in ecological communities. By simulating multispecies
trophic networks, we measure how frequently-used stability metrics relate to each other.
Using algorithms of community detection, we identify the independent components they
form based on their correlations. Our results open a way to a simplification and better
understanding of the overall stability of ecological systems.
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1 Introduction

The capability of healthcare as a sociotechnical systems to response to a crisis does not
only depend on the logistics and physical infrastructure, but also on the informational
relations to allow efficient coordination [1]. According to the Medical Surge Capacity
and Capability (MSCC) Management System [2], there are six-tier of coordination to
response a medical surge. Our research focus on the Tier 2, which is the coordination
between hospitals. The benefit of having Tier 2 coordination is the rapid transfer of
resource and information.

The aims of our research are to obtain the optimal networks of coordination be-
tween hospitals as a preparedness step to response to a large-scale disaster. At the same
time, the model can be used as the decision support systems of the incident command
center during the disaster by providing recommendations for resource allocation. We
developed our network optimization method using stochastic approach and genetic al-
gorithms.

2 Model and Algorithm Description

We used the hospital data in Jakarta which including the number of medical staff and
hospital location to model our network and resources. We picked 14 random locations
all over Jakarta as our disaster site to train our model. Node and edge respectively
represent a hospital and Tier 2 coordination between hospitals. Each node has resources
based on the number of available doctors. We assumed that the number of available
doctors is 2/3 of the total doctors as the rest of them maintaining the public healthcare
service of the hospital.

The genetic algorithm is used to obtain the optimal hospital networks. The algo-
rithm involves the iteration of crossover, mutation, fitness evaluation and reproduction
processes. During the fitness evaluation step, we calculate the performance of each Tier
2 Networks using Equation (1) and (2), which is calculated by taking the mean of the
number of treated victims of all hospitals over a period of time T for M scenarios,
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where 4 out of 14 disaster sites are chosen randomly in each scenario ∆ . Each disaster
location causes V number of victims. They will be sent to all of the hospitals which
are located within 15 minutes travel time. The victims are assumed to reach hospital h
around disaster site in tdh minutes and each one of them will be taken care by 1 doc-
tor in 20 minutes. If a hospital i outside of disaster vicinity has a Tier 2 connection
with a hospital j in disaster vicinity, it will send its resources to the affected hospital
in wedge(i, j) minutes. The duration of tdh and wedge(i, j) are based on the travel time data
obtained using Google API. The maximum number of Tier 2 connection each hospital
h can have is limited to two links. An edge can only be assigned between hospital i and
hospital j if the travel time between them (wedge(i, j) or wedge( j,i)) are less than W hours.

f (G) =
∑M

i=1 P(G|∆i)

M
(1)

P(G|∆) = ∑
h∈H

T

∑
t=1

pt
h (2)

and subjects to these following constraints,

|edges(h)| ≤ 2 (3)

min(wedge(i, j),wedge( j,i))≤W (4)

where, G is the evaluated hospital network (chromosome), H is the set of hospitals in
the network, t is the simulation time in minute, and pt

h is the number of treated victims
in hospital h at time t

3 Results

We set the simulation number M to 500 scenarios. The T is set to 4 hours for each simu-
lation because this model aims to improve the resilience during the very first few hours
after a large-scale disaster where the condition is in chaos and the incident command
center still needs to assess and coordinate all of the emergency-related agencies. The
performance of the 1st, 34th, and 100th generation hospital networks are shown in Fig.
2. The shifting of the mean value to the right indicates the improvement of network per-
formance. The generated hospital networks were tested by running a random disruption
scenario to show how it allows the efficient resource sharing, indicated by the contour
plot where the number of doctors are high (yellow to blue contour) in the affected hospi-
tals (purple node) around disaster site (marker icon), while most of the other unaffected
hospitals (green nodes) which send their resources are in red contour area. The con-
nected links does not necessarily focus on nearest hospital. The connection is created
to maximize the resources distribution based on the given risk (or, disaster locations in
this case) while still limited by the travel time constraint W .
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Fig. 1. Density plot of the simulation results of 500 scenarios for 1st, 34th, and 100th generation
hospital networks. The vertical line indicates the network/chromosome performance.

Fig. 2. (Left) The optimized hospital networks. (Right) A random disruption scenario were gen-
erated (blue marker). Purple and green nodes are the hospitals within and outside the disaster
vicinity, respectively. Node size is based on the resources value. The contour indicates the level
of resources in the area after the transfer of medical staff.
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1 Introduction

Prediction of the dynamic stability of a complex system is a challenging problem these
days. Spectral graph theory is only good for a linear dynamics, while complex systems
incorporates nonlinear interactions. So, current stability analyses fails to account for the
actual stability of real complex networked systems. In our work, using our Dynamic
exponents we retrieve the structure of Eq. (1) is real stability matrix, exposing the
system’s true stability profile. The analytical prediction of topological and dynamic
parameters that govern the system’s large scale behaviour, namely Dynamic exponents,
provide the currently lacking bridge between the two mapping known Topological
elements into desired Observable outcomes. Here our main objective to understand
the Dynamic exponents of stable vs. unstable states. To determine these exponents
we use a framework of complex system that incorporates two layers (i) topology, Ai j,
which captures the geometry supporting the interacting elements and Dynamics, M =
(M0,M1,M2), capturing the interaction mechanisms between the nodes. Most broadly,
these two layers translate to [1]

dxi

dt
= Fi(x) = M0

(
xi(t)

)
+

N

∑
j=1

Ai jM1
(
xi(t)

)
M2
(
x j(t)

)
(1)

where M0(x) represents i’s self dynamics, and the M1(x),M2(x) capture the system’s
pairwise interaction mechanisms. Using a set of analytical arguments established in [1,
2] we show analytically that for systems of the form Eq.(1) the magnitude of Jacobian
terms is not random, rather its term are determined by the interplay between Topology
Ai j and Dynamics M, via the scaling relations

Ji j =
∂ ẋi

∂x j

∣∣∣∣−→x
∼ Sβ

i Sγ
j , Jii ∼ Sα

i (2)

where α,β ,γ are Dynamic exponents of the system, analytically tractable from Eq. (1).
Eq. (1) obtained in the asymptotic limit of N→ ∞, captures the impact of the degrees
Si and S j on the relevant terms Ji j, while the degrees depend on Ai j. The system is
asymptotically stable if real part of the largest eigenvalue λ1 of Jacobian Ji j, is negative
[3].
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2 Results

Eq. (2) predicts that, despite using the same Ai j, each of these systems will have a funda-
mentally different Jacobian structure due to the nonlinear M, and its associated Dynamic
exponents α,β ,γ . To test this we numerically obtained Ji j (red circles) and confronted
with Eq. (2)’s analytically predicted scaling (blue solid lines). The results in Fig. 1(e)
- (i); fully corroborate our predictions, but, most importantly, they show that the real
Jacobian matrices, as obtained from Ai j and the nonlinear M, are profoundly different
than the commonly assumed random matrix ensembles. In fact, they are profoundly
different from each other, due to the Dynamics, despite the fact that the underlying
Topology is the same in all cases. As expected, the spectra P(λ ) of these Jacobians in
Fig. 1 (j) - (l) takes diverse forms, a unique fingerprint of each network’s dynamics.

Fig. 1. Analysis of Jacobian matrices. Here we examine a scale-free Ai j [4] coupled with three
different dynamics: (a) - (b) Gene regulatory dynamics [5] with different parameters and (c)
susceptible-infected-susceptible [6] model for epidemic spreading in Eq. 1. (d) - (i) Numerically
obtained Ji j (red circles) and confronted with analytically predicted scaling (blue solid lines). (j) -
(l) show eigen spectrum P(λ ) of these Jacobians with Dynamic exponents α , β and γ .
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The crucial point is that Eq. (2) introduces a link between the structure of Ji j, as
determined from the Topology (Ai j, and hence Si,S j), and the magnitude of its specific
entries, as affected by the Dynamics (α,β ,γ). Hence real Ji j, i.e. ones derived from
actual dynamics, are not extracted from the random matrix ensemble, but rather from a
profoundly different and currently unexplored ensemble, in which structure and dynamics
are deeply intertwined. Our scaling relation is mathematically solid because we have
tested it for many other dynamical systems also for instance, population [7], mutualistic
ecology [8] dynamics. Many research have been going on complexity-stability paradox
from few decades. Our piece of work shed a new light on this diversity-stability debate.
Our results are uncovering the true statistics of complex systems that shape the structure
of Ji j, and hence predicting the system’s actual response to linear perturbations.

Summary. We have uncovered a small set of Dynamic exponents that help us in transla-
tion of static structure into a dynamic stability matrix. With these exponents we found
that similar networks may have very different dynamic spectra depending on their dy-
namics. These spectra are fully predicted by the small number of exponents, so we can
predict precisely the stability of the system. These spectra are profoundly different from
the currently explored random ensembles, thus offering a conceptually novel solution
to the May’s stability paradox [9] eluding decades old challenge. Thus our results in
a richness of potential dynamic behaviors that is unaccounted for within the classic
random matrix framework. Now we can also understand the organizing principles of
stability and the crucial interplay between structure and dynamics.
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Multilayer networks meet databases:
v/e-cubes as the building blocks of networks
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1 Introduction

Databases are fundamental components of typical data analysis systems and processes.
While data analysis algorithms from statistics and machine learning are often defined
on a given input, such as a data table, databases allow us to store the raw data, to enforce
constraints guaranteeing some levels of data quality, and to efficiently manipulate (or
query) the raw data to obtain the data table(s) needed for the analysis. This is particu-
larly important when performing interactive and visual data analysis, where several data
dimensions, data subsets and aggregations have to be added and removed dynamically
to explore different views over the data.

In this work we present an extension of the multilayer network model [1] providing
database functionality on top of the idea of using the concept of layer to unify several
types of graph-based models. While the main contribution of this work is to provide
data manipulation operators for multilayer networks, allowing us to dynamically create
layers and tranform the data, our model also extends some features of the original mul-
tilayer model. First, not only the vertices but also the edges are allowed to be grouped
into different layers, which makes the application of the model more intuitive. Second,
attributes on vertices and edges as well as the ordering between layers are part of our
model and can be directly manipulated e.g. using an ORDER BY operator, whereas
they are left to custom software implementations in the original multilayer model. Sim-
ilarly, in the original multilayer model there is no explicit concept of data constraint to
specify the validity of a given network.

2 v-cubes and e-cubes as network model building blocks

If we use a (simple) attributed graph as an established data model for networks – what is
known as a property graph in the database world, then we can represent data as a set of
vertices and a set of edges associated to these vertices (V,E), in addition to attributes. In
a multilayer attributed network, vertices (and also edges in our case) exist inside layers.
As in the original multilayer model, layers are defined by aspects (called dimensions in
the database world, in particular in multidimensional databases and data warehousing),
resulting in vertex and edge cubes. Please notice that despite the similar names the cubes
defined in this work are clearly distinct from the concept of graph cube presented in [3],
where cube operations are based on aggregation (change of granularity), and edges are
not directly manipulated.
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(a) v-cube (b) e-cube

Fig. 1. A v-cube with three dimensions and an e-cube defined on two v-cubes

Fig. 1(a) shows an example of vertex cube over three aspects/dimensions, where
each layer/cell contains a set of vertices and the same vertex can be present in multiple
cells. Edge cubes are defined on pairs of vertex cubes (which can also be the same
vertex cube, or slices of a larger vertex cube), as in Fig. 1(b). The two ends of the edges
stored in an edge cube must belong to the two vertex cubes.

(a) (b) (c) (d) (e)

Fig. 2. Existing models represented as combinations of graph cubes: (a) Property graph, (b) Multi-
relational, (c) Generalized multiplex, (d) Multi-mode and (e) General multilayer

Fig. 2 shows some examples of how popular network models can be expressed
as combinations of v-cubes and e-cubes. The different configurations also define the
domains of the edges, constraining the data that is valid for each configuration.

3 Operators

For both v-cubes and e-cubes we can re-use the same operations defined for data cubes
in data warehousing, e.g., roll-ups, drill-downs, slicing, dicing, re-ordering and piv-
oting, not shown here for space reasons. In addition we can define network-specific
operators, three of which are shown in Fig. 3. (a) We can create new dimensions using a
function that given a vertex/edge indicates where in the new dimension the vertex/edge
would be present. An example is a topic detection function that classifies social media
posts into one or more topics. Another example is the dynamic creation or temporal
slices. (b) When a v-cube has been manipulated (e.g., sliced), we can restrict e-cubes
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defined on the original vertices to the new v-cube. (c) A third example are projection
operators, expressing edges in two-mode networks as edges within one mode.

(a) create dimension

(b) restriction (c) projection

Fig. 3. Some common operations on a (data/v-/e-) cube

4 An example application

After presenting the full data manipulation language, we will conclude the presentation
by showing how to express a process to identify online conversations about specific
topics in social media as a combination of cubes and cube operators, as done in [2].
This will be based on political Twitter communication data in Denmark and Sweden.

Acknowledgments This work was partially supported by the European Union’s Hori-
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Part XVIII

Social Networks
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Disasters and Polarization in Social Media
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1 Introduction

Despite increasing recognition of the relationship between social media and extreme
events scholarly research in this area is still limited. Existing research mostly focuses on
the function of social media in various phases of disaster management such as spread-
ing disaster preparedness information, providing early warnings, assessment of disaster
damage, facilitating response operations, providing actionable information to first re-
sponders, and enabling self organization among citizens and communities [1, 2]. In this
paper we aim to make two novel contributions: (1) Demonstrate that social media dur-
ing and after a disaster can also reveal fault lines of polarization in the society; and (2)
provide an alternative approach to measure polarization based on co-hashtag networks
during and after a disaster. Data for the study is based on tweets about the Soma min-
ing disaster in Turkey. On May 13th 2014, 301 workers died at the Soma Holding coal
mine in the Soma town of Manisa, Turkey. The incident is the deadliest mining as well
as workplace accident in the history of the modern Turkey [3] . We use Twitter data
accessed through Gnip, the subsidiary of the Twitter company. We analyze all tweets
that include the word “soma” or hashtag “soma” following the first three days of the
disaster. This time period starts with the first emergency call from the mine on May
13th and ends on May 17th, 3pm, the time that the last miners body was removed from
the mine . The volume of Twitter activity is presented in Figure 1.

We conceptualize polarization as a social phenomenon characterized by presence of
cohesive subgroups that have clashing views and positions along the lines of political
parties and ideologies with small number of individuals or organizations as intermedi-
aries between groups. Existing research shows strong presence of polarization in social
media platforms such as Twitter [4]. There is no scientific consensus on how to best
operationalize and measure polarization in social media. The most common approach
to measure polarization in social media is to first estimate the group membership of
each node in the network based on follower/friendship networks or text analytic tech-
niques, and use community detection algorithms [5]. However application of techniques
to non-English contexts as well as to multiparty systems is limited.

2 Results

For the analaysis we used hashtags that are tweeted at least 10 times.We constructed a
hashtag network by considering a link between two or more hashtags if they are used
in the same tweet. After removing the isolates, we utilized Louvain multi-level mod-
ularity optimization algorithm to identify community structures within the co-hashtag
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Fig. 1. Tweeter Activity on Soma Disaster May 13th-May 17th

Fig. 2. Hashtag Communities- Soma Disaster
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network [6]. This algorithm generated 13 communities as displayed in Figure 2. The
hashtags in the two largest communities convey substantially different meanings. The
first group mostly consist of religious sentiments and prayers whereas the second group
display anger, resentment, and calls for protests and boycotts around the country. Next
we analyze individuals tweeting behavior in order to see to what extent same individu-
als tweet in different hashtag groups. Table 1 shows the Euclidean distance between top
five hashtag communities based on users’ number of tweets in each group. The dissim-
ilarity between the group that is dominated by anger and call for protest hashtags, and
the group in which religious sentiments and prayers are the majority is relatively high.
This finding suggests that users tweeting in the religious sentiments group is not very
likely to participate in the anger/protest group or vice-versa. These dissimilarities may
also be indicative of polarization in the sense-making processes of Twitter users.

Group A Group B Religious Sentiments/Prayers Group C Anger /Protest
Group A 1175 1373 1188 1276
Group B 1206 797 895
Religious Sentiments/Prayers 1171 1156
Group C 749
Anger/Protest

Table 1. Euclidean Distance between Hashtag Communities

Summary. This paper shows social media behavior during and after a disaster may be
indicative of political polarization. We also provide an alternative approach to measur-
ing polarization based on co-hashtag networks. This approach may be useful for analy-
sis of non-English social media text data for which text analytic tools are considerably
limited.
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1 Introduction

People involved in everyday online social networking subjectively think that they have
more friends than most of their friends. However, in 1991 it was discovered that ”most
people have fewer friends than their friends have, on average” [2]. This phenomenon,
known as friendship paradox, does not only hold for the number of friends in social net-
works, but also for other properties, such as activity, virality happiness, number of part-
ners, etc. The friendship paradox is both statistical and behavioral [3], and its existence
is already shown in Twitter [4] and Facebook [5], but to the best of our knowledge it has
not been analyzed in details for Instagram. Using a dataset extracted from Instagram [6],
we investigate the existence of this phenomenon on different properties, such as likes,
comments, posts and hashtags on the followers and followees Instagram sub-network.
Using the same data set, we additionally represent hashtags as vectors/embeddings in
order to provide hashtags recommendation, which to the best of our knowledge have not
be done elsewhere. In our study, we rely solely on the available hashtags, unlike several
approaches in the literature where authors use multidimensional features like images [7]
and text [8]. This unique approach allows us to easily adapt them for data sets where
such multidimensional features are not available. This approach can be applied for ex-
ploration, control and prevention of spreading trends, represented as hashtags, across a
network [9]. The results from this work have been already accepted for publication in
[1], where the reader can find more details, while here we present the main findings.

2 Friendship Paradox in Instagram

There are plenty of directed activities in the Instagram network, such as follow users, al-
low to be followed, post images, videos, likes, comments, etc. In this sense, we rephrase
the friendship paradox as: i) Our followees have or do something more than us on aver-
age, and ii) Our followers have or do something more than us on average. In addition,
we consider two types of paradoxes: weak paradox - the user’s activities are compared
to his neighbor’s average (related to statistical aspect) and strong paradox - the user’s
activities are compared to his neighbor’s median (related to behavioral aspect).

From Fig. 1 we can observe that the weak friendship paradox represented as a per-
centage, exists for all of the analyzed activities when applied both to the user’s followees
(see Fig. 1(a)) and followers (see Fig. 1(b)). On the other hand, its strong variant does
not hold only for the total and unique hashtags for the user’s followees (see Fig. 1(a)).
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Fig. 1: Percentage of users for which the friendship paradox applies for various proper-
ties relating to: (a) the followees and (b) the followers.

By comparing Fig. 1(a) and Fig. 1(b) we see that, except for the number of hashtags,
the friendship paradox is stronger for the user’s followees than his followers for all so-
cial activities. This means that, unlike our followers which use numerous and diverse
hashtags, our folowees prefer the use of fewer, but more specific hashtags.

3 Hashtag Analytics and Recommendation

The usage of Natural Language Processing (NLP) on hashtags is helpful in Named
Entity Recognition (NER), sentiment analysis and other classification tasks in Insta-
gram. Several approaches solve this tasks on Instagram using additional information
like images [7] or text [8]. Our approach is based solely on hashtags embedded in a
multidimensional space using the Word2Vec method [10], making it more general.

In order to represent the hashtags in a vector space, we use neural network trained
with the hasthags that appear in a single post. The network has a hidden layer with size
defined by the desired dimension of the representing vector, whereas the input and out-
put layer are defined depending on the specific model we use. The ”bag of hashtags”
(BoH) method has as many inputs as hasthags in the post reduced by one, and one out-
put which is the excluded hashtag, while the ”hashtag pairs” (HP) method has one input
hashtag and one output which is one of the surrounding hashtags. After preprocessing
the Instagram dataset (hashtags with less than 3% occurrences were filtered) and split-
ting it into 90% training and 10% test sets, we train the two models with 64 and 128
nodes in the hidden layer over 50 epochs and compare the results with a baseline sta-
tistical (BS) model that gives recommendations according to previous occurrences of
different hashtags. After training, the coefficients obtained for each hashtag that refer to
the hidden layer form the vector representative of that hashtag. Our evaluation employs
the Recall at K (R@K) metric to measure the models’ quality (which is the average
number of relevant hashtags recommended in the top K.). From Table 1 we can con-
clude that the HP model outperforms the BoH model. Using the resulting vectors, which
represent hashtags, we can further calculate hashtag similarity, search similar hashtags,
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Table 1: The recall at K (R@K) metric

Model R@1 R@2 R@3 R@5 R@10

BS 0.0201 0.0366 0.0480 0.0703 0.1184
64D BoH 0.0617 0.0865 0.1035 0.1274 0.1661
64D HP 0.0779 0.1157 0.1435 0.1836 0.2414
128D BoH 0.0339 0.0477 0.0572 0.0713 0.0956
128D HP 0.0824 0.1189 0.1445 0.1801 0.2307

cluster the hashtags and get hashtag topic extraction on Instagram. We can also perform
arithmetic operations, such as: #helloween− #pumkin+ #christmas = #christmastree
and #sweden−#stockholm+#turkey = #istanbul

Summary. In this work we prove that strong and weak friendship paradox exist for
the number of followers, likes, posts, hashtags and comments, both regarding the fol-
lowers and the followees. Moreover, the friendship paradox is more obvious for user’s
followees rather than for his followers, excluding the number of hashtags. In addition,
we introduced a general method for obtaining high-quality hashtag representations in
multidimensional space and tested the obtained hashtag embedding on hasthag recom-
mendation. Compared to the baseline model our method achieved better results.
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1 Introduction

Over the first two months of 2019, at least 2,200 people lost their jobs in the news media
industry across the U.S. [4]. As full-time media positions disappear across the globe,
companies are turning to freelance labor to fill the gap, changing the media labor land-
scape in the process. For example, Vox Media has expanded its job listings for contract
and freelance positions without movement for full-time jobs [2]. As the industry faces
ongoing financial strains, the security of labor available to media workers is shifting.

Those shifts raise broader questions around the structure of unstable labor markets.
Almost all freelance journalists work on assignments for multiple publications, meaning
they constantly move among organizations [8]. As contract work becomes more preva-
lent across other industries—as in areas like transportation and food delivery—the free
flow of workers among companies becomes increasingly important.

Within news media, the flow of workers also influences the dissemination of infor-
mation and viewpoints. Past work has shown how consumption and distribution pat-
terns isolate news along political lines in the U.S., particularly in right-leaning media
[1]. If freelance journalists cannot move freely among publications across the politi-
cal spectrum, news production could also demonstrate this polarization, limiting which
perspectives reach certain audiences.

This problem is well suited for a complex networks perspective. By analyzing the
connections formed between organizations when they share workers, we can begin to
understand the structural characteristics of movement among companies in an industry
that is fundamental to our democracies. Journalism is an excellent case for studying
this question because journalists’ articles written in various publications enable tracking
their professional trajectories at a large scale.

This study examines the structure of digital journalism’s labor market through the
lens of 401 writers’ publishing histories over 3 years (June 2014 through July 2017,
most stories published in 2016-2017). Using a comprehensive sample of 6,567 news
stories across 14 major outlets such as The New York Times and Washington Post [9],
we construct a weighted network of digital publication connections based on how many
writers they shared. From this network, we first demonstrate that writers’ publishing
trajectories tend to follow common patterns across news outlets. Then, we show that
those patterns most closely align with the political leanings of the outlets in our sample,
rather than more traditional delineations like outlet medium or audience characteristics.
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2 Results

To test for the presence of structural patterns of movement among outlets, we identify
significant relationships between outlets based on the writers they shared [5]. We com-
pared the one-mode projection of the journalist–outlet bipartite network, weighted by
the number of shared journalists between each pair of outlets, to degree-preserving per-
mutations [3], identifying those pairs that shared more writers than expected by chance
based on the bipartite network’s structure.

Figure 1 shows the significant relationships among outlets (p < 0.05). These con-
nections first demonstrate that writers follow patterns in where they publish. This indi-
cates a structural trajectory that can determine the broad contours of a freelance jour-
nalist’s career. Second, this analysis identifies two distinct clusters of publications: One
low-density cluster that comprises nine publications and a clique of four outlets.

At first glance, these patterns don’t seem to align with common industry segmen-
tations. Traditionally, work that examines multiple outlets has divided them by their
publishing medium—comparing print newspapers to news websites, for example, or
radio to television [7]. In this network, though, medium does not seem to align with the
clusters we observe: Magazine contributors also write pieces for radio and digital-native
sites, for example (e.g., journalists shared by The Atlantic, NPR, and Vox).

To validate this observation, we categorize each outlet using a variety of metadata:
political leanings from Allsides [6], the city of its headquarters, audience size, age, and
income data from comScore (data collected for April 2019 and divided in quartiles),
and a broad manual coding of the outlet’s traditionally dominant medium (print, digital,
radio, television, or wire service). We then measure how frequently the freelancers in
our sample transition between categories for each classification, as a measure for how
well each describes the observed clusters.

Figure 2 shows the mean number of transitions per writer for each classification,
along with a 95% confidence interval. We find that the political leanings classification
has the lowest number of transitions per writer on average, meaning it best captures
the clustering seen in our network. Indeed, if we map the leanings of each publication
to the network in Figure 1, we see a dense cluster of right-leaning publications and a
loose grouping of left- and -center leaning ones. This finding suggests that the political
leaning of a news outlet, especially for right-leaning publications, is a key structural
factor in where freelance journalists will publish during their careers.

These results start to reveal a structural component to whether or not freelancers
find success in various outlets. Beyond the strength of the pitch and the track record of
the individual journalist, publications may look for specific peer institutions when eval-
uating freelance labor. Those heuristics have the potential to create inequality among
freelancers. The results also raise potential concerns around who is producing right-
leaning media in the U.S. If the freelancers who write for mainstream news sites don’t
also write for conservative media, and vice versa, that means on the one hand that right-
leaning sites are not drawing on the industry’s main freelance talent pool. On the other
hand, if more moderate writers are not contributing to those sites, or are stigmatized by
the broader industry for doing so, media production will see continued polarization. Our
study also indicates that organizational characteristics contribute to broader industrial
structures, which in turn shape and constrain the movement of freelancers and contrac-
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Fig. 1. Statistically significant connections observed among
the 14 publications in our sample (p < 0.05), colored to in-
dicate distinct clusters.
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Fig. 2. Mean transitions per writer
for each classification.

tors. Understanding the structure of an industry’s labor movement network is therefore
crucial for assessing what opportunities are available to which workers.
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1 Introduction 

In the offline world, one has contact with diverse groups of people. The composition of 
family members, old friends from school, colleagues, neighbours, and other acquaint-
ances can be very different set of people, also with regard to their attitudes and political 
preferences. Some cultural codes and meanings vary between these groups: opinions 
and norms that are acceptable in one group can be condemned in another. These differ-
ences can happen in the daily life (e.g., when husband and wife work together), how-
ever, members of the different groups do not meet that often; such as the role of ego is 
different in the different groups, and the acting out of these roles usually meets the 
expectations of the group. In contrast, the online sphere creates large space for opening 
boundaries between the diverse groups of the ego. If someone posts content to social 
media, all contacts from the diverse set of people can see and react to it. Thus, conflict-
ing expectations arise. In the words of Marwick and boyd [NM&S, 2011], networked 
audiences we encounter online moderate our behavior and activity in different ways 
than face-to-face audiences. 

The growing popularity of online social networks (OSNs) therefore creates more and 
more opportunity for context collapse. In this study, we examine the role of context 
collapse on the formulation of online communities, namely that how the existence of 
diverse groups affects if someone stays in or leave an online social network. In our 
planned project, we will analyse the role of context collapse in the abandonment of 
OSNs using the database of iWIW (international who is who, originally WiW). Earlier 
results explain and explore the mechanisms behind the leaving and collapse of the 
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online social network, iWIW from different points of views, however, the general role 
of context collapse has not been studied yet. 

2 Data 

iWiW was founded in 2002 and was one of the first online social networks in the world. 
At its peak, with its more than 3.5 million users, it was the biggest Hungarian OSN in 
a country with a population of 10 million, where this meant two-third of all Internet 
users. After 2010, with the appearance of Facebook iWiW started to lose its popularity 
and after the unstoppable decline in user activity, iWiW was finally shut down in 2014. 
While users of Facebook can also experience context collapse, we argue that it initially 
offered iWiW an escape from an increasingly heterogeneous environment. For some 
time early adopters of Facebook in Hungary were likely to encounter a more exclusive 
group of users on the new platform. 

3 Methods 

In our planned analysis we will examine the role of context collapse in the abandonment 
of the OSN. The dependent variable of the analysis is a binary variable that signs if in 
the given time-point the user is active or not active in the OSN. Based on our database, 
we can measure inactivity with two ways. One opportunity is the date of last login, at 
each user; the other option is the last date when the user added a new connection 
(friend). 

The main independent variables of the analysis are the ones, which measure context 
collapse. For measuring context collapse, first we have to detect different groups of 
contacts at the ego-network of each user and then examine the homogeneity or hetero-
geneity of these groups from different point of views. For the detection of these groups 
of contacts we use Louvain community detection algorithm. This method uses modu-
larity optimization and with its application, it is possible to typify the different groups 
of contacts for all users. After the detection of these groups, their comparison from 
different perspectives can be done at each user. These perspectives are limited by the 
database we use, but age, education and geographical location are available. Thus, the 
diversity of these contact groups is detectable from the perspective of education, loca-
tion and age; and we are also able to calculate the distance between the user and the 
average value of the contact groups. The measurement of the diversification of these 
contact groups can be made by different similarity measures, which represent the ap-
pearance or the lack of context collapse at each user. These measures are the ones, 
which will be be included in the analysis as the main independent variables. 

The other important factor in the analysis of the effect of content collapse on leaving 
the OSN is time. As the composition of the network is changing over time, we can treat 
our data as a dynamic structure. We take time into account on the level of years from 
2007 to 2012. The unit of analysis will thus be person-years and we will include both 
fixed (e.g. year of birth) and random (e.g. context collapse) effect variables in the re-
gression analysis, where we will treat the above described dataset as a panel data. 
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Over these variables, which measure context collapse, both fixed and random effect 
control variables will be included in the analysis, like gender, age of birth or number of 
contacts. Controlling for the latest mentioned variable is especially important, as the 
number of contact groups and thus the volume of context collapse strongly depend on 
the size of someone’s network. 

4 Expected results 

We examine, how these groups of contacts facilitate individuals’ decision on leaving 
the OSN, or which combinations of these circles contribute to individuals abandoning 
behaviour. Our results will provide contribution for the consequences of context col-
lapse, which can add further results for the understanding of filter bubbles and echo-
chambers. 
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1 Introduction

In the last years, cryptocurrencies have attracted massive attention from investors, in-
stitutions, policy-makers and the general audience. The public notoriety of Bitcoin,
together with its sizable price increase, led to an explosion of attempts to create the next
Bitcoin. Thus, a number of cryptocurrencies, often referred to as altcoins, and a vibrant
set of exchanges have emerged particularly due to the extremely low cost and effort re-
quired to create or mutate a new coin, with some being minimal changes to parameters
and branding of a pre-existing codebase. While many of these altcoins did not offer any
new technological advancement, there have been some successful attempts in creating
new cryptocurrencies that offered either significant technical innovation over the exist-
ing technology (e.g., Proof-of-stake in Peercoin) or introduced a wholly new idea (e.g.
Turing Complete as in Ethereum) [3]. Given the abundance of new coins being created
on a daily basis, it is natural to ask how well do traders detect cryptocurrencies that
offer genuine technological innovation and are likely to succeed? A related question is
whether the cryptocurrency community is attempting to collectively analyze and make
sense of this large array of altcoins or is it simply engaged in hype-based speculation?

In this work [2], we use an empirical approach to assess whether and when the dis-
cussions of cryptocurrencies are truth-seeking or hype-based. We rely on a novel data
set that combines measures of the main online forum discussion around cryptocurren-
cies with their price and volume history in exchange markets. Leveraging the literature
on finance, we assume price represents the perceived fundamental value of a coin and
treat its volatility as an indicator of information uncertainty around the technological
innovation of the cryptocurrency. Similarly, drawing upon collective intelligence liter-
ature and using three measures of experience (seniority), information diversity (degree
in the thread discussion network) and community engagement (equal participation by
all community members), we quantify the extent to which the community discussion
exhibits characteristics of collective sensemaking.

2 Results

Our results indicate a negative correlation between the quality of discussion measured
in terms of collective sensemaking and price volatility of the coin suggesting that for
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Fig. 1. The price volatility of the coins over two separate 100 day periods ending in November
2016 (top row) and January 2016 (bottom row) versus discussion variables: average age of the
users in the discussion (left column), normalized entropy of number of posts made by each user
(middle column) and the log degree of the discussion in the thread network (right column). All
three discussion variables have a negative correlation with price volatility, a measure of informa-
tion uncertainty.

“more serious” coins discussion is more likely to serve a truth-seeking role. Figure
1 shows that coins with more information available have equal participation by ex-
perienced contributors to the discussion (higher entropy of announcement posts made
by various users) and more diverse opinions measured in terms of access to other in-
formation sources (Degree of coin announcement page). In contrast, coins with high
information uncertainty tend to be discussed by less experienced and more narrowly
focused users. We replicate the same results using an objective measure of technicality
as a second operationalization of information uncertainty around the crypto coin. Ta-
ble 1 shows the result of multiple one-sided two-sample t-tests for the hypothesis that
the technical coins with more objective information available exhibit larger entropy,
degree, user age and less price volatility than non-technical coins. We observe that the
difference in means of all discussion quality variables is positive indicating that more
technical coins have more substantial discussion.

The content analysis of the forum also reveals that the discussion of more inno-
vative coins is more focused on the design and technical aspects. These results are
consistent with qualitative findings of [1] and suggest that there are people in the cryp-
tocurrency community who are mainly driven by market hype and view cryptocurrency
as an investment, while others are dedicated to the technological advancement of the
cryptocurrency ecosystem and view Bitcoin and its variants as a legitimate currency.

Summary. The public notoriety of Bitcoin led to creation of numerious cryptocurren-
cies, often referred to as altcoins. While many of these altcoins did not offer any new
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Table 1. The one-sided t-test for the difference of means between technical and non-technical
coins. The first row represents the observed empirical difference of means: X technical −
Xnontechnical . The second row shows the p-value of the Null hypothesis for the test H0: Non-
Technical mean > Technical mean for each variable except volatility. In the case of volatility, the
direction of the test is reversed and rejecting the Null for volatility indicates that volatility and
technicality as operationalizations of information uncertainty are related as non-technical coins
have higher volatility (uncertainty) than technical coins. Third row shows the 97.5% confidence
interval for difference of means: E[Xtechnical ]−E[Xnontechnical ]. Results also indicate that coins
with higher volume tend to be more technical and there is no significant relationship between
coin age, total discussion acitivity and the coin technicality.

Price Entropy Log Thread User Log Daily Coin Log Total
Volatility of Posts Degree Ages Volume Age Posts

Means Diff. -0.986 0.038 0.557 54.153 3.037 12.192 0.528
H0 P-Value 0 0.0185 0.00296 0.00704 6.09 ×10−5 0.453 0.102
97.5% CI (−∞,−0.71) (0.002,∞) (0.173,∞) (11.4,∞) (2.5,∞) (−194.4,∞) (−0.303,∞)

technological advancement, there have been some successful attempts in creating new
cryptocurrencies that offered either significant technical innovation over the existing
technology (e.g., Proof-of-stake in Peercoin) or introduced a wholly new idea (e.g. Tur-
ing Complete as in Ethereum). Given the abundance of new coins being created on a
daily basis, it is natural to ask whehter the cryptocurrency community is attempting
to collectively analyze and make sense of this large array of altcoins or is it simply
engaged in hype-based speculation?

Our results suggest that there is at least a subgroup of online enthusiasts who are
pursuing new technical coins and actively participate in their discussions if there is
enough public information available. Our findings highlight the varied roles of discus-
sion in the cryptocurrency ecosystem and suggest that discussion of serious coins may
be oriented towards earnest, perhaps more accurate, attempts at discovering which coins
are likely to succeed. In other words, as there is less uncertainty about the coin’s techni-
cal merits, the discussion tends to become more truth-seeking. Finally, we hypothesize
that the same discussion patterns may also be present in other forms of social media.
In order to distinguish between hype, fake news, and similar noise, one can look at the
character of the discussion surrounding the news item, and promote those that exhibit
characteristics of collective intelligence.
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Humans are organized in social systems, which implies that our actions as individ-
uals hold the potential to trigger spontaneous reactions in our peers, leading to complex
dynamics. In order to understand human collective behavior, it is necessary to find the
laws that relate the individual actions to the collective response of social systems.

This topic has received considerable attention and has been approached from several
perspectives [2, 1, 4, 5]. Our goal in this work is to unveil the mechanisms that drive the
collective response of social systems to individual actions by developing models that
describe the relationship between the intensity of the individual stimulus and the size
of the collective response.

10 2 100 102 104
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10 1

f(
)
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Fig. 1. Empirical efficiency distribution corresponding to a Twitter conversation.

We use the number of actions performed by an actor (an agent or individual) em-
bedded in a social system; that is, her activity (A), as a proxy for the intensity of the
individual stimulus. Likewise, we choose the number of reactions that are triggered by
an actor in her peers, or response (R), as a proxy for the size of the collective response.
To relate these two magnitudes we have generalized the efficiency metric, introduced
by Morales et al. [3] in the context of Twitter, to other social systems, being the actor
efficiency defined as η = R

A .
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We focus in studying parsimonious models to explain the empirical distribution
of efficiency (see Fig. 1) for different social systems. To this end, we have developed
three domain-independent statistical models that provide a description of how a social
system reacts to the actions of its components. Each of them is based on minimal sets
of assumptions that define different levels of dependence between R and A.

The models that we have developed are the Independent Variables model (InV),
the Identical Actors model (IdA) and the Distinguishable Actors model (DiA). In the
InV model the response of the system is independent with respect to the activity of the
individual. In the IdA model, the response of the system depends on the activity of the
individual, but the system is agnostic with respect to the individual that stimulates it.
Finally, in the DiA model the response is determined both by the specific actor that
performs the actions and by her activity.

We have applied these models to three social systems of different nature: Twitter
conversations, the scientific citations network and the Wikipedia collaboration environ-
ment. The independent variables model captures the universal structure of the distribu-
tion of efficiency and explains its independence with respect to changes in the activity
distribution, both empirical results found in previous works [3]. Additionally, it repro-
duces the efficiency distribution for the scientific citations network. The identical actors
model improves the previous one by naturally inducing correlations between A and R
that are comparable to those found in the data and reproduces the right tail of the effi-
ciency distribution for the Twitter and Wikipedia datasets. Finally, the distinguishable
actors model accurately fits the data for the whole range of efficiency.
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1 Introduction

Political polarization is a social phenomenon that has several consequences in peoples
lives and whose nature is not completely understood. We say that a population is per-
fectly polarized when divided in two groups of the same size and opposite opinions. In
this work, we have studied the polarization phenomena around Twitter conversations
concerning different topics with clearly opposed opinions: electoral process with two
candidates and social unrest. In each of the conversations, we have found a bipolar opin-
ion distribution and a high value of the polarization index. In particular, we will present
results of following Twitter conversations:

– The second round of the 2017 Chilean elections [1], where voters had to choose
between the final two candidates.

– The Catalans independence process, where there are two clearly opposed positions
(in favor and against independence)

To this end, we have built retweet networks and applied the model to estimate opin-
ions proposed in [2], in which a minority of influential individuals propagate their opin-
ions through the social network. The model takes into account two types of users, elites
and listeners. In this model elite users have a fixed opinion that remains constant and
acts like seeds of influence. In contrast, the opinion of listeners is unknown and will be
estimated from their social interactions.

2 Methodology

2.1 Datasets

To build the datasets analyzed on this work,all the tweets were retrieved using the Twit-
ter Streaming API. This API allows downloading tweets matching a set of keywords
associated with each of the topics.

The final datasets are composed of 203,612 messages posted by 68,048 differ-
ent users between December 11th and December 17th, 2017 in the case of Chileans
elections and 36,090,661 messages written by 2,511,319 users from 15/09/2017 to
04/11/2017 in the Catalan independence issue.
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2.2 Model to stimate user opinions

To infer the opinion of the users participating on the Twitter conversations we use the
methodology introduced in [2]. We use a model based on the De Groot process that
estimates opinions of users who interact on a social network from a minority of hubs
whose opinion is known. In the model we have two types of users, elite and listeners.

The model assumes that we know with certainty the opinion of the elite.Thus, elite
users have a fixed opinion that remains constant and act like seeds of influence. Elite
users must have a strong constant opinion because we will keep it fixed. A user that fre-
quently participates in the conversation can be considered to be engaged in the subject
and, consequently, to have a well defined opinion. On the other hand, as the elite users
will be seeds of influence, we need them to be relevant in the network, that is, they have
a large number of retweets. We calculate the community structure of the most active
users with a large number of retweets received and we analyzed the profile of each user.
Finally we have assigned 64 elite nodes with the value 1 and 54 with -1 in the case of
the Chilean elections and 184 with 1 and 139 with -1 in the independence of Catalonia
issue.

The rest of the nodes are listeners. Initially their opinion is neutral and will be
iteratively updated as the mean opinion of her incoming neighbors:

Xi(t +1) =
∑ j Ai jX j(t)

kout
i

, (1)

where Ai j represents the elements of the retweet network adjacency matrix, which is 1
if and only if there is a link from j to i, and kout

i corresponds to her out degree. The
process is repeated until all nodes converge to their respective Xi value, lying in the
range −1≤ Xi ≤ 1. Thus, the results of the model are given in a density distribution of
nodes’ opinion values P(X).

2.3 Opinion Polarization

We will measure the political polarization of the conversation from the resulting density
distribution of nodes opinion values P(X). The polarization is given by [2]:

ρ = (1−|∆A|)d (2)

where
|∆A|= |P(X > 0)−P(X < 0)| (3)

and 2d is the distance between positive and negative average opinions.
If ρ = 1 the distribution is perfectly polarized. In this case the opinion distribution

function is two Dirac delta centered at−1 and +1 respectively. Conversely, ρ = 0 means
that the opinions are not polarized at all.

3 Results

In the case of Chileans elections, we focus on analyzing the political polarization that
emerges and tracking its evolutions during the week preceding the elections and the
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final voting day. To this end, we first estimate the opinion of Twitter users from a mi-
nority of elite users, whose opinion was known. Next, we measure the resulting political
polarization and analyze its evolution during that week (see fig.1). We find a shift on the
opinions of users and the political polarization on the voting day. We explore to which
extent this change on the behavior is explained by the engagement of new users com-
menting on the elections just that day or because users changed their minds during the
last day. Finally, we show that the increase of the polarization observed on the previous
day to the election is explained by a propaganda behavior of users who were already
engaged to the conversation. However, the decrease in the polarization observed on the
election day was caused by new users not so engaged to the political debate that entered
the conversation acting as bridges between the two sides.

12 13 14 15 16 17

D

0.3

0.4

0.5

0.6

0.7

r

Fig. 1. Evolution of the probability distribution of the polarization index,ρ , for the retweet net-
works starting on December 11th until day D of 2017 Chilean Presidential elections. In dotted
line, the values corresponding to the electoral campaign period 11-17December 2017 without
taking into account the users who only participated on the voting day.

In the Catalan independence issue, we analyze polarization through tweets about the
topic published in the period between 09/15/2017 and 03/11/2017. During this period
important events occurred, the most relevant being the celebration of a referendum on
independence not approved by the Spanish Government. The resulting distributions
present a bimodal character with a small intermediate third pole, what shows a less
polarized society, with individuals with not so extreme opinions. We find that the more
active, engaged and influential users hold more extreme positions.
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1 Introduction

Opinion dynamics is among the most important topics of complex network sciences.
Extensive studies have been conducted to build mathematical models describing hu-
man interactions based on certain existing theories in sociology, social psychology, and
complex sciences, e.g., balance theory [1], social comparison theory [2], cognitive dis-
sonance theory [3], and social power theory [4], etc.

Emergence of extremism has been observed as a part of opinion dynamics in many
social systems. To provide an explanation to such observations, the notion of extreme
agents who intrinsically maintain a low susceptibility to persuasion and high persistence
of opinion is typically presented. Such agents are also labeled as zealots, extremists, or
inflexibles interchangeably. A few existing studies demonstrate that the presence of
extremists persisting on long-lasting attitudes may swap a large part or even a whole
of the population, causing a social network, with an open conflict, to end up being
separated into different or even opposing opinion communities [5].

Motivated by observations that (i) assuming the pre-existence of extreme opinions
does not explain how they emerge at the first place; and (ii) the existence of hatred
may not necessarily be the force driving the emergence of extremism, we propose a
new approach that allows extremism to emerge from largely “normal” actions that are
less drastic than hatred or violence, which may appear to be quite similar to consensus
making in the classic bounded-tolerance models, with the only difference that the pair-
wise consensus making could be slightly or significantly biased towards the two ends
of the opinion spectrum. That is, instead of agreeing on a central value between two
opinions in consensus making as that in the classical Deffuant model [6], we let right-
wing opinion holders agree on an opinion that is to a certain extent biased towards right,
while left-wing opinion holders’ consensus tends to be somewhat biased towards left.
It is shown that under such case, the normal consensus making, with a certain level of
bias which may arguably be a part of human nature, may allow the emergence or even
prevalence of extremism. This may help explain why extremism ideas can be observed
in almost any human societies.

Our studies then further consider the effects of a few factors that arguably may be
observed in many social systems. Due to length limit, only the results for one of them
shall be reported in this abstract. That is, extremists tend to be less tolerant of different
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opinions [7, 8]. We show that the factor, in fact, offers moderate opinions a better chance
to survive and contributes to significantly dwarf the size of the extremist communities
rather than helping them to prevail. Such observations, to a certain extent, may help
explain why, though extremism widely exists in most social systems, extreme opinions
seldom prevail to become the mainstream opinions of human societies.

2 Results

We consider a social network whose opinions varies from 0 (extremely hate) to 1 (ex-
tremely like). In a network with a certain tolerance range identical across the entire
population, it is shown that in the absence of bias, all agents converge to a few major
opinion clusters over time. Under the effects of bias, however, the major clusters tend
to shift towards the two ends of the opinion axis. The bias in local interactions leads
to the emergence and persistent existence of the clusters holding extreme opinions, and
concurrently the decline of clusters holding moderate opinions (see Fig. 1).

Fig. 1. Illustration of temporal distributions of opinions of 20000 agents connected into an ER
network with an average nodal degree of 20 without (top) and with (bottom) local bias. Each
time step at which the temporary opinion distribution is recorded corresponds to 20000 pair-wise
interactions.

We then formulate the tolerance range as a function that reaches its maxima and
minimas at the neutral opinion (opinion 0.5) and the two extreme opinions (opinion 0
and 1), respectively. Figure 2 shows that regardless of the bias factor, the peaks closer to
the two ends of the opinion axis quickly form up while moderate opinions keep evolv-
ing. This is largely due to the narrower tolerance ranges of extreme agents, making their
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communities stop adopting newcomers and maintain their current sizes. The extremists’
low tolerances offer a higher chance for their persistence but diminish their chance to
grow in popularity. The observations may provide an explanation to why communities
of extremists can emerge and persist widely in many real-life societies yet rarely prevail.

Fig. 2. Time evolution of opinions in a Facebook ego network of 4039 nodes without (top row
panels) and with (bottom row panels) bias. The tolerance range is largest at the centrist opinion
and linearly narrowed down as the opinion shifts towards the two extremities. Each time step at
which the opinion distribution is recorded corresponds to 4039 pair-wise interactions.

Acknolwledgement: This work is partially supported by Ministry of Education,
Singapore, under contract MOE2016-T2-1-119.
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1 Introduction

Online social networks provide platforms for communication, interaction and collabo-
ration between friends. They allow us to expect the realization of the effective learning
support using online communities. However, it is necessary to further understand the
relationship between both online and offline social behavior as discussed in [1].

The Tobitate! Young Ambassador Program is a Japanese public-private partnership
aimed at helping Japanese students study abroad [2], launched in 2014. The program
recruits students twice a year to support studying abroad, and the students adopted in the
program will study abroad after the joint pre-training as TOBITATE students, moreover,
the joint post-training is conducted after the study abroad. The desired result is for the
students to form a learning community through a common program, and for the program
to build a globalized human resources development community.

In this work, we evaluate the learning support in the TOBITATE program through
analysis of Facebook friendship network combined with student data from the program.
We focus on the Facebook Group [3], which is reported as main online community
for the participants by the alumni association of the program. The Facebook Group
participants include college students, office members who manage the program and
small number of high school students who we ignore here. In order to examine network
characteristics, we use the following participants’ attributes;

– Class that represents when the participant joined the program. We use numbers
corresponding to the student’s participation period as labels. The office member
are labeled as zero.

– Course selected by the student in the program. They depend on the plan of study
abroad such as A) natural science, B) unique challenge, C) world-leading institu-
tion, D) emerging economies and E) regional development.

– Prefecture where the university to which the student belongs originally is located.
There are 47 prefectures in Japan, and we assign the numbers in order from the
north. For example, 13th prefecture represents Tokyo.

– Country where the student mainly studied abroad.

We use only public available friendship data on the individual Facebook pages and the
personal information for the nodes of TOBITATE students are provided by the Japanese
Student Services Organization (JASSO).
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Fig. 1. The distribution of friendship links in TOBITATE Facebook group and visualization of
friendship network. The color of dots represent classes of participants. The purple, blue and red
colors correspond to staff members, 1st and 10th TOBITATE students, respectively.

2 Results

We found that Facebook play an important role in forming a small-world network as the
learning community for participants of TOBITATE program. The network consists of
3,265 participants and 111,977 friendship ties as of April 11, 2019. There are 45 office
member to manage the program and 3,220 TOBITATE students up to 10th generation.
The network has properties of small-world network, whose average shortest path length
for 2.33 and the average clustering coefficients for 0.247. We show its degree distribu-
tion and the visualization in Fig. 1, where the color of dots represent classes of partic-
ipants. It is clear from the visualization result that there are communities for classes.
As shown in Fig. 2, the friendship ties between different attribution types increase as
the size of these end nodes except for the class case. In the class case, moreover, the
students of similar generations tend to have friendship relations and the office members
are connected equally to all classes. This is because the program provides opportunities
for similar classes to form a learning community through the joint pre- and post-training
to study abroad in offline. As expected, therefore, this results show that offline contact
opportunities are helping to form online friend relationships, and program office mem-
bers contribute to build the learning community with properties of small-world network.
This fact also appears that the office members have higher betweenness centrality than
the other classes’ one.

Summary. There remains a need for practical applications of online social network
analysis, such as student learning support. We have evaluated the learning support in
the Japanese study abroad program, which is named as TOBITATE program, through
analysis of Facebook friendship network combined with student data from the program.
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Fig. 2. Networks of node’s attribution. The attribute types are depicted as nodes, and their size
is scaled to the size of their corresponding attribute types. We only show the nodes having more
fifty size in below two networks. The width is proportional to the total number of their links and
self-loops are removed.

We have observed that the offline contact opportunities formed online friendships and
that the support of communicators helped to build a learning community across the
generations. Our study contributes to realize the effective learning support using the
online community.
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1 Introduction

Digital technologies have a pervasive effect on our society. They augment or transform
various previously analogue processes of value creation, capture, and exchange [1,2].
Hence, on the labour market, the skillful development and application of relevant digital
technologies are in strong demand. However, early research findings indicate that the
labour demand of certain tech industries is not met. The talent pool does not grow at the
pace of industry demand and precise skill requirements related to growing technologies,
such as Artificial Intelligence (AI), remain opaque [3].

This work proposes a network perspective in order to empirically identify the rele-
vant ICT skills related to AI, how their composition changes over time, and how they
could be predicted with online data. With the example of the US tech sector, two data
sources are employed: The US’ most popular online tech-job platform dice.com allows
to relate ICT skills, in a network structure, from an industry perspective. Two skills are
connected in an industry demand network, if they are jointly required by the same job
advertisement. In addition, data from the online encyclopedia Wikipedia allows to cre-
ate a network on the online knowledge side of ICT skills4. Here, skills are related in a
network, if their respective articles are connected by a reference hyperlink (Figure 2 in
the Appendix illustrates.

Similarly, past skill networks can be constructed: Information about previous job
advertisements is stored in older versions of dice.com on the web-archive5 since 2004
and Wikipedia’s reference history allows to reconstruct article networks at any point
in time during the history of the encyclopedia. Over time, composition developments
of the skill networks can be compared between and within the two network environ-
ments. The underlying hypothesis is that developments in the online knowledge net-
work (Wikipedia) proceed changes in the industry demand network (dice.com). While
it is one of the main challenges of this work to assess the validity of this hypothesis,
previous studies have shown that the edit activities of the Wikipedia crowd enable early

4It is reasonable to assumed that Wikipedia article editors possess relevant topical knowledge
on the digital skill the edited article is about.

5http://web.archive.org/web/*/http://www.dice.com/jobs
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predictions on movie sales [4], electoral popularity [5], stock prices [6], knowledge
hubs [7] or even global spreading of diseases [8].

2 Results

For the first exploratory part of the research, two ego-centred networks are regarded: All
job postings advertised with the tag ”Artificial Intelligence”6 on dice.com on Septem-
ber 14th, 2019, are considered. Skill tags are connected as nodes in a network, if they
appear in the same advertisement. Similarly, all articles linked with the Wikipedia arti-
cle ”Artificial Intelligence”7 and the articles they refer to are connected in a network8.
For both networks, a common set of most relevant overlapping skill tags are identified9.
With the use of the Wikipedia edit history and the web-archive, the date, when these
tags entered the respective ego-centred AI-networks on both Wikipedia and dice.com
are registered10. On average, skill nodes joined the Wikipedia AI-network 15 weeks
before they appeared in relation to AI on dice.com, as illustrated in Figure 1.

Fig. 1. In both ego-networks of AI (Wikipedia and dice.com), new nodes join over time. How-
ever, nodes entered significantly earlier on Wikipedia. For a set of selected skills, on average,
their articles have been linked to ”Artificial Intelligence” about 15 weeks before they had been
announced on job advertisements about AI.

With this first indication of the predictive potential of Wikipedia data on digital
skills, future extensions of this work focus on an identification of AI-cliques by clus-

6https://www.dice.com/jobs?q=Artificial+intelligence&l=
7https://en.wikipedia.org/wiki/Artificial_intelligence
8Nodes can, at most, have a distance of one iteration from the original AI article.
9ApacheMX NeT, Big data, Caffe, Computer vision, Data mining, Data science, Deep learn-

ing, Keras, Machine learning, Natural language processing, Neural networks, Predictive analyt-
ics, Python, PyTorch, TensorFlow, Theano, R, RNN

10For five of the key skills it was possible to find the entry into the respective networks.
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tering algorithms and under the consideration of all relevant skill tags that are currently
in use on dice.com and their respective Wikipedia articles. Moreover, future extension
take centrality metrics, e.g., Eigenvector centrality, into account for comparing the state
and development of skill nodes in both network environments. Lastly, the comparison
of network similarities, e.g., Jaccard similarity, allows future investigations to evaluate
the development of the AI-cliques within and across the two network environments. In
addition, following investigations should take regional digital knowledge geographies
[9] into account, too.

Overall, the insights of this project can support businesses in developing a data-
driven strategy for the acquisition and the development of adequate skills needed to
implement and leverage new technologies at best. Furthermore, the empirical relation-
ship of digital skill sets will help to establish a common taxonomy to be used by policy
makers, education providers, and recruiters, so that job market mismatches can be re-
duced. Lastly, a potential predictive power of the online knowledge network could help
to develop farsighted programmes for the training of digital skills in the future.

Summary. With the use of online data from the tech job platform dice.com and the
online encyclopedia Wikipedia, two networks of digital skills are created around the
topic of Artificial Intelligence. Initial research indicates that new skill tags first join the
Wikipedia network, before they appear in AI-related job announcements on dice.com.
The findings of this work could be used in order to create a data-driven strategy for the
acquisition and the development of adequate skills needed to implement and leverage
new technologies at best.
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3 Appendix

Fig. 2. Two skill networks are constructed with the example of Wikipedia articles (lhs) and
dice.com job advertisements (rhs). The stronger the edges between the nodes, the more references
articles share with each other / the more jobs have jointly advertised the same skills. The exam-
ple of the nodes, most strongly connected to the software TensorFlow, serves as an illustration.
TensorFlow belongs to the field of machine learning skills and was written in the programming
languages Python and C++. Considering the subgraph of these four tags, exclusively, one can
see that C++ is more strongly connected in the online knowledge network than in the industry
demand network. This could potentially be explained by the fact that C++ is less relevant for the
application of TensorFlow, than it was for the development of the software.
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Part XIX

Synchronization, Resilience and
Control
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1 Introduction and preliminars
Several authors have dedicated their investigation to the study of the information the-
ory and its applications. The amount of information produced by a network may be
measured by the mutual information rate. This measure together with the Kolmogorov-
Sinai entropy are expressed in terms of the conditional Lyapunov exponents. Also, it
is well known that chaotic systems can be synchronized. The recognized potential for
communications systems has driven this phenomenon to become a distinct subfield of
nonlinear dynamics, see [1], [2], [3] and [6]. Information theory and synchronization
are directly related in a network. Motivated by the theoretical and practical connection
between the information invariants (or measures) and the phenomenon of synchroniza-
tion, our purpose in this work is to analyze the relations between the mutual information
rate, the Kolmogorov-Sinai entropy and the synchronization in the space of complete
networks of order N. The networks topologies are characterized by circulant matrices
and its conditional Lyapunov exponents are explicitly determined. For different types of
discontinuous local dynamics, necessary and sufficient conditions for the occurrence of
synchronization with or without the negativity of the conditional Lyapunov exponents
are presented. Some properties of the mutual information rate and the Kolmogorov-
Sinai entropy are established, depending on the topological entropy of the individual
chaotic nodes and on the synchronization interval. The novelty of these results is estab-
lished in comparison with the studies presented in [2], [3] and [6].

Consider a network of N identical chaotic dynamical oscillators or units, described
by a connected and unoriented graph G = (V,E), with no loops and no multiple edges.
In each node the dynamic of the oscillators is defined by ẋi = f (xi), with f : Rn→ Rn

and xi ∈ Rn is the state variables of the node i. Throughout this work we will consider
the space of complete network of order N with N(N−1)

2 edges, will be denoted by KN .
Notice that every vertex of G has degree N−1. Consider A the adjacency matrix of KN
and D = diag(N−1, . . . ,N−1), then L = [li j] = A−D represents the laplacian matrix
of the complete graph and is written in the following form,

L =




−(N−1) 1 1 . . . 1
1 −(N−1) 1 . . . 1
. . . . . . . . . . . . . . .
1 1 . . . 1 −(N−1)


 .
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The matrix L has exactly two eigenvalues µ1 = 0, a simple root, and µ2 = −N, with
multiplicity N− 1. The dynamics of these N coupled oscillators can be expressed by
the following system of differential equations:

ẋi = f (xi)+σ
N

∑
j=1

li jx j, (1)

where i = 1,2, ...,N, σ > 0 is the coupling parameter, see, [1], [3], [4] and [5]. Let f ′ be
the derivative of f , then the jacobian matrix of this network KN has also two eigenvalues
λ1 = f ′, also a simple root, and λ2 = f ′−Nσ , with multiplicity N−1 and is written as
follows,

J =




f ′− (N−1)σ σ . . . σ
σ f ′− (N−1)σ . . . σ
. . . . . . . . . . . .
σ σ . . . f ′− (N−1)σ


 .

Every matrix associated with a complete network KN has a certain regularity, both
matrices L and J are circulant matrices, so they are diagonalizable and have the same
eigenspaces. In this context the following results are proved and numerical studies are
included in [5].
2 Local dynamics: discontinuous piecewise linear maps s > 1
In this section we consider the space of all the complete networks KN , given by Eq.(1),
where the local dynamics in each node is defined by f : I ⊂ R→ R, a discontinuous
piecewise linear map with constant slope s > 1 everywhere. We consider the following
parameters space Σ+ =

{
(N,s,σ) ∈ R3 : N ∈ N\{1} ,s > 1,σ > 0

}
.

Property 1. Consider the (KN ,Σ+) space. Let f : I→ R be a discontinuous piecewise
linear map with slope s > 1 everywhere. The synchronization interval of KN is given by

σ1 =
s−1
Ns

< σ <
s+1
Ns

= σ2. (2)

The chaoticity of the local dynamics is measured by the topological entropy of f ,
i.e., htop( f ) = log |s|.
Proposition 1 Consider the (KN ,Σ+) space. Let f : I → R be a discontinuous piece-
wise linear map with slope s > 1 everywhere, Iσ be the synchronization interval, given
by Eq.(2), and Iλ−⊥

be the interval where λ⊥ ≤ 0. It is verified that:

(i) Iσ ∩ Iλ−⊥
6= /0 if and only if 1 < s < 1+

√
2;

(ii) Iσ ∩ Iλ−⊥
= /0 if and only if s≥ 1+

√
2.

Proposition 2 Consider the (KN ,Σ+) space. Let f : I → R be a discontinuous piece-
wise linear map with slope s > 1 everywhere, Iσ be the synchronization interval, given
by Eq.(2), and Iλ−⊥

be the interval where λ⊥ < 0. It is verified that:

(i) for 1 < s < 1+
√

2,
(a) if σ ∈ I−σ = Iσ ∩ Iλ−⊥

, then IC = HKS;
(b) if σ ∈ I+σ = Iσ \ I−σ , then IC increases and HKS decreases;

(ii) if s≥ 1+
√

2, then IC increases and HKS decreases, with IC 6= HKS, ∀σ ∈ Iσ .

561

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



3 Local dynamics: discontinuous piecewise linear maps |s|> 1
Through this section we study complete networks KN , where the local chaotic dynamics
are defined by f : I = [b1,b2]⊂R→R, a discontinuous piecewise linear map, with con-
stant slope |s|> 1 everywhere, where Σ±=

{
(N,s,σ) ∈ R3 : N ∈ N\{1} , |s|> 1,σ > 0

}
.

Let r1 be the only positive real root of the polynomial s4−2s−1 = 0 and r2 be the only
positive real root of the polynomial s4−2s2−2s−1 = 0. Notice that 1 < r1 < r2.
3.1 Equal amplitudes of the subintervals with slope s > 1 (a+) and slope s <−1 (a−)

Proposition 3 Consider the (KN ,Σ±) space. Let f : I → R be a discontinuous piece-
wise linear map with slope |s|> 1 everywhere, Iσ be the synchronization interval, given
by Eq.(2), and Iλ−⊥

be the interval where λ⊥ < 0. For a+ = a−, it is verified that:
(i) Iλ−⊥

⊂ Iσ if and only if 1 < |s|< r1;
(ii) Iσ ∩ Iλ−⊥

6= /0 if and only if r1 ≤ |s| ≤ r2;
(iii) Iσ ∩ Iλ−⊥

= /0 if and only if |s|> r2.

Proposition 4 Consider the (KN ,Σ±) space. Let f : I → R be a discontinuous piece-
wise linear map with slope |s| > 1 everywhere, Iσ be the synchronization interval,
Eq.(2), and Iλ−⊥

be the interval where λ⊥ < 0. For a+ = a− and 1 < |s| < r1, it is
verified that:
(i) if σ ∈ Iλ−⊥

, then IC = HKS;

(ii) if σ ∈ Iσ \ Iλ−⊥
and σ1 <

√
s2−1
N , then IC increases and HKS decreases, with IC 6=

HKS;

(iii) if σ ∈ Iσ \Iλ−⊥
and σ2 >

√
s2+1
N , then IC decreases and HKS increases, with IC 6=HKS.

3.2 Different amplitudes of the subintervals with slope s > 1 and slope s <−1

Proposition 5 Consider the (KN ,Σ±) space. Let f : I → R be a discontinuous piece-
wise linear map with slope |s|> 1 everywhere. Consider the measures IC and HKS, with
a+ 6= a−. If IC = HKS, then |s−Nσ |< 1 and a+ > a−.
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1 Introduction

Beam network models (BNM) are extensively used to model fracture of materials sub-
ject to external stresses, especially in cases in which the material at hand exhibits a com-
plex microstructure. A typicial example of complex micorstructure is that encountered
in fibrous materials such as bone, which consist of a complex and multi-scale network
of fibers and cross-links. The edges of such a networks can be treated as beams, load
carrying elements that deform and break [1]. BNM, as opposed to even more simpli-
fied models such as random fuse models, or random spring models, explicitly preserve
fundamental features of continuum mechanics such as the tensorial nature of stress and
strain, and the conservation of linear and angular momentum. This allow to ’tune’ them
to reproduce, in principle, macroscopic elastic properties of any type of material.

In order to ensure strength and reliability of materials that can be modelled as beam
networks, design rules and paradigms need to be adapted to account for the statistical
variability of materials properties. In the present investigation, we illustrate this for
a simple design problem, namely the optimal configurations of a uni-axially strained
bundle of load-carrying brittle fibers with variable amount of cross links. In the absence
of structural disorder, this problem has a trivial solution which, however, turns out to be
the worst possible solution if the system is large or the material is strongly disordered.

2 Results

When an axial load is applied to a fully connected network (FBN) (Figure 1), it is
evident that initially the cross-link (CL) beams do not carry any load. The basic question
we are asking is thus: Assuming that CL beams are associated with a deterioration in
strength of the connecting load-carrying (LC) beams, what is the optimal degree of
cross linking for a system of given size L (which defines the linear dimension of the
network) and given Weibull exponent β of the strength distribution of the elementary
beams (i.e., degree of material disorder).

We consider a situation where the introduction of cross links weakens the load carry-
ing beams as the ’welds’ connecting the beams weaken the beam structure (an example
are chemically cross linked carbon nanotubes where the chemical cross links represent
imperfections in the otherwise regular sp2 bonding network, [2, 3].) In our model, we
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Fig. 1. A transversely propagating crack in BNM.

introduce such weakening by randomly choosing one of the four LC beams that connect
to a newly introduced CL beam, and multiplying its strength by a factor ft ≤ 1. This
introduces a trade-off between strength reduction of the LC beams, and a potential gain
in strength due to cross linking. The resulting overall strength is, for different values of
ft and β , shown in Figure 2 versus the respective cross-link ratio.
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Fig. 2. Effect of cross-linking on mechanical strength of fiber bundles, when cross linking intro-
duces damage into the load carrying beams. Strength vs. cross-link ratio, number of realizations
N = 20 for each data point. After introducing each cross link, 1 of the 4 LC beams connecting to
that link is weakened by reducing its strength by a factor ft . Original beam strengths are Weibull
distributed with shape parameters β = 1.5,β = 4.0 and β = 20.0, system size is L = 256.

In the limit of low disorder (Figure 2, right), it is evident from the figure that the
introduction of cross links is unfavorable as even low cross link ratios reduce the overall
strength by a factor close to ft . Remarkably, a small knock-down effect on strength is
manifest even for ft = 1, indicating that a cross-linked bundle of fibers is here weaker
than its unconnected counterpart. This can be understood from the different failure
modes of unconnected fiber bundles and of connected beam networks: For a connected
network, lateral load re-distribution leads to localized damage clusters which form as
weaker-than-average beams fail in a correlated manner and that extend in lateral direc-
tion. In studies of random fuse networks, such damage clusters were shown to control
system strength in a manner very similar to small cracks that become critical at the
failure stress [4, 5]. Thus, we observe that in a material with low disorder, cross linking
may reduce strength even if it does not introduce damage, because cross links here fa-
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cilitate the formation and lateral propagation of a critical crack which is impossible as
long as the system consists of unconnected fibers. The effect is, of course, exacerbated
if in addition the cross links are associated with damage (reduction in strength) of the
load carrying fibers.

In the high disorder limit, on the other hand, introduction of CL beams leads to
a significant strength enhancement even if the associated damage to the LC beams is
significant (Figure 2, left). In this limit, FBN made of intact beams ( ft = 1) are strongest
with a strength that exceeds the strength of a bundle of isolated fibers by more than
one order of magnitude. Structures where cross linking introduces damage ( ft < 1)
are weaker by a factor close to ft , but still much stronger than the corresponding fiber
bundles. For intermediate disorder (β = 4), finally, we find an intermediate behavior
where the benefit of cross linking depends on the amount of damage introduced (Figure
2, center): With ft = 1 and ft = 0.8, the FBN is strongest, whereas for ft = 0.6 strength
is almost independent on cross linking degree and for ft < 0.6 the strongest structure is
represented by an unconnected fiber bundle.

Summary. We use beam network models to find optimal configurations for fibrous,
bio-inspired materials undergoing fracture. Our investigation shows that structural dis-
order of materials can have serious consequences for design considerations. Using a
trivial example, namely a bundle of fibers carrying an axial load, we demonstrated that
the optimal design for a perfect material may perform worst when built of components
(beams) made from a strongly disordered and thus unreliable material. Disorder neces-
sitates structural redundancy in form of the creation of alternative load transmission
paths through cross linking, even if such cross links appear superfluous from elastic-
ity calculations but incur a cost in terms of added weight or even in terms of reduced
strength of the load carrying fibers.

Acknowledgments The authors acknowledge support by DFG under Grant No 1Za
171/9-1 and under 377472739/GRK 2423/1-2019 FRASCAL. Support by the European
commission under H2020-MSCA-RISE project no. 734485 FRAMED is also gratefully
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1 Introduction

Networked dynamical systems are ubiquitous in nature and man-made systems. They
appear in food-webs, eco-systems, financial markets, communication networks, epi-
demiology, etc. Often the stability and resilience of such systems depend on the details
of the underlying interaction networks. To predict collapse of networked dynamical
systems is a challenging task, because often networks are large and cannot be observed
directly. Therefore, early warning signals for such systems practically do not exist. We
show that as a consequence of a mathematical theorem it is possible to detect the last
stages before a crash by observing a quantization effect in the components of the sys-
tem, without knowing the network structure. This allows us to predict the collapse of
various networked dynamical systems.

2 Results

Let us consider a minimal version of a networked dynamical system described by

d
dt

Xi(t) =
N

∑
j=1

Mi jX j(t)−ΦXi(t) , (1)

where Mi j is the interaction matrix and Φ is decay rate. Let us consider a binary matrix
without self-interactions, i.e., Mi j = {0,1} and Mii = 0. One can show that there are two
distinct phases. First, when the interaction matrix contains no cycle, then for Φ > 0 are
all Xi decay to zero for t→ ∞. On the contrary, if Mi j contains cycles, then some Xi re-
main positive. This fact is the basic mechanism of all autocatalytic systems. We present
a theorem, a corollary of the famous Perron-Frobenius theorem which can distinguish
between network with the one remaining cycle and network with more cycles without
knowing the network topology.

Theorem 1 (Eigenvector Quantization) .Let G be the unweighted directed network
with directed adjacency matrix given by M. Xi(t) evolve according to (1). Then the nor-
malized vector xi(t) =Xi(t)/∑ j X j(t), converges to a stable fixed point x := limt→∞ x(t),
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Fig. 1. Graphical demonstration of the quantization theorem. Directed networks M containing
two cycles (a) and one cycle (b). Cycles are in the shaded area. The node color indicates the
state, xi, (value of the component of the state vector, x) in units of the minimal value xmin. The
histograms show the number of nodes in a given state. In (b) we see the quantization of states
due to the presence of a single (!) remaining cycle. The occurrence of quantization at the last
remaining cycle can be used as a precursor signal. The state xi/xmin in the single cycle network
(b) coincides with the number of directed paths from the cycle to node i. Node A can be reached
through two paths from the cycle, while node B can be reached by four. For the multi-cycle case
(a), the number of paths no-longer coincides with the states.

for which the following holds:
Eigenvector Quantization: Suppose G contains only one single cycle. Then any com-
ponent xi can be expressed as

xi = nixmin , (2)

where xmin is the minimal non-zero component and ni is a natural number. If there are
no paths from cycle nodes, then xi = 0.

The proof is based on the fact that the Perron-Frobenius eigenvalue λ = 1 if there is only
one cycle. The graphical visualisation of the theorem is shown in Fig. 1. We compare
the Perron-Frobenius eigenvectors for two network, one with two cycles and the other
with only one cycle. The latter one exhibits the eigenvector quantization.

To put some flesh on the bare bones, we apply this result to one prominent example
of autocatalytic models — Jain-Krishna model. Here the network evolves on the slow
timescale, while the population Xi(t) evolves according to Eq. (1) on much faster scale
(i.e., it reaches the fixed point before the network is updated). In the updating procedure,
one of the least populated nodes is removed and a new node is introduced. The node
is connected with the existing nodes by assigning in-links to and out-links from the
new species, both with the same probability m/(N − 1). Therefore m has the role of
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Fig. 2. (a) Sample run of the Jain-Krishna model. ρ is the fraction of populated nodes, λ is
the largest eigenvalue. The time point tcycl denotes the moment of entering the one-cycle phase
(where the eigenvector quantization appears) and tcoll denotes the moment of collapse. We see
that the collapse is preceded by the one-cycle phase. (b) Comparison between numerical simu-
lations (symbols) and the theoretical prediction. (dashed line) of the expected time-to-collapse,
〈T 〉, for various system sizes N ∈ {25,100,200}, and connectivities, m between 0.05 and 0.375.
Simulation results follow the theoretical prediction closely, independent of system size and m.

average connectivity. The typical slow-scale dynamics is depicted in Fig. 2(a). The
system starts in random phase, where no cycles are present. Once a cycle is created,
the systems switches to ordered phase and the number of non-zero populated nodes
starts to grow. Once it reaches its maximum, the system remains in the ordered phase
until the collapse. It is possible to show that the collapse is preceded by the critical
phase, where only one cycle remains. Therefore the eigenvector quantization serves as
an early-warning signal that the collapse might come. Moreover, it is also possible to
calculate the expected time to collapse which is (for large networks and reliable range
of connectivity) simply equal to T = e

m , where e is the Euler’s number. This prediction
is in agreement with the simulations, as shown in Fig. 2.

Summary. We have presented an early-warning signal for a broad class of linear systems
called eigenvector quantization. This measure does not require any structural informa-
tion about network topology in order to anticipate the collapse of a system. We have
shown that it can be successfully used in Jain-Krishna model, where we can also calcu-
late the expected time to collapse. It can be also shown that this measure can be used in
more general situations. Examples include non-linear systems as epidemic spreading in
the SIS model, extension to other centrality measures as Katz centrality, or application
to slightly weighted networks.
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1 Introduction

Many real networks have power-law degree distributions and are extremely vulnerable
for malicious attacks [1]. However, it is discovered that onion-like networks with pos-
itive degree-degree correlations [2] have optimal robustness against the attacks [3][4].
To improve the robustness by enhancing the correlations, some methods based on edges
swaps [5] or rewirings [3] have been proposed. In addition, an efficient algorithm pro-
posed by Z.-X. Wu and P. Holme generates nearly optimal robustness [6].

In this paper, for improving the robustness of connectivity, we focus on enhancing
loops measured by feedback vertex set (FVS) which is a subset of vertices that removal
makes the graph cycle-free, because network dismantling and decycling problems can
be considered as asymptotically equivalent [7]. Furthermore, it has been pointed out that
the robustness is stronger as a larger fraction of FVS in incrementally growing onion-
like networks [8]. Thus, enhancing loops on a network is crucial for improving network
robustness. The purpose of this study is to clarify a deeper relation between robustness
and loops than correlations. In previous works, robustness is usually discussed in a
relation to degree-degree correlations. We propose new methods to enhance loops and
numerically show a significant improvement of robustness by enhancing loops.

Followings are the background. Although the minimum FVS problem is intractable
called as NP-hard, there exists an efficient approximation algorithm by applying be-
lief propagation (BP) based on a cavity method in statistical physics [9]. It calculates
marginal probability q0

i for the state 0 of node i, which denotes the candidate probability
of belonging to FVS. In another related topic, increasing the number of spanning tree
by rewiring is corresponded to enhancing loops. The number of spanning tree repre-
sent varieties of loops in a network, since each edge that does not belong to a spanning
tree is one-to-one corresponding to a loop, whose set consists of a linearly independent
basis called fundamental cycles [10]. In other words, any cycle on a network can be
represented by a linear combination of the fundamental cycles.

2 New type of rewiring to enhance loops

We introduce new rewiring methods based on edge rewiring with or without degree-
preserving in order to enhance loops. Increasing the size of FVS means enhancing
loops. When low q0 nodes are connected, it is expected that the size of FVS increases,
because they are not concerned with any loops and make new loops by the connections.
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To keep the degree in increasing the size of FVS, we remove edges between low and
high q0 nodes, and add two edges: an edge between low q0 nodes and an edge between
high q0 nodes. The degree-preserving method is summarised as follows.
Step 1.) Select two nodes i and j which are disconnected and have the highest q0

i +q0
j .

Step 2.) Select a node l which is the lowest q0
l node in the neighbor nodes of node j.

Similarly, select a node k which is the lowest q0
k in the neighbor nodes of node i and

unconnected to node l.
Step 3.) Add edges (i, j) and (k, l), and remove edges ( j, l) and (i,k).
Instead of degree-preserving, in another non-preserving method 1 , the differences are
Step 1.) Remove an edge (i, j) which have the highest q0

i +q0
j .

Step 2.) Add an edge (k, l) which have the lowest q0
k +q0

l .
For comparison, we also consider other methods in which q0 is replaced with degree.

3 Deeper relation of robustness and loops than correlations

We numerically investigate the improvement of robustness for our proposed method in
comparing with other conventional methods [6] [10]. We apply them to 10 real net-
works. Figure 1 shows typical results for the robustness against hub attacks [3] by mea-
suring the size of the giant component, the number of nodes in the FVS [9] and assor-
tativity for the correlations [2] versus increasing the number of rewiring. In particular,
degree-non-preserving methods improve robustness more than degree-preserving meth-
ods. The result suggests that degree-preserving has a restriction on improving robust-
ness. In comparison with the rewiring on OpenFlights at #Rewire=8000, our degree-
non-preserving method is twice as robust as the best in degree-preserving methods.
In Fig 1, the ordering of lines in robustness is almost the same as in FVS. However,
they are greatly different from the ordering in assortativity. Therefore, the robustness is
related to the size of FVS rather than assortativity focused conventionally.

Summary. We propose rewiring methods to enhance loops and obtain the result with
significant improvement of robustness by enhancing loops. Moreover, our result sug-
gests that loops are more essential for the robustness than the degree correlations.
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Fig. 1. Comparing the results for our proposed and the conventional rewiring methods in real net-
works. The red dotted line indicates the conventional best case for the robustness in each network.
The large difference between green and yellow lines for the robustness is caused by whether or
not degree-preserving. In the ordering, the green line is higher than the violet line in both the
robustness and the size of FVS but lower in the assortativity. The data can be obtained from
OpenFlights: http://konect.uni-koblenz.de/networks/opsahl-openflights, Hamsterster friendships:
http://konect.uni-koblenz.de/networks/petster-friendships-hamster.
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Identifying a crucial role for robustness and spreading
in complex network

Fuxuan Liao and Yukio Hayashi

Japan Advanced Instittue of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan

1 Introduction

Although it has been believed for a long time that a high degree node (hub) is the best
selection for effective spreading and malicious attack, exciting research of network sci-
ence has recently unveil that k-core is more important than hub (node) in some sense.
The most efficient spreaders are located within the core of network as identified by the
k-shell decomposition analysis [1]. For example, if a high degree node in a dangling
sub-tree is not necessarily effective for spreading, this node belongs to 1-shell. The
spreading from such node in a dangling sub-tree quickly disappears, while the spread-
ing can persist in the core. Thus, in order to find out influence nodes for spreading, a
node with high k-shell index is more useful than high degree nodes [1]. Here, k-core
is defined as a connected remaining part by recursively removing nodes whose degrees
are less than k [2]. The k-shell is the part by deleting (k+1)-core from k-core.

On the other hand, from the asymptotic equivalence of dismantling and decycling
problems at infinite graphs in a large class of random networks with light-tailed degree
distribution [3], the strong robustness is related to increasing the size of feedback vertex
set (FVS) which is necessary to form loops [4]. The existence of many loops may be
crucial to maintain the connectivity of network within a finite size. Dismantling (or
decycling) problem is to find the minimum set of nodes whose removal yields a graph
with the largest connected cluster whose size is at most a constant (or a graph without
loops) [3]. Moreover, based on the definition of influencer in Collective Influence (CI),
when the minimum set of important nodes for spreading is removed, the propagation is
stops; At that time, the network becomes a tree without loops at the critical just before
destroying the connectivity [5]. Thus, loops are also related to influencer. From the
above viewpoints, it is necessary for improving the robustness to exist many loops in a
network, stronger robustness have larger size of FVS. In this paper, we find that not only
degree and k-shell are important for network to find out the crucial nodes for spreading
and robustness, but also FVS plays the same role. More precisely, our goal is to clarify
the relations between FVS and k-shell.

2 Fraction of FVS nodes in k-shells

In order to clarify the relation between FVS and k-shell, we need to get the fraction
of FVS nodes in k-shells. The minimum size belongs to NP-hard problem, there is no
efficient algorithm to obtain the exact solution. Thus, based on the cavity method in
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statistical physics, we apply efficient belief propagation (BP) algorithm proposed by H-
J Zhou [6] to calculate candidate nodes of the FVS. Then, we divide the set of nodes to
make the k-shell decomposition into different shells. Finally, the fraction of FVS nodes
in each k-shell is calculated.

We investigate the relation between FVS and k-shell for the data of 28 real scale-
free networks [7] gathered from different fields. Figure 1 shows typical results in three
examples. Here, N, F and Ks denote the size (the number of nodes included in each
subset) of the whole network, FVS, and k-shells, respectively. As shown by red line in
Fig. 1, the fraction |F

⋂
Ks|

|Ks| of FVS in k-shell is increasing as the k-shell index is larger.
In other words, the inner core contains a higher fraction of FVS. As shown by blue lines
in Fig. 1, the fraction |Ks|

|N| of k-shell in the network size N is decreasing as the k-shell
index is larger. Therefore, the inner core is consisted of a few nodes. In blue line, |Ks| is
smaller as larger k-shell index, the intersection to FVS also becomes small in the whole
FVS, this decreasing is shown by green line. However, in some case, depending on the
zig-zag shapes in red and blue lines, there are peaks in green lines.

In Fig. 2, in order to make the results more intuitive, we visualize the k-shell de-
composition. Colored nodes except gray ones in each circle represent a node in FVS.
The red lines show the connections of FVS nodes in a same shell, yellow lines show the
connections between nodes in FVS included in different shells. As shown small rings
in the Fig. 2, the large k-shell indexes have the high fractions of FVS, even if each
|F ⋂

Ks| is small.

Fig. 1. Results for real networks in four different domains. (a) biological network of yeasts with
N = 2224, # of FVS = 363, maximum k-shell index k = 10 (b) technological US power grid with
N = 4941, # of FVS = 516, maximum k-shell index k = 5 (c) social email networks with N =
1133, # of FVS = 370, maximum k-shell index k = 12 (d) Japanese language networks with N =
2698, # of FVS = 136, maximum k-shell index k = 15.
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Fig. 2. Visualization by Pajek as typical result. From left to right, biological network of yeasts
with N = 2224, # of FVS = 363, maximum k-shell index k = 10, technological US power grid
with N = 4941, # of FVS = 516, maximum k-shell index k = 12. The numbers represent k-shell
indexes.

Summary. Our research is an extension to investigate the relation between degree and
k-shell [1]. We suggest that FVS and k-shell play a crucial role for robustness and
spreading. We will elucidate that the nodes in FVS become important not only for ro-
bustness but also for efficient spreading. In addition, to find FVS is a NP-hard problem,
while the k-shell decomposition is a P-problem; It is expected that the gap in computa-
tional effort leads to develop a new direction by solving the P-problem to estimate the
FVS.
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Network clustering-based design
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1 Introduction

The application of network science in the field of dynamical systems enabled to inter-
pret the dynamical properties of the systems in the form of network representation [1,
2]. During the application of the approach, it can be recognised that the assigned driver
and sensor nodes are only a small proportion of the state variables (nodes) and the re-
sults are not applicable/realistic [3]. To reduce the resulted high relative degree that
makes the design of the controller difficult and results in sluggish control performance,
additional actuators and sensors are necessary to assign to the existing configurations
[4].

In the network interpretation of any linearised or linear system, assuming all node
is driver node, the relative degree ri j can be defined as the length of shortest path from
sensor node yi to driver node u j, as it can be seen in Figure 1. The relative degree
of output u j is the minimum of these lengths, ri = mini ri j. The relative degree of the
system is the maximum of all ri, r = maxi ri. As a result, the network is segmented
according to the shortest paths between the outputs and the drivers closest to them.

To decrease relative degree, we used four methodologies that ensure observabil-
ity beside the minimisation the relative degree. Two of these methods utilises simple
heuristics [5]. The first one operates with closeness and betweenness centrality mea-
sures while the second one creates and solves a set covering problem from the sensor
placement problem. The second two methods combine the meta-heuristic simulated an-
nealing optimisation with clustering [4].

2 Results

Beside the reduced relative degree, the generation of a balanced monitoring is of inter-
est, so the following cost function was applied through the determination of the set of
sensor nodes S:

min
S

cost(G,S,β ) = β
K

max
i=1

ri +(1−β )∑K
i=1 ri

N
, (1)
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Fig. 1. Illustration of the concept of relative degrees and how it segments a simple toy network
with (a) two or (b) three sensors are assigned. We assume that all node is driver node. It is visible
that one additional sensor decreases the relative degree of the system significantly.

where G denotes the network representation of the system, S stands for the set of as-
signed sensors, parameter β = [0,1] weights between the balance-related average and
the maximum of the relative degree of the system, N is the number of nodes (state
variables) and K = |S| is stand for the number of sensors assigned to the system.

Four methods are presented to handle this problem:

– centrality measures-based method [5]: The first approach utilises the closeness cen-
trality and the betweenness centrality measures to determine the position of the
additional sensor nodes. Firstly, the network is segmented to the minimal config-
uration, S, generated by maximum matching and ensures structural observability.
Then for each segment, based on the closeness and betweenness centrality the node
with the highest centrality became a new sensor node.

– set covering-based method [5]: The second approach creates a set-covering prob-
lem as follows: for each node (state variable) the node set is generated that can be
reached in a maximum rmax length path. Then the nodes are covered by the sets
of sensors of minimal configuration, S, removed from all sets. The remaining sets
create a set-covering problem. Solving the well-known problem, the resulted sets
determine the nodes should be observed.

– modified Clustering Large Applications based on Simulated Annealing (mCLASA)
[4]: The mCLASA methods extend the minimal configuration, S, with additional
sensors assigned randomly to the network. Simulate annealing granted that the re-
sult converges to an optimum.

– Geodesic Distance-based Fuzzy c-Medoid Clustering with Simulated Annealing
(GDFCMSA) [4]: The GDFCMSA method works similarly to mCLASA, but for
determining the location of the additional sensors, it uses a fuzzy c-medoid cluster-
ing.

The method is applied to the sensor placement of Heat Exchanger Networks (HENs)
[4] having 10-100 units (nodes). The centrality measures-based method assigns more
sensor to the system than other methods, thus it segments more the network than other
method. It favours to the relative degree, as smaller segments mean shorter paths. The
other three methods have almost the same performance. To highlight the differences,
we examined how many times a method gives better or equal result, and how many
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times were a member of the Pareto frontier in the analysis of more than 600 HEN [6]
(Table 1). The comparison is based on K with given rmax. The Pareto frontiers were
based on K and r (2-dimensional), and based on K, r and cost (3-dimensional). The
results show that centrality measures-based method is the worst method if the goal is to
minimise the number of sensors. The small differences between the set covering-based,
mCLASA and GDFCMSA algorithms can be pointed out, as in the same order the result
is getting better and better. The results can be generated for the controllability problem
as well, as it is the mathematical dual of observability.

Table 1. Comparison of the proposed methods as how many times a method (row) gives better
and equal solution than other (column), and how many times was the method a member of the
Pareto frontier.
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Better Equal Pareto

CentMeas 0 0 2 1 0 116 109 107 622 631
SetCov 523 0 69 45 116 0 527 533 605 638

mCLASA 528 43 0 17 109 527 0 556 614 638
GDFCMSA 531 61 66 0 107 533 556 0 612 639

References

1. Lin, Ching-Tai. Structural controllability. IEEE Transactions on Automatic Control,
19(3):201-208, 1974.

2. Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of complex
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No-exclaves percolation: Uncovering hidden impact of
failures in complex systems

Sang-Hwan Gwak, Eunkyu Park and K.-I. Goh

Department of Physics, Korea University, Seoul 02841, Korea
kgoh@korea.ac.kr,

The subject of network robustness has been one of the major topics of complex
network theory since its inception. To shed a new light on this important subject, we
introduce a new cluster called an ‘exclave’ cluster and study its percolation properties
regarding how it is related to collapses in networks. The exclaves cluster in our model is
a modification of the No-enclaves percolation(NEP) model proposed by Sheinman et al
defined on 2D Euclidean lattices to make it applicable to networks. When some nodes
in a network fail or get removed, there can emerge sets of connected non-failed nodes
that are completely surrounded by the failed nodes called the exclaves. The exclaves
are isolated from other functioning parts of the network, thereby becoming effectively
non-functional. This process defines a new class of cluster of non-functional nodes
(the no-exclaves or NExP cluster), formed by the connected union of failed nodes and
exclaves. Thus, the NExP clusters account for the hidden impact of network failure
that had never been investigated as yet. Our main aim in this presentation is to report
essential understanding gained by the new measure and to offer a new perspective of
study of network robustness.

First, we will show the mechanism for forming NExP clusters through empirical
networks. We introduce the behavior of NExP clusters in urban road networks as our
model application. In application of urban road networks, NExP cluster corresponds to
the isolated cluster subject to the road closure due to traffic malconditions in the road
network. Moreover, we examine the empirical network using finite size scaling method
through different road length to interpret the critical phenomena.

Second, by a novel generating function-based analytic theory on random networks
as well as extensive Monte Carlo simulations, we uncover that the NExP display pro-
foundly different results from those of ordinary percolation (OP). We found that the
NExP displays two distinct transitions: One between non-percolating to percolating
phase at qc, and the other between the partially-percolating to fully-percolating phase
at q∗. The percolation transition at qc occurs at much lower failure probability than cor-
responding OP and the size of NExP giant cluster is significantly larger than that of
OP, both manifestly demonstrating the hidden impact. We measure critical exponents
and found them consistent with mean-field class. Our study discloses hidden indirect
damage additional to damage from direct attacks, and thus suggests a new useful way
for finding non-functioning areas in complex systems.
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Fig. 1. (a, b, c, d) are schematic illustration of NExP formation process on schematic diagram
of road networks. Marked by red nodes are failed node and green nodes are un-failed node with
probability q, 1− q respectively. Yellow nodes are exclaves nodes (or clusters) which are com-
pletely surrounded by failed nodes, thus NExP cluster is union of exclaves and failed cluster
highlighted with purplish shades shown in (b). The area that cannot actually function as a road is
a union NExP cluster, not a reddish OP cluster. (e) is effective giant connected component S/S0
vs. failed prob. q of NExP and OP on London road network. (f) Finite-size scaling using data col-
lapse of simulation results with different road length. Those are well collapsed onto single line
with critical exponents β = 0,γ = 2ν = 8/3. In the collapse system, exclave clusters not only
lead to rapid collapse but also lead to changes of transition types.
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K-selective percolation on complex networks

Jung-Ho Kim and K.-I. Goh
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1 Introduction

Percolation theory provide the theoretical foundation for how complex networks react
to intentional attacks and random errors [1]. Until now, many researches have been con-
ducted on the intentional attacks to high centrality nodes [2]. However, nodes with high
centrality are not the only components in complex networks. Rather, intermediate and
low centrality nodes occupy the most fraction of complex networks. In the case of de-
gree centrality, attacks on low centrality nodes can be analyzed using k-core percolation
model [3]. However, attacks on intermediate centrality nodes has not been studied. We
made a new percolation model, the K-selective percolation, to observe how complex
networks respond to attacks on nodes with intermediate degree.

2 Model

The K-selective percolation has following simple rules [Fig.1.(a)]. Select a random
node and delete it if the selected node has degree K. This process continues until there
are no more nodes having degree K in the complex network. We applied the K-selective
percolation rule after bond-deletion with probability q, and we use q as control param-
eter. The order parameter (M) is defined as the probability that the randomly-chosen
node belongs to the giant cluster.

3 Results

We applied the K-selective percolation to the scale-free network (kmin = 5, kmax = 100,
2.5 ≤ γ ≤ 4) made by configuration model and Erdős-Rényi network. We derived nu-
merical solutions using generating function method and verified them by extensive
Monte Carlo simulation. The most signature feature of K-selective percolation is the
existence of fragile valleys that are vulnerable points of complex systems. On scale-free
network, fragile valleys appear near q = 0.3 [Fig.1.(b)]. Hybrid phase transitions can
occur when entering and leaving fragile valleys as q increases. After systems leave the
valley and cross the hill, continuous phase transitions are observed near q = 0.8 and the
giant cluster disappears [Fig.1.(b)]. We obtained qualitatively similar results on Erdős-
Rényi networks. We studied the critical behavior of phase transitions using finite-size
scaling theory on Erdős-Rényi network. We obtained similar critical exponents with k-
core percolation [4] on hybrid phase transition. In case of continuous phase transition,
we conclude that it belongs to the same universality class with ordinary percolation.
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Fig. 1. (a) A schematic example for 3-selective percolation on simple network. (b) Phase diagram
of 3-selective percolation on scale-free network with kmin = 5, kmax = 100. Lines are numerical
solution and points are Monte Carlo simulation with N = 107.
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evaluate the indirect impact of disasters — application
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1 Introduction

Transport systems play a pivotal role in connecting multiple components of an econ-
omy. They enable firms to source inputs from distant suppliers and deliver their outputs
to customers. But transport networks are vulnerable to natural disasters, such as floods,
landslides, or earthquakes. Roads may become impassable, forcing trucks to take a
longer, sometimes busier, itinerary. Disasters can even paralyze an entire transport node,
such as a port or an airport, inducing severe delays.

Existing methods quantify the direct impacts of transport disruption [1][2]. By mod-
eling the full network, they estimate how much trade and people flows are blocked, and
evaluate the cost of rerouting flows. Criticality maps can be drawn to prioritize interven-
tions. But what does these rerouted or blocked flows mean for the economy? How do
they affect the different productive sectors? The indirect economic impacts are missing.

Input–output models evaluate such indirect economic impacts, but at a very ag-
gregated levels [3][4]. Localized shocks are translated into a reduction in sector-level
production, which is then propagated using the input–output interlinkages. Such degree
of aggregation is likely to underestimate the indirect loss triggered by supply-chain
disruptions [5].

In this project, we formulate a model that estimates the indirect economic impacts
of transport disruptions. We apply the model to the United Republic of Tanzania, whose
fast growing economy is vulnerable to climate-related disasters, especially floods.

2 Method: downscaled supply chains embedded on roads

We model the road network of the United Republic of Tanzania, which carries more
than 99.5% of the trade flows. Using an agent-based modeling framework, we populate
the road network with firms and households.

Using a variety of data—including input–output tables, business survey, population
and land cover data—we spatially disaggregate sectoral production and consumption.
Production is assigned to firms and consumption to households. Firms have a Leontief
production function calibrated with input–ouptut data. They hold inventories for each
type of inputs, calibrated with survey data. In the absence of available supply-chain
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data, we reconstruct the supply chain network, based on sectors, distance, and firm size.
Firms dynamically order, produce, and deliver goods to their clients. In the absence of
perturbations, the model is at a steady state.

When a node or a link of the transport network is disrupted, we model two mecha-
nisms to capture the indirect economic losses.

– If an alternative pathway exists, supply chain flows are rerouted, leading to higher
transport costs. Suppliers transfer these higher costs onto their clients by increasing
their selling price. In turn, clients transfer such increase in input costs to their own
clients. Price increases propagate down to households, which have to spend more
for the same basket of goods.

– If an alternative pathway does not exist, products that were supposed to be deliv-
ered are hold at the producers premises. This situation, if prolonged, may lead to
a shortage of inputs for the producers’ clients. At the end of the supply chains,
households may have to decrease their consumption.

Both mechanisms allow us to compute the indirect losses caused a disaster at the door of
the final consumers. These losses capture all the impacts that cascade along the supply
chains.

We also incorporate imports, exports, and transit flows. To that end, agents repre-
senting countries that trade with the United Republic of Tanzania are modeled.

3 Results

These indirect losses generally affect people that are not directly hit by disasters. Their
intensity nonlinearly increases with the duration of the initial disruption; see Fig. 1. Sup-
ply chains generate interdependencies that amplify disruptions for nonprimary prod-
ucts, such as processed food and manufacturing products.

We identify bottlenecks in the network. But their criticality depends on the supply
chain we are looking at. For instance, some infrastructures are critical to some agents,
say international buyers, but of little use to others. Investment priorities vary with policy
objectives, e.g., support health services, improve food security, promote trade competi-
tiveness.

Resilience-enhancing strategies can act on the supply side of transportation, by im-
proving the quality of targeted infrastructure, developing alternative corridors, building
capacity to accelerate post-disaster recovery. On the other hand, policies could also sup-
port coping mechanisms within supply chains, such as sourcing and inventory strate-
gies. Our results help articulate these different policies and adapt them to specific con-
texts.

(1)

Summary.
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Fig. 1. Supply-chain impacts on households triggered by disruptions of one to four weeks. Each
bar represents a distribution of impacts obtained by disrupting the 300 most critical transport
nodes. The filled rectangle indicates the interquartile interval, the solid horizontal lines indicates
the median, the dash horizontal line indicates the mean. Mean values are joined together with a
black curve. The vertical line extends to the minimum and maximum of the distributions; when
the maximum lies outside the plotting area, the upper part of the vertical line is not capped.
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1 Introduction

Controllability has been studied by network scientists using classical control-theoretic
concepts such as structural controllability and control energy [1]. Many works, e.g., [2],
have attempted to reveal some fundamental relations between topological features and
controllability of networks. However, controllability is an open-loop control property
which does not account for the specific control mechanism. This inevitably neglects
two important aspects of real-world control of networks. First, control actions are exe-
cuted by feedback controllers. Second, the information exchange between the nodes of
the network and its controller brings an additional cost, which implies that controller
sparsity is important.

In our recent research, we adopted the sparsity-promoting control framework [3] to
evaluate network control cost based on both control performance and sparsity of the
feedback controller, with the optimal controller obtained by minimizing the combined
performance and sparsity costs. These works [4, 5] aim at understanding the role of
community structures, namely blocks of nodes that are densely interconnected inside
but weakly coupled between, in improving network control, when a significant cost is
associated with the number of feedback channels to promote the sparsity of the feedback
controller. Furthermore, we have shown [6,7] that the common existence of community
structures in networks, such as those in the biological world, can be interpreted as the
result of an evolutionary process driven by a combination of control performance and
sparsity.

Core-periphery (CP) structure is another type of common topological feature in
biomolecular, ecological, social and traffic networks [8]. It refers to a dichotomy be-
tween a “core” (C) part of the network, whose nodes have stronger propensity to be
connected to other nodes, and the remaining “periphery” (P) part. A variety of algo-
rithms to detect CP in networks have been reviewed in [9]. In this work, we investigate
the effect of CP structure on network control cost in terms of the total cost accounting
for control performance and feedback sparsity.

2 Results

We create an ensemble of 3000 networks using a stochastic block model (SBM) [10].
The probability of creating an edge between C-C, C-P and P-P node pairs are set as θ 2

C ,
θCθP and θ 2

P , respectively, where θC,θP > 0 stand for the probabilities of attaching a
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half-edge to a C node and P node, respectively. With the total number of nodes (N =
100) and expected total number of edges (E = 400) fixed, the size of the core (NC) and
the half-edge probability of core nodes (θC) are the two degrees-of-freedom in network
generation. A sample of the generated networks are shown in Fig. 1.

Nc = 5, θc = 0.28, θp = 0.28 Nc = 10, θc = 1, θp = 0.11 Nc = 20, θc = 0.8, θp = 0.15 Nc = 30, θc = 0.57, θp = 0.16

Fig. 1. Networks with different CP structure.

The generated networks are then associated with a Laplacian dynamics ẋ =−Lx+
d + u, where L is the Laplacian matrix, and states x, disturbances d, and control in-
puts u are vectors with N components corresponding to the nodes. For a feedback con-
troller u = −Fx where F is the feedback gain matrix, the cost related to the controller
performance J(F) is the L2-norm of the closed-loop system d → z = (y,u), and the
cost for sparsity is the cost for each feedback channel γ multiplied by the number of
nonzero entries in F (card(F)). The total control cost is then given by the minimized
cost J(F)+ γcard(F) under the optimal controller gain F .

Fig. 2. Variation of the total control cost with different θC under (left) different γ and fixed NC =
20, and (right) different NC and fixed γ = 10−1.

The total control cost of the networks are plotted against θC in Fig. 2. While at lower
values of γ (when feedback sparsity is not accounted for), larger θC (higher extent of
CP structure) increases the total control since the network is less well mixed. However,
when the cost of feedback channels γ increases, networks with clearer CP structure
gradually gain advantage in lowering the total control cost. Also, larger cores lead to
lower control cost under fixed core interconnection density θC. But the core size is lim-
ited by the total edge number, and hence the lowest average cost is reached at an optimal
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NC of about 20. The adjacency matrices and the corresponding optimal controllers are
visualized in Fig. 3. It can be seen that with clearer CP structures, the feedback con-
trollers are more easily sparsified, with the feedback channels concentrated inside and
around the core.

Fig. 3. Adjacency matrices and optimal feedback gains (γ = 10−1) of networks with different CP
structures. Yellow and blue pixels stand for nonzero and zero entries, respectively.

Summary. In this work, we have investigated the control of Laplacian networks with CP
structure using a sparsity-promoting framework. It is found that under significant cost
of feedback channels, CP networks have lower control cost compared to non-CP ones
by adopting sparser controllers where the feedback channels are concentrated inside
and around the cores.
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1 Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
syoon@ua.pt

2 A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

1 Introduction

The impact of negative external factors such as catastrophic environmental changes
on biological and social networks can lead to a collapse of the systems when interac-
tions between subjects forming the systems cannot resist anymore the factors [1]. It is
well recognized that the structure plays a very important role in the robustness of com-
plex systems against random and targeted attacks [2, refs. therein]. The big questions in
complex systems science are what causes a collapse of some systems, how to predict the
approach to the tipping point, what is the role of network structure in the stability of real
complex systems [3]. One important characteristics of network structure is the network
cohesiveness. The ’k-core’, introduced to characterize the cohesion in social networks
[4], is the largest subgraph whose all vertices have, at least, k nearest neighbors. Since
the k-cores represent the most connected part of a network, one would expect that the k-
core organization might play an important role in the structural stability of real complex
network against damages and negative external factors. In this study, we explore the role
of topology and the heterogeneity of interactions in the structural stability of networks
of positively interacting agents subjected to a negative external field, which suppresses
the activity of the agents. We study how positively interacting agents support each other
to confront the negative field and the role of the k-core organization in the structural
stability of the interacting system. In our approach, we understand the structural sta-
bility as the existence of a giant connected component of the network of active agents
stable against perturbation. We also develop a new method of structural analysis based
on a statistical analysis of so-called ‘corona’ clusters belonging to k-cores. This method
allows us to reveal structural changes in the k-core organization when increasing the
negative external field and allow to predict the collapse of weighted and unweighted
networks. Structural stability of some real networks against negative external fields is
also discussed.

2 Results

We introduce the energy of the system which governs the agents states (xi = 1, if i is
active and xi = 0, if i is inactive.) as follows.

E =−1
2 ∑

i j
wi jAi jxix j−

N

∑
i=1

Uixi , (1)
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where wi j is a weight of the link between i and j, Ai j is a component if adjacency
matrix, and Ui is a strength of the external fields. We show that critical changes in
the structure of interaction networks precede the network collapse. Nodes of degree q
equals to the k-core index (i.e., q= k) at k≥ 3 play a special role in structural stability of
the k-core. These ‘corona’ nodes form ‘corona’ clusters inside the k-core. If a ‘corona’
node belonging to a ‘corona’ cluster is removed then all other nodes belonging to the
same ‘corona’ clusters are also removed one by one (the domino effect) because their
degrees become less than k. It is the mechanism of avalanches that destroys the k-core
at the tipping point [5]. We introduce a parameter,

χcr(k) =
∑α s2

α(k)
∑α sα(k)

= ∑
α

πα sα(k), (2)

where sα(k) is the size of a ‘corona’ cluster with index α in the k-core. πα ≡ sα(k)/∑α sα(k)
is the probability that a randomly chosen corona node in the k-core belongs to a corona
cluster α . The parameter χcr(k) has a meaning of the mean size of corona clusters to
which a randomly chosen corona nodes belongs. At the critical point of k-core col-
lapse the parameter χcr(k) diverges in the limit N → ∞. Thus, the tipping point of the
k-core collapse is the percolation point of the ‘corona’ clusters. Based on these results
we propose the following method, which allows to reveal structural changes of the in-
teraction network that occur when approaching the tipping point. For each value of a
control parameter, which can be either the field strength, the fraction of removed agents,
time, or temperature, we find k-cores by use of the pruning algorithm and statistics of
corresponding corona clusters. If χcr(k) increases when increasing (or decreasing) the
control parameter then it means that the system approaches a point at which the k-core
collapses. Our analysis of the k-core organization reveals that the observed dependence
of the fraction M of the active agents versus |U | is due to a non-monotonous decrease
of sizes of k-shells for 2≤ k≤ kh−1. The k-shells decrease in size but do not disappear
completely in contrast to the sequential collapse of k-shells in unweighted networks. At
field strength above the critical point of the collapse of the kh-core, the sharp decrease of
M is caused by sequential breakdown of the remaining k-cores, starting at (kh−1)-core
and finishing at 2-core. The results of our simulations demonstrate that unweighted and
weighted networks are destroyed in opposite way by the negative field. In unweighted
networks, the negative field first destroys the lowest 2-core and then one by one all
higher cores, in contrast to weighted networks where the process of the destruction
goes in the opposite order: first the highest k-core is destroyed, and then the field de-
stroys one by one the lower cores up to 2-core. The origin of this difference is due to
the difference in the pruning processes. In unweighted networks, we prune only nodes
with degree not larger than a given threshold. In weighted random networks, a removed
node can have an arbitrary degree. There is only one restriction: the total weight of all
edges must be smaller than the threshold. The fact, that degree of the removed node is
arbitrary, makes this pruning process to be similar to the removal of nodes at random
independently on their degree. We applied our model to two real networks in ecosys-
tems to analyze the structural stability of this kind of network against external negative
factors: the unweighted network of plants and pollinators, and the weighted network
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of below-ground plants-fungus symbioses (plant roots are colonized by diverse fungi,
which increase host plant fitness).

Summary. We studied the structural stability of weighted and unweighted networks
of positively interacting agents against a negative external field. We showed that pos-
itively interacting agents support the activity of each other and confront the negative
field, which aims to suppress the activity of the agents. In our approach, we understand
structural stability as the existence of a giant connected component of the network of
active agents stable against perturbations. The competition between positive interaction
and the negative field shapes the structure of stable states of the networks. In the case
of unweighted (uniform interactions) networks, we demonstrate that the tipping point
of network collapse caused by a strong negative field or weak interaction is determined
by the highest k-core. With increasing the field strength or decreasing the interaction
strength the network of active agents undergoes a cascade of transitions from k-core
to (k+1)−core ground state. The field destroys from the small k-core and the highest
kh-core is destroyed at last. In weighted networks (heterogeneous interactions), the in-
terplay between the topology and the distribution of weights determines the structural
stability against a negative field. Our approach is based on pruning of agents which
have insufficiently strong interaction (smaller than a threshold determined by the neg-
ative external field) with active agents. The advantage of this approach is that it takes
into account not only direct, but also indirect impact of leaving agents on network struc-
ture. A leaving agent stops the interaction with other agents and weakens the strength,
which holds these agents in the network. As a result, some of the agents can also be
forced to leave the network. The cascade of these events can lead to a dramatic collapse
of the entire network like a process when extinction events tend to trigger coextinction
cascades of related species. We also demonstrated that a critical change in the struc-
ture of the system precedes the k-core collapse. This structural change is characterized
by rapid growth of ‘corona’ clusters, signalling the approach to the tipping point. These
structural changes create grounds for long-lasting avalanches and critical slowing down.
They can serve as early warnings of the collapse.
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1 Introduction

Many social, technological, and biological systems with asymmetric interactions dis-
play a variety of collective phenomena, such as opinion formation and synchronization.
This has motivated much research on the dynamical impact of local and mesoscopic
structure in directed networks. Here, we control the global organization of directed
Erdős–Rényi networks, and study its impact on the emergence of synchronization and
ferromagnetic ordering, using Kuramoto and Ising dynamics. In doing so, we demon-
strate that source nodes – peripheral nodes without incoming links – can disrupt or
entirely suppress the emergence of synchronized and magnetized states in directed net-
works [1]. In general, source nodes are a structural feature of directed networks, and
may therefore have a significant impact on other dynamics with local pairwise interac-
tions, given a specific set of dynamical parameters, link properties, and initial condi-
tions, as well as the local and mesoscopic structure of the network.

2 Structure

CORE

IN
O
UT

S
O
U
R
C
E S

IN
K

Fig. 1. Bow-tie (core-periphery) architecture of directed networks. The CORE is the largest
strongly connected component (nodes reachable from each other through a sequence of directed
links). The periphery comprises the IN and OUT components – nodes in sequences of directed
links leading into and out of the CORE respectively – and a hierarchy of tendrils [2]. As indicated
by the arrowheads, the overall connectivity of this architecture is feedforward, from SOURCE
nodes (IN nodes without in-links) to SINK nodes (OUT nodes without out-links).
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A general strategy for characterizing the global organization of directed networks was
first applied to the World Wide Web [3], revealing the bow-tie architecture schemati-
cally depicted in Fig. 1. Here, we consider a toy-model of bow-tie organization based
on directed Erdős–Rényi networks with N = 105, where each node has an incoming
link with probability 2〈qin〉/(N−1), and the relative number of nodes and links in each
bow-tie component is determined by the mean in-degree 〈qin〉 [4, 1].

3 Dynamics

We investigate how the emergence of synchronization and magnetization in the Ku-
ramoto model (KM) and the Ising model (IM) are impacted by structure, controlling
both the structural parameter – the mean in-degree 〈qin〉 – and the dynamical parame-
ters – the coupling strength K (KM) and the temperature T (IM) – see [1] and references
therein for dynamical equations and methods. In the KM, the macroscopic state of N
oscillators with phase θn is described by the order parameter (complex amplitude)

r =
1
N

N

∑
n=1

cos(θn−ψ) , (1)

where r = 1 corresponds to full synchronization, and the average phase
ψ = ∑n sin(θn)/∑n cos(θn). In the IM, the macroscopic state of N spins sn is described
by the order parameter (magnetization per spin site)

m =
1
N

N

∑
n=1

sn, (2)

where m= 1 corresponds to full magnetization. The response of the system to structural
changes is then captured by the corresponding pair correlation functions

C = N
[
〈r2〉t −〈r〉2t

]
, (3)

and
χ = N

[
〈m2〉t −〈m〉2t

]
, (4)

where 〈 〉t denotes a time-average.

4 Results

In the limit where K� 1 and T → 0, we find that the macroscopic state of the system
is determined by the network’s bow-tie architecture. By studying the system’s response
to the removal of a fraction of IN nodes fIN, selected uniformly at random, we further
find that the internal dynamics of SOURCES, which drive IN dynamics, act to disrupt
the emergence of synchronization and ferromagnetic ordering in the CORE, as shown
in Fig. 2.
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Fig. 2. Synchronization rCORE (circles) and magnetization mCORE (squares) in the Kuramoto –
(a), (b), (c) – and Ising – (d), (e), (f) – models, and the corresponding pair correlation functions
CCORE (up triangles) and χCORE (down triangles) in the CORE of directed Erdős–Rényi networks
with mean in-degree 〈qin〉, as a function of the fraction of randomly removed IN nodes fIN. The
values of 〈qin〉 are 1.1 in (a) and (d), 1.4 in (b) and (e), 1.7 in (c), and 2.0 in (f). Dashed vertical
lines indicate peaks in CCORE or χCORE. For details on the calculation methods see [1].
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Goltsev. The central role of peripheral nodes in directed network dynamics. Scientific Reports,
9(1):1–11, September 2019.

2. G. Timár, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes. Mapping the Structure of
Directed Networks: Beyond the Bow-Tie Diagram. Physical Review Letters, 118(7):078301,
2017.

3. Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the Web. Computer
Networks, 33(1):309–320, 2000.

4. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Giant strongly connected component
of directed networks. Physical Review E, 64(2):025101, 2001.

593

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



Effective Connectivity vs. Average Sensitivity:
Representing Polyadic Relationships in Models of

Complex Networks

Manuel Marques-Pita1,3 and Luís M. Rocha2,3,

1 Cicant, ULHT, 388 Campo Grande. Lisbon, Portugal
2 Center for Social and Biomedical Complexity, School of Informatics, Computing and

Engineering. Indiana University, Bloomington IN, USA.
3 Instituto Gulbenkian de Ciência. Oeiras, Portugal

manuel.pita@ulusofona.pt, rocha@indiana.edu

Introduction

Network models have become an essential tool to study biological, social and techno-
logical complex systems. The study of structural network properties has yielded deep
insights about their organization and function [3]. Yet, there is growing interest in study-
ing structure and dynamics together [see e.g. 1, 11, 14], particularly, in the context of
studying control in complex networks—which we know does not depend on structure
alone [7]. Boolean Networks (BNs) are canonical models of complex systems in which
node behaviour can be easily described using ON-OFF automata. BNs have been used
successfully to model a wide range of real-world systems [e.g. 8, 11, 17]. They have
also been used to study the structural and node-behaviour parameters that determine
network dynamical regimes [9].

A complex network can be in one of three dynamical regimes: stable, unstable or at
the critical edge between the two. Living, social and technological systems are believed
to be in this latter, critical, regime [5, 9]. Derrida and Pomeau [6] were the first to
attempt relating network structure and node behaviour to the dynamical regime of BNs.
Their theory predicts the dynamical regime of BNs, based on fixing the BN in-degree
and the bias of the automata functions in their nodes. It defines the boundary between
stable and unstable (chaotic) regimes as 2kp(1− p) = 1 [see 6]. The bias is a measure
of how skewed an automaton is to one of its output states—computed as the probability
that the automaton transitions to ON. Even when the fixed in-degree assumption is
relaxed, and as long as the in-degree distribution has a characteristic mean value 〈k〉,
this theory has the same predictive value [2]. However, this theory often mispredicts the
dynamical regime of BNs near the critical edge [10].

One of the key mechanisms that plays a role in critical network dynamics is canal-
ization, which was defined to explain how phenotype traits are conserved when there is
vast genetic variation in living systems [16]. Canalization can be easily studied using
automata networks [9]. Consider for instance an automaton f that transitions to ON
using the logical OR function of its x inputs. It is clear that f will always transition to
ON, as long as at least any of its inputs is ON, and regardless of the state of the other
x− 1 inputs (see Figure 1A). Canalization in automata can either be a (strict) dyadic
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input to output relationship, where the state of one input of f alone is always sufficient
to determine its transition, or a (collective) polyadic relationship where the states of
two or more inputs are needed, together, to determine the automaton’s transition [12].
In our previous example, the LUT entry where all inputs are zero is the only polyadic
(collective) relationship in f (the OR logical function).

We introduced a measure of canalization in automata, effective connectivity (k f
e ) that

tallies the expected number of input states that are sufficient to determine the transition
of f [11]. The effective connectivity of an automaton f is computed from its set of
wildcard schemata (see Figure 1A and [11] for details). A related measure, average
sensitivity, [13] was used recently as predictor of the dynamical regime of a large set
of Boolean network models of biochemical regulation and signalling [5]. To obtain the
average sensitivity, (s f ), of an automaton f , we must first get the partial derivatives of
f with respect to each input xi. Then we can compute the activity of every input xi in f ,
which is the probability that changing its state will change the automaton’s transition—
computed from the partial derivatives. Finally, s f , is the average of the input-variable
activities . The average sensitivity was defined to be a predictor of dynamic regime in
BNs [13], and the transition between stable and unstable regimes has been observed
when s f = 1 [see 15].

Here we compare average sensitivity [13] and effective connectivity [11], showing
that the latter is a more complete representation of canalization in the effective logic of
automata. We also show that effective connectivity is likely to lead to better predictions
of the dynamical regime of BNs than those obtained from average sensitivity.

Results

A key difference between s f and k f
e is that the schemata from which k f

e is computed,
allow the representation of the original BN as a bipartite network, threshold network
or hypergraph. Such representations not only capture the effective structure of the con-
stituent automata nodes in BNs, but this structure is well described by the corresponding
k f

e values [11]. Average sensitivity s f cannot be readily translated to a similar network
structural parameter or related graph representation. It is computed directly from the
automaton’s LUT by averaging over the accumulated the effects of perturbations on
single inputs. This means that s f does not explicitly differentiate the effect of a single
input perturbation on a dyadic or polyadic input-output relationship in the automaton.

Concerning the predictability of dynamic regime, we produced an ensemble S con-
taining 1000 unique automata with k = 7 inputs and bias p = 0.07. Having the same
bias means that all automata in S have the same number of 1s in their LUT output list.
Dyadic input-output relationships are often seen when groups of input-state combina-
tions, which are next to each other in the automaton’s LUT, have the same state tran-
sition (output). This assumes input-state combinations are ordered lexicographically in
the LUT (like in Figure 1A). The opposite is also generally true: if e.g. the 1s in the out-
put list of an automaton f LUT are scattered in the LUT, there is a higher probability that
f has more polyadic input-output relationships (collective canalization), see Figure 1B.
Since, according to the current theory [6], the critical bias for k = 7 is pc = 0.077, using
these parameters should in principle produce networks that at the critical edge. Figure
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1B depicts the result of computing the average sensitivity and effective connectivity
for the automata in S . For effective connectivity, median(k f

e ) = 2.08; IQR(k f
e ) = 0.65,

while for average sensitivity, median(s f ) = 1.07; IQR(s f ) = 0.22. Note that while most
automata in S are sensitive to around one input, effective connectivity shows vari-
ous regimes where some automata depend on average on 1.3 inputs, and others on more
than 3 inputs. This is because (k f

e ) accounts for polyadic relationships (collective canal-
ization) in automata, which is ultimately a more realistic characterization of their true
behaviour. The prediction of dynamical regime from average sensitivity would be that
most BNs built from automata in S will be unstable, since their average sensitivity is
s f ≥ 1 [13, 15]. In contrast, we show that BNs built from LUTs in the yellow area of
Figure 1B exhibit different dynamics from BNs built from LUTs in the pink area (see
Figure 1C). These results show that effective connectivity better characterizes collective
canalization (polyadic relationships) and thus is likely a better predictor of dynamical
regime. Many of the networks predicted by the average sensitivity to be unstable are in
the critical and stable regimes.

Finally, as [4] points out, many real world networks are made of polyadic rather
than purely dyadic relationships. These are better modelled with hypergraphs which are
a natural representations of effective connectivity and wildcard schemata [11]. Novel
methods to apply classical network science insights and tools are being currently stud-
ied for hypergraphs, along with methods to generate random hypergraphs with desired
properties [4]. This will allow us to study representations that capture both structure
and dynamics in network models considering that local interactions can be, and often
are, polyadic in the real world.

Fig. 1. (A) Schemata for the LUT of the 3-input OR function, k f
e = 1.25. (B) 1000 k = 7 LUTs

with bias p = 0.07 were chosen by increasingly scattering the 1s in the output column. Next to
this is the plot showing the corresponding k f

e and s f . Notice that for very similar values of s f

the corresponding k f
e can change significantly (yellow and pink shaded areas). (C) Finally, the

Derrida coefficients of fixed in-degree k = 7 BNs with N = 32 nodes, built using LUTs in the
yellow shaded area of (B) are in the critical regime, while BNs built from LUTs int the pink
shaded area of (B) are slightly into the chaotic regime.
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1 Introduction

Big data has received increasing attention across several disciplines in recent years. In
Official Statistics, big data potentially enables us to produce statistics cheaper, faster,
and on a higher level of detail [1]. In contrast to traditional probability samples, how-
ever, big data typically lacks a sampling design. The unknown data generating mecha-
nism makes design-based inference methods inapplicable. Therefore, research on meth-
ods to use big data for population inference in official statistics is required. In this paper,
we aim to infer the truck traffic distribution in the Dutch road network from sensors in-
stalled on a non-probability sample of road segments. Our study is an illustration of
making inference from data without a sampling design.

2 Data and Methods

Data We use real-world data from a sensor system installed at 18 sensor stations on
Dutch national freeways to detect overloading. When a truck passes a sensor station, it
is weighed, classified, and a photograph of the front license plate is taken. Using the
license plate as a unique identifier, we could link information about the truck and owner
from the vehicle and enterprise registers. Out of the 36 million trucks recorded in 2015,
15 million could be linked. Since trucks could pass a station multiple times a day, the
number is reduced to 14 million unique trucks. In this proof of concept, we restrict the
data to a single week with the largest number of simultaneously working sensors. Other
weeks will be added later to increase mass and to borrow strength from adjacent days.

In the second step, the Dutch transport network of freeways was constructed by
scraping interchange road junctions (the vertices) and their connecting freeways (the
directed edges) from www.wegenwiki.nl. Six vertex features were computed: degree,
strength, betweenness, closeness, vulnerability and clustering coefficient, using the in-
verse haversine distance between vertices as the edge weight. For realistic vertex feature
values, the network was expanded with neighboring freeways in Belgium and the Ger-
man states North Rhine-Westphalia, Lower Saxony and Bremen. Figure 1 shows the
resulting graph. The Dutch part consists of 108 vertices and 284 edges. The 18 measur-
ing stations of the sensor network were assigned at 18 edges of the graph using their
geolocation.
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Fig. 1. The transport network in geographical layout: Dutch (orange), Belgian (green), and North-
West German (blue) interchanges, connected by freeways. White vertices are border crossings.
Red edges are highways with installed measuring stations.

Methods The probability of a truck driving on an edge of the Dutch freeway network
on a given day is modeled using a GLM with logit link and binomial error distribution.
The relationship between on the one hand the relative number of trucks detected by a
sensor installed on one of the 18 edges is modeled, and on the other hand the features of
the origin vertex and the destination vertex. The used features are: weight (inverse edge
length (km−1), degree, strength, betweenness, closeness, vulnerability, and a cluster
coefficient. The relationship is used to predict the detection probability for all trucks in
the vehicle register for all network edges. The modeled probabilities are multiplied with
the number of trucks registered in the vehicle register constituting the study population
to derive the edge counts.

3 Preliminary results

Figure 2 shows the predicted distribution of the number of trucks driving on the Dutch
road network on a given day. The graph, weighted by the modeled edge counts, allows
identifying routes to neighboring countries (Germany, Belgium), while truck traffic in
parts of the center and the western country seems to be lower. This was expected as
the studied population includes a large proportion of heavy traffic trucks. Such vehi-
cles often take routes from the seaports (west Netherlands) through the Netherlands
and further into Europe. The relationship between predicted and actual edge counts is
according to Pearson correlation coefficient very strong (r = 0.97). Moreover, a low
RMSE of 141 is achieved. The cross-validation results show, however, a weak linear re-
lationship between the predicted and true actual edge counts (r = 0.35) and the RMSE
increases to 2581. Hence, the predictive model fits well but does not yet generalize well
yet. Potential improvements will be discussed in the next section.
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Fig. 2. Estimated traffic distribution of the number of trucks in the Dutch road network. The
thickness of edges corresponds to the estimated number of trucks passing.

4 Conclusions and Future research

We demonstrated a method to use big data in official statistics. It can be used to infer
the traffic distribution in a transport network from sensors installed on a non-probability
sample of edges. Such a method requires a unique identifier to identify elements in a
big data source belonging to the inferential population. This method is based on the
assumption that data is missing at random.

The proposed methodology can be expanded in several ways. First, the edge feature
set will be extended with traffic intensity data from a more extensive road sensor system,
consisting of 24 thousand sensors, but without cameras to identify trucks [2]. Data
exploration showed similar time series of traffic patterns, which should make these
data a good predictor to model the edge counts. Second, we will use several register
features about the truck and owner to stratify the analysis. Third, the dataset will be
extended with the entire time series. Time series modeling will be applied to account
for the dependency between days. Both stratification and adding days will reduce the
risk of overfitting. Finally, we consider using an open Jackson network to account for
the spatial dependency between edges.
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Climate change is one of the most important problems the humankind is facing.
Cities are considered to play a key role in climate change mitigation [1]. However,
private actors are responsible for creating most of the greenhouse gas emissions, and
reducing these emissions is a central target of climate governance [2]. Therefore, when
public authorities, for instance cities, want to reduce emissions, they need to cooperate
with the private sector.

Here, we address the case of the Climate Partners (CP), a city-to-business network
initiated by the city of Helsinki, Finland. Founded in 2011, CP connects 83 companies
located at the Helsinki metropolitan area. CP maintains two lines of action. First,
companies joining the network sign a Climate Commitment that defines their
individual goals related to climate change mitigation. Second, CP organizes seminars
and workshops for the member companies. The aims of CP include introducing new
operating methods and business opportunities, reducing emissions through
cooperation, and sharing knowledge and experiences on best practices [3].

All the above-mentioned aims relate to collaboration between companies. To reach
these aims, CP needs both to bring together companies from different fields of
business and to get these companies engaged in the CP activities. To investigate how
well CP meets these two requirements, we construct a bipartite network, where the
bottom and top nodes are, respectively, the CP events organized from 2011 to 2018
and the companies that participated in these events. We recognize that companies can
take actions to mitigate climate change also outside of the CP activities. However, such
indpendent actions of companies are outside of the scope of the present work, as we
specifically address the role of the city-to-business network in climate change
mitigation.

To address the diversity of participating companies, we use the method suggested by
by Makino & Uno [4] to detect the bicliques of the bipartite network. First, we obtain
a monopartite network by adding a link between each pair of top and bottom nodes;
cliques of this monopartite network include every biclique of the original network and
two additional cliques corresponding the sets of top and bottom nodes. Then, we detect
the cliques of the monopartite network by the NetworkX find cliques function [5–7].
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Each of the detected bicliques corresponds to a set of events and companies that
participated in all these events. To quantify the diversity of the companies participating
in same events, we first divide the companies to 20 fields of business. Then, we apply
a diversity measure adopted from ecology, effective diversity De f f [8, 9]. For clique A
with N f fields,

De f f =
1

1−GS(A)
=

1

∑
N f
i=1 p2

i

, (1)

where GS(A) is the Gini-Simpson index of clique A, or the probability that two
companies randomly picked from A are from different fields, and pi is the fraction of
companies from field i out of all companies in A. In practice, De f f (A) tells the number
of different fields in a population with the same Gini-Simpson index as A and with the
fields equally distributed among participating companies. To compare the diversity
between cliques of different sizes, we normalize De f f by clique size to obtain
normalized diversity Dn.

To address the engagement of companies in CP activities, we first define a bi-star
as a (Ni,1) clique that contains an event and the Ni companies that participated in only
this event. Then, we define the starness of the bipartite network G as

S(G) =
∑Nstars

i=1 Ni

NC
, (2)

where NC is the total number of companies.
The cliques of the CP network have companies from, on average, 6.04 different

fields, leading to mean effective diversity of 5.39 and mean relative diversity of 0.91.
The starness of the CP network is 0.57. To interpret these values, we define two null
models: field-shuffled networks that retain the original link structure while the fields of
companies are randomly re-distributed and link-shuffled networks where the
companies and events are randomly re-connected. Comparison to the null models (Fig.
1) reveals that the diversity of the CP network is similar to that of the field-shuffled
random networks (N f : 6.04 vs 5.67, De f f : 5.39 vs 4.80, Dn: 0.91 vs 0.88) , while the
starness of the CP network is clearly higher than in the null model (0.57 vs 0.19).

In other words, CP manages to bring together companies from diverse fields,
opening possibilities for information transfer and innovative collaborations. However,
the engagement of companies in CP is low, which may make reaching CP’s goals
challenging. While the participating companies may see themselves as stars of
mitigation, the CP bipartite networks merely consists of bi-stars of mitigation:
companies that give up participating in CP activities after their first event.

The present work concentrates on the diversity and engagement of companies
participating in CP events. In future, we will complement these results by analyzing
the evolution of companies’ Climate Commitments described in CP’s annual reports.
This analysis will help us to find out if CP membership has lead to more ambitious
climate change mitigation actions even in companies that have decided to not continue
participating in CP events.

603

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



A B

Fig. 1. Comparing the CP bipartite network to null models. (A) The mean effective diversity of the
CP network is close to that of field-shuffled random networks. (B) The starness of the CP network
is notably larger than that of link-shuffled random networks. Gray lines show the distributions of
mean De f f and S across 1000 random networks.
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1 Introduction

Problems around the organ donation, utilization, transplantation, and operational infras-
tructure has been a discussion for decades in the United States. Between shortages of
donor organs, complex structure of organ procurement agencies, hospital networks, and
physicians, the organ donation problem has become a multi-player game where every
party operates without being aware of the other parties’ involvement and knowledge
base [11]. Considering that the demand for the organs needed by patients increased by
15 fold in some cases [10], researchers and government agencies alike have become
involved in this particular problem. In the United States alone as many as 20 people
per day, both adults and children, die waiting on an organ because of issues with the
transplant system. [9].

The potential increase in a recipient’s chances for survival is highly related to the
number of people registered as organ donors. In order to counter the problem, organi-
zations spend most of their effort on increasing the list of potential donors. While organ
donation is widely supported within the US with 95% of adults expressing support, a
much smaller percentage, i.e. 58%, of adults are actually registered organ donors [10].

In addition, one deceased donor can potentially donate eight organs (i.e., a heart,
liver, pancreas, intestines, two lungs, and two kidneys) [8, 3]. Living donors are able
to donate one of their two kidneys, and also a portion of their liver [9]. Still, issues
regarding compatibility, blood type matching, pediatric transplantation, and organ re-
jection ratios can make finding an appropriate donor difficult.

Furthermore, the maximum organ preservation period after harvesting the organ
from a donor varies between 4 hours to 36 hours. For instance, hearts and lungs have
the small maximum organ preservation time of between 4-6 hours. A livers maximum
organ preservation time can be anywhere from 8-12 hours. The maximum organ preser-
vation time for a pancreas can be anywhere from 12-18 hours. Kidneys have the longest
maximum organ preservation time of 24-36 hours [5].

In order to deal with the current situation, the United States government supports
58 organ procurement organizations(OPOs) [4] which work to match donor organs to
patients currently on an organ wait list. These organizations also provide a wide range of
resources such as providing support for donor families [7]. While these organizations
service different regions of the country, they coordinate primarily with neighboring
organizations to utilize the organ preservation period efficiently.
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Fig. 1. Hospital Network clustered based on (left)Betweenness and (right) Eigenvector centrality

2 Outcomes

The United Network for Organ Sharing (UNOS), a U.S. Department of Health and
Human Services initiative, maintains a centralized computer network which links all
organ procurement organizations (OPOs), histo-compatibility labs, transplant hospitals,
and transplant centers in a secure, real-time environment [1]. While this online system
provides assistance in locating the donors for a particular type of organ needed in a
certain case, it does not focus on optimizing the multi-player game between patient,
organ, donor, and the physicians, such that even within a few block radius patients
waiting for an organ might be missed because of the current system implementation [6].

In this paper, we analyzed the graph characteristics of current transplant hospi-
tal/center networks to better understand their implementation. To this end, we have
collected wait lists, donation, and transplantation (including successful and failed trans-
plants) data from UNOS. Based on the hospitals registered as the transplant locations
within certain regions of the country, we have constructed the network of hospitals
along with the registered patients and donors linked to each of these transplant facili-
ties. While earlier studies have analyzed this problem from medical [13] and business
[12, 14] aspects, to our knowledge, this is the first study to analyze the organ donation
network.

UNOS [1] groups transplant facilities based on two criteria; the direct distance and
regional weight. By utilizing the map of regions [10] and the distances of the cities
[2], we have constructed the national organ transplant hospitals network of the United
States.

Our first observation was that there is a rather densely connected graph respective
to each sub-region of the graph and represents a given pair of nodes’ favor-ability.

In Fig 1, we present the hospital network clustered by the betweenness centrality on
the left and the eigenvector centrality on the right. We observe that the hospitals in east
central U.S. are densely connected in both visuals. When considering the betweenness,
we see that 47.35% of the hospitals, mostly the periphery states, are loosely connected
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to network even though hospitals in these certain regions are connected to each other
densely.

Looking at the assortativity metric, is a metric illustrating the preference of a node
to link to others, We see high assortativity, 0.83. This is the artifact of having nodes
connected to each other densely within their regions. Similar to this, we see the cluster-
ing coefficient to be positive, 0.34. Even though the graph assortativity is very high, the
clustering coefficient reveals that there are not many cliques within the regions.

The most important aspect of this problem is that the actual network of hospitals that
exist in the U.S. are the hospitals operated by different businesses in each state. Assor-
tativity and the clustering coefficient clearly reveal that in the virtual level, the network
of organ transplant facilities is primarily governed by business networks implemented
by the economic motivations.
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1 Introduction

Internet facilitates connections between a range of actors with a stake in the energy
transition, including governments, environmental organizations, media outlets and cor-
porations [1,2]. These connections tease a hyperlink network [3,4] affecting publics
access to the information on energy transition issues. Despite its societal relevance,
however, the characteristics of this network remain understudied. We present the re-
sults of a methodology we developed to study the Dutch energy transition hyperlink
network. Our data shows the existence of a highly centralized network -with few au-
thorities [5]- in which the debate about the energy transition revolves around a reduced
number of topics.

2 Results

Figure 1 shows the methodology we developed to study the ecologies of the Dutch en-
ergy transition hyperlink network. To build the network we employed the Issue Crawler
[6] and longitudinally collected data (February-May 2019) from the interactions (hy-
perlinks) between 9 websites representing key Dutch actors (public institutions, private
companies, media, etc) with a stake in the energy transition debate (Phase 1). Then all
the references to the energy transition debate were extracted from the nodes websites
(N= 2,042) and (when possible) from its related Twitter accounts (Phase 2). Next, we
collected data on the nodes location and aggregated all the nodes texts (website and
tweets) into a single corpus (Phase 3). Last, we carried out our social network and topic
modelling (Factor Analysis) analyses (Phase 4).
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Fig. 1. A new methodology to study the Dutch energy transition hyperlink network.

Our results show the existence of a highly centralized network (with the nodes’ de-
gree fitting the power law distribution) in which few authorities concentrate most of the
communication flows (see Figure 2). Of relevance, it is the leading role played in the
network by some private companies (e.g. Siemens), public institutions (e.g.Netherlands
Organization for Scientific Research -NWO-) and civil society organizations (e.g. Nether-
lands Wind Energy Association -NWEA-).

Fig. 2. Distribution of the communication flows in the Dutch energy transition hyperlink network.
The chart shows that the degree distribution and the authorities distribution fit the power law.
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Moreover, the results of our topic model reveal the existence of a reduced number
of topics in the Dutch energy transition hyperlink network (see Figure 3).

Fig. 3. Results of the topic model. The size of the squares indicates the number of terms allocated
to each topic. Before cleaning the textual data, the corpus was of 116 documents and 11,727
unique words. Stop-words and terms with f¡ 5 were excluded of the analysis, resulting in a corpus
of 116 documents and 746 unique words.

Particularly, Figure 3 shows the leading role of the ”Network Infrastructure” (N=
223) topic in the Dutch energy transition hyperlink network, followed by a set of top-
ics related to the private sector, (”Real Estate”; ”Job Market”; and ”Heating Market”).
A second group of topics are those related to the role of the Dutch national govern-
ment and municipalities in the energy transition (”Government” and ”Municipalities”).
Lastly, our model reveals the existence of three discussion topics linked to media out-
lets (”Media”), waste management (”Waste Management”) and wind energy (”Wind
Eenergy”).

All in all, these findings reveal the existence of a Dutch energy transition hyper-
link network in which few actors dominate the communication flows. Moreover, these
communication flows revolve around a specific set of topics which seem to be led by
market-oriented interests.

Summary. We have mapped the ecologies of the Dutch energy transition hyperlink
network. Our results reveal the existence of a highly centralized network in which few
authorities concentrate most of the communication flows. Indeed, the results of our
topic model show the presence of a limited number of discussion topics.
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1 Introduction

Nowadays, the estimation of house selling prices represent a hot and challenging task.The
most widely used methods to address it rely on standard machine learning techniques,
namely Artificial Neural Network and Hedonic. The former approach performs well
with incomplete or unknown data [1], while the latter assumes that the selling price can
be seen as a set of attributes and that the buyer tends to maximize its utility function [2,
3]. The main challenge of such a task lies in identifying those parameters that influence
selling value since, often, they are interdependent or even hidden.

Using the road network of an Italian city, Naples (Figure 1(a)) – along with the dy-
namics of its points of interest –, our research aims to understand the relation between
it and the real estate market prices. The road network was built identifying as edges the
city roads and as nodes their intersections. Anomalies in the original data have been cor-
rected through a cross-reference with the walk network. From a preliminary structural
analysis emerges that the network shares some characteristics with subcritical random
networks (e.g., the degree distribution) while at the same time, it does not exhibit the
small-world property[4]. The degree distribution is close to the Gaussian distribution;
planarity imposes severe constraints on the degree of a node and on its distribution,
which is generally peaked around its average value[5].

We partitioned the network into sub-networks identifying the territorial boundaries
of the 65 land registry areas3. For economic analysis, the network was enriched with
main information about points of interests (POIs) which might influence the purchase
choices of the housing stock made by population. The geospatial coordinates of such
POIs have been identified and assigned to the nodes of the network which were nearest
to them. A different approach has been used for educational and health institution POIs
since the capacity and consequently the size of the universities and the hospital are not
negligible. To take into account their relevance they have been mapped to areas and
the nodes within them have been assigned to the same POI. The categories to which
a POI belongs to and the number of nodes identified by them in the original network
are, respectively: Public schools (70 nodes), Universities (21 nodes), Public and private

3The coordinates of these area boundaries were obtained through Geopoi, a cartographic
visualization software for territorial navigation service.
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(a) Naples Road Network (b) Correlations (c) House Sales Estimates

Fig. 1: (a) Naples Road Network (with nodes subdivided by cadastral areas); (b) fea-
ture/pricing correlations; (c) pricing trends per area.

hospitals (186), Parks (34 nodes). The POI nodes are uniformly distributed among the
identified subgraphs with the exception of the cadastral areas corresponding to indus-
trial area and the city centre.

2 Preliminar Results

To investigate the correlations between estimates of sales prices, points of interest and
structure of the network, each subgraph was characterized by the following network
measures: (i) Average degree: average degree of nodes in the area; (ii) Average street
length: the average value of the street length; (iii) Average edge betweenness: represent
the importance of the streets and it is related to the number of commercial activities
[6]; (iv) Average closeness centrality: related to the distance from any other node in
the network; (v) POIs Ratio: number of POIs divided by the population of the area;
(vi) Edges Ratio: number of streets divided by the population; this measure shows how
well the street network serves citizens. The number of POIs was normalized using the
expected population of the area to take into account the number of persons who would
benefit from the services offered by them. The expected population of each cadastral
area was estimated using the population and the borders of neighbourhoods assuming
an equal distribution of the inhabitants inside neighbourhoods.

From our analysis, the Kendall and Pearson correlations among the identified fea-
tures and the average cluster pricing appear close to zero (Figure 1(b)). Such a negative
result seems to highlights how other features than the road network structural ones can
explain the laws of the real estate market for Naples.

Indeed, one limit of the actual analysis lies in the absence of road network historical
data. However, if such data were available, it would have been possible to train a pre-
dictive regressor that, taking into account how the city connectivity has evolved as well
as when new POIs appeared, could have shown interesting predictive performances.

In absence of such information, we conducted a punctual survey by comparing the
evolution of the price for the 65 Naples cadastral areas. To such extent, we leveraged
real estate quotations data4 over the decade from 2002 to 2013, detailed by semesters;

4Agenzia delle Entrate - Banca dati delle quotazioni immobiliare (OMI)
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this data has been used to generate and compare the time series of each cadastral area
(Figure 1(c)). For each area we computed the price linear trend; the trend coefficient
shows how prices change over time. In particular, we focused our attention on the two
areas where two important POIs (a hospital and a university) have been introduced
during the observed period.

The average trend coefficient across all areas is 19.24. However, when considering
the two selected areas the coefficient changes considerably reaching 35.84 in the new
hospital area (Figure 1(c) red) and 41.42 in the new university one (Figure 1(c) blue).
Such results underlying how for those areas the sales prices tend to grow twice as fast
as in other areas of the city. Indeed, the evolution of the road network through the
introduction of relevant POIs causes a strong evolution in prices. Moreover, such a
result confirms what observed by the static analysis conducted so far: the prices in the
cadastral areas where new POIs appear to change in an evident way, undergoing a rise,
never become the highest prices in absolute terms, as they are the result of a historical
evolution of more than ten years.

Dynamic analysis can be used as a tool to support forecasts combining the historical
trend of prices with the evolution of the road network with a particular focus on the evo-
lution of points of interest. As future work, we plan to collect data on the evolution of
the Naples road network so to better formalize a dynamic graph theory framework able
to explain the real estate market in terms of topology dynamics. In particular, integrat-
ing dynamic road network analysis with economic and cultural information (hospitals,
schools, population) we are certain that a novel class of approaches for pricing forecast-
ing can be devised. Moreover, such a framework could be used as a guide to identifying
those areas for which urban re-qualification is needed or, in an entrepreneurial context,
to choosing where to open a new POI to maximize the effects on sales prices.
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1 Introduction

The complexity of urban street networks is well accepted to reside in the information
space where roads map to nodes and junctions map to links [1–4]. By investigating the
information space, we aim to provide new tools to study our cities.

Striking broad valence distributions have been observed among actual information
networks. The urban street networks of self-organized cities deserve special attention
for at least two reasons. First, they might have reached, over time, a spontaneous equi-
librium that most designed cities fail to reproduce [5]. Second, the valence distributions
of their information networks clearly distinguish themselves by following the (scale-
free) Pareto distribution [2–4]. The second reason, while it supports the first one, may
hopefully lead to a tractable theory.

Accordingly, we envision urban street networks as evolving social systems subject
to a Boltzmann-mesoscopic entropy preservation [3, 4]. This preservation ensures the
passage from the road-junction hierarchy to a scale-free coherence, i.e., that the valence
distribution of the information network follows a Pareto distribution. The Boltzmann-
mesoscopic entropies reflect the perception that inhabitants have of their own city, so
they are better expressed in terms of surprisal. In brief, we conjecture that information
networks tend to evolve by maintaining their amount of surprisal constant on average.

Even so information networks are well recognized as relevant, there is some art in
how social and geographical criteria are pondered to construct them from urban street
networks. However, the deflection angles between pairs of adjacent street-segments ap-
pear to be pertinent constructing parameters [2–4]. Naive behavioural based join prin-
ciples [2] based on deflection angles have been used with good success [2]. Amazingly,
the most successful one [2] is a random process with numerous outputs. The output ar-
bitrariness must be addressed. Embracing the idea that information networks are driven
by surprisal allows us to elevate these principles to a single-flip Metropolis algorithm
as used for generating equilibrium states of Ising-like models in statistical physics [6].

2 Method

Here nodes are natural roads (or roads for short), that is, an exclusive sequence of suc-
cessive street-segments joined according to some behavioural based join principle [2].
If beyond some threshold angle any joining has to be forbidden, multiple possibili-
ties remain open. Two join principles based on deflection angle have appeared realistic
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against well-founded cadasters. The self-best-fit and self[-random]-fit join principles
operate sequentially on growing roads, until applicable, by randomly seeding them
with a not-yet-selected street-segment before recursively appending, until applicable,
one of the not-yet-appended street-segments. The self join principles differ only by
the choice of the nominees. The self-best-fit join principle picks the not-yet-appended
street-segments whose deflection angle is the smallest. By contrast, the self[-random]-fit
join principle chooses randomly. The random variant generally gives the best “fit” [2].

Given a Boltzmann-mesoscopic system, let us denote by Pr(Ω) the distribution of
the numbers of configurations Ω of its mesoscopic objects o. If the average amount of
surprisal ∑Ω Pr(Ω) lnΩ is preserved, Pr(Ω) most plausibly follows a Pareto distribu-
tion Pr(Ω) ∝ Ω−λ by virtue of Jaynes’s Maximum Entropy principle [3, 4]. Assuming
that an information network is such a system, the probability pµ of its state µ yields

pµ ∝ ∏
oµ∈{rµ , jµ}

Ω−λ
oµ = e−λSµ with Sµ = ∑

oµ∈{rµ , jµ}
lnΩoµ (1)

the amount of surprisal in state µ; the product (so the sum) runs over the roads rµ
and junctions jµ of state µ . This state probability depends only on the actual state
of the information network. So, for a given self-organized urban street network, we can
generate Markov chains [6] of information networks whose valence distribution reaches
a Pareto distribution as equilibrium.
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Fig. 1. Typical single-junction-flip Metropolis run for Old Ahmedabad (India): the foreground
purple generation series plots a typical run starting from a self-fit state; the background light-grey
generation series plots a typical random sequence of self-fit states with the same modus operandi.
The simulations were run with a custom C code adopting and adapting typical techniques [6].

To achieve this, we must place on two conditions [6]. First, the condition of er-
godicity assures that the Markov process can reach any state from any other one. The
self-fit join principle readily inspires us the following single-junction-flip ergodic iter-
ation: choose randomly a street-segment, then a direction towards one of its junctions,
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then a new street-segment nominee, and finally recompose accordingly the arrangement
of the chosen junction. Second, the condition of detailed balance assures both that ev-
ery Markov chain comes to an equilibrium and that it is the probability distribution (1)
which is effectively generated. An abundant literature exists on the subject [6]. For the
sake of preliminary investigation, we adopt the Metropolis algorithm [6]. Thusly our
acceptance ratio A(µ → ν) to accept a new state ν from state µ writes

A(µ → ν) =

{
e−λ (Sν−Sµ ) if Sν −Sµ > 0
1 otherwise.

(2)

In fact, we adapt the single-spin-flip variant of the Metropolis algorithm [6] since we
use the single-junction-flip dynamics to generate new states. We refer to the literature
to elaborate more sophisticated variants [6].

For early investigations, we may reduce urban street networks to their roads only so
that the amount of surprisal Sµ in state µ simplifies [3, 4] to

Sµ = 2υ ∑
rµ

lnnrµ since Ωrµ ∝ n2υ
rµ (3)

where υ is the number of vital connections for roads [3, 4]; the sum runs over the roads
rµ of state µ . We denotes by nr the number of junctions of road r.

3 Results and Discussion

Figure 1 shows a typical single-junction-flip Metropolis run for the urban street network
of Old Ahmedabad. Besides validating our approach, our runs give two precious indica-
tions. First, the actual convergence of typical runs confirms that information networks
of Old Ahmedabad plausibly follow a scale-free coherence. Second, the convergent in-
formation network of least surprisal appear mostly unreachable through the self-fit join
principle. Both encourage to reinforce the similitude with Ising-like models [6].

In future works, we expect to generate among self-organized information networks
different surprisal equilibria. Ultimately, this may bring us a thermodynamic-like tool-
box [6] to investigate and understand the geometrical rules and the social dynamics that
actually govern urban street networks and, by extension, cities.
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Monitoring water quality continuously is essential to ensure the sanitary conditions
for any Water Distribution System (WDS). For the last decades, Event Detection Sys-
tems (EDS) have been used to fulfill this task in Water Distribution Networks (WDN).
Recent approaches are hydraulic model-based [17] and fully data-driven based on ma-
chine learning [13] or deep learning [4] techniques applied on water quality time series.
The first hydraulic approach assumes the availability of some hydraulic modeling to
simulate the water quality data which might be very costly and unreachable in practice
for large WDS. The second one hardly succeeds in distinguishing between a normal
operating event (exchanging water between District Meter Areas (DMA), emptying a
tank,...) and a real pollutant event only by analyzing the collected time series. There is
thus a prior need for the data-driven approach to identify some knowledge about op-
erating configurations of the WDN and similar quality zones to characterize normal
patterns. This paper introduces a new methodology to overcome this problem by parti-
tioning the WDN graph in node clusters with similar water quality.

The proposed approach aims to summarize water quality zones in the WDN not
only in space but also in time. As a next step, some EDS should trigger an alarm when
an event cannot be explained by this water quality segmentation. The input data used
in this study are water flow time series on pipes and concentration time series for all
WDN nodes based on conservative tracer simulations. The normal operating configu-
ration of the WDS is found as described in [3] based on water flows. Furthermore, two
papers propose node clustering techniques with hydraulic path information for a simi-
lar problem to define quality zones [12], [14]. However, both of them apply a classical
Kmeans (KM) on some impact feature matrix defined by concentration values of con-
servative tracers and have two drawbacks. First, the unaligned concentration time series
from distinctive nodes can lead to similar deviations to KM centroids due to the Eu-
clidian distance [12] which suggest to deal with longitudinal data and not the classical
multivariate data. Second, the Kmeans algorithm can group nodes together with similar
deviations on different tracer simulations which suggest to perform as many graph clus-
terings as hydraulic simulations. To solve these issues, we use respectively a Dynamic
Time Warping (DTW) distance between the time series and a consensus clustering on
all the tracer simulations. More precisely, we introduce the construction of a hybrid
matrix that gathers together spatial and temporal information. The temporal attributes
are summarized by the widely used DTW [15] as a distance between pairs of concen-

C OM P L E X
NETWORKS

2019

The 8th International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal



tration time series. The spatial data are the shortest path in terms of water flow for each
conservative tracer simulation from the source to all exposed nodes. Let us recall that,
when looking for dense subgraphs, graph clustering is called community detection in
graphs [7] and usually based on Newman-Girvan modularity optimization [10]. Our
methodology is a node-attributed graph clustering based on a similarity matrix close to
the approach [6] that was employing a Kmeans for the clustering step. Then, we use a
consensus learning step to compute a single node-partition based on the S graph cluster-
ings where S is the number of hydraulic simulations. Note that global quality functions,
e.g. modularity, are known to have serious limits, and their optimization is often unable
to detect clusters in realistic settings [10].

The present work extends a paper published at MARAMI’19 [5] with two major
contributions: an Expectation-Maximization (EM) algorithm [9] is performed for each
graph clustering and all the EM posterior probabilities are employed for an agglom-
erative hierarchical clustering as a consensus step (respectively a Kmeans and a graph
coloring in the previous work). The similarity matrix is formulated in the same way
in order to perform simultaneously a graph clustering on spatial and temporal data. A
dedicated EM algorithm is used to produce a soft partition of the WDN for each tracer
propagation. More precisely, a Gaussian parsimonious EM algorithm is implemented
with diagonal covariance matrices [2] and the expectation step is modified to handle the
non-exposed nodes where shortest paths can not be computed. Note that the initializa-
tion step is done by applying a Kmeans on the spatial vectors (shortest paths) to speed up
the process which is found efficient in practice compared to the entire similarity matrix.
The model selection is done by minimizing the BIC (Bayesian Information Criterion)
criterion with a specific penalization. Concerning the consensus clustering on the S in-
dependent partitions, we employ a strategy varying the number of final groups [8] in the
WDN graph. The graph coloring algorithm is the problem where adjacent vertices in a
graph always must have distinct colors i.e cluster label in our work [16]. Such approach
is found stable in practice but its final partition is static. In this paper, a specific hierar-
chical measure is formulated using the posterior probabilities of the Gaussian mixtures
to evaluate the different arrangement of the clusters. A complete linkage is used and the
number of groups is chosen by cutting a dendrogram at a chosen level. This explains
also how the WDN clusters of similar water quality can merge or split according to the
hierarchical measure. Note that the proposed segmentation methodology uses a reduced
graph of the WDN (removing antennas and linear nodes) to simplify the problem. An
algorithm of label propagation is run afterwards to cluster each unlabeled node of the
global WDN graph. Finally, each cluster is characterized by a S-dimensional prototype
concentration curve by applying the probabilistic generative method called Continuous
Profile Model (CPM) [11]. This approach allows to define each cluster by its prototype
curve in terms of source influence in space and time.

The methodology is illustrated on a large real-world network that belongs to the
Syndicat des Eaux d’Ile-de-France (SEDIF). The SEDIF is a large association includ-
ing 151 municipalities which produces about 780,000 m3 of drinking water each day
for about 4.6 million inhabitants of suburban Paris. This is the largest drinking WDN in
France with about 8,700 km of pipes and its graph consists of an outer branched com-
ponent (forest) and an inner one (core). The proposed approach is implemented on a
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major part of the SEDIF network represented by a single calibrated model using the hy-
draulic modeling software SynergiT M Water, with a graph of about 32k vertices and 40k
edges. Based on this model calibrated with real-world data streams, the experimental re-
sults show a certain practicality in extracting spatio-temporal patterns from an operating
WDS and exhibiting source influences of the WDN clusters. Such information about the
dynamical topology of the WDN is valuable to enhance quality event detectors. Future
work will investigate the comparison of various EDS in terms of change-point detection
performance (e.g. [1], [13], [4]) based on the proposed methodology.
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