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Preface

We are proud to present the Book of Abstracts for the 8th International Conference on
Complex Networks & their Applications: COMPLEX NETWORKS 2019 Since 2012
the event has been held around the world on a yearly Basis. After Sorrento (Italy), Ky-
oto (Japan), Marrakech (Morocco), Bangkok (Thailand), Milan (Italy), Lyon (France),
Cambridge (UK) the eighth edition is hosted by the Gulbenkian Science Institute, in
Lisbon from December 10 to December 12, 2019. The originality of the conference
lies in the strongly interdisciplinary nature of the topics covered. Indeed, complexity
and network science are multidisciplinary fields that mobilize intellectual resources in
virtually all-scientific communities. Nowadays, all disciplines (physics, biology, social
sciences, economics, computer science, meteorology, etc.) are faced with a massive in-
flux of data and an explosion of information to manage. Through the data and their in-
teractions, network science aims at understanding these complex systems increasingly
large. COMPLEX NETWORKS is very focused at being an interdisciplinary event.
However, this is linked with willingness to the requirements that the quality of the con-
tributions must be among the best work in each of the scientific fields covered. In order
to guarantee the excellence and reputation of this event, for its eighth edition COM-
PLEX NETWORKS has brought together in its scientific committee more than 400
leading international experts from all over the world. Year after year the event has in-
creased its international influence. The 470 contributions that we received this year,
from more than 50 countries around the world have been peer reviewed by at least 3
independent reviewers. This publication gathers the 190 extended abstracts accepted for
presentation together with abstracts of six keynote speeches and two invited tutorials.

Each edition of the conference represents a challenge that cannot be successfully
achieved without the deep involvement of plenty of people, institutions and sponsors.
We would like to thank all of them. We record our thanks to our fellow members of the
Organizing committee for their huge efforts for the success of the conference. The pro-
gram committee members for their engagement in promoting the event and refereeing
submissions as well as the local committee members for their great commitment over
the past months. We are also indebted to our sponsors, in particular Tribe Communica-
tion for designing the visual identity of the Conference. We are equally grateful to all
the institutions that have helped us, in particular, the Calouste Gulbenkian Foundation
for hosting this event. We also wish to express our appreciation to all participants and
presenters. On a final note, we would like to express our deep sense of appreciation to
our keynote and tutorial speakers.

Hocine Cherifi
Sabrina Gaito

Joana Gongalves-Sd
José Fernando Mendes
Esteban Moro

Luis Mateus Rocha
Francisco C. Santos
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Mapping networks in latent geometry: models and
applications

Maria Angeles Serrano

Universitat de Barcelona, Spain

Complex networks talk a common language, regardless of their origin, and are im-
printed with universal features. Many of these features are well explained by the S1/H2
family of hidden metric space network models, where nodes are placed at specific co-
ordinates in an underlying geometry, which led to the discovery that the effective ge-
ometry of many real networks is hyperbolic. Hyperbolicity emerges as a result of the
combination of heterogeneous popularity and Euclidean similarity into an effective dis-
tance between nodes, such that more popular and similar nodes have more chance to
interact. The geometric approach allows the production of truly cartographic maps of
real networks in hyperbolic space that can be obtained using different techniques. Re-
cently, we have introduced Mercator, an embedding tool that mixes machine learning
and maximum likelihood approaches to perform dimensional reduction giving the co-
ordinates of the nodes in the underlying hyperbolic disk with the best matching be-
tween the observed network topology and the underlying S1/H2 geometric model. The
maps are not only visually appealing, but also meaningful and enable efficient naviga-
tion, the detection of communities of similar nodes, and a geometric renormalization
group that unravels the multiple length scales coexisting in the structure of complex
networks, strongly intertwined due to the small world property. The application of geo-
metric renormalization to real networks unfolds them into a multilayer shell that shows
scale invariance, meaning that the same principles are ruling the formation of network
connections at different length scales. Interestingly, this self-similarity may have its ori-
gin in an evolutionary drive. Beyond its explanatory power, practical applications of the
geometric renormalization technique include multiscale navigation and the production
of downscaled or upscaled network replicas, among many other.

M. Angeles Serrano obtained her Ph.D. in Physics at the
Universitat de Barcelona in 1999 with a thesis about grav-
itational wave detection. One year later, she also received
her Masters in Mathematics for Finance from the CRM-
Universitat Autonoma de Barcelona. After four years in
the private sector as IT consultant and mutual fund man-
ager, she returned to academia in 2004 to work in the field
of complex networks. She completed her postdoctoral re-
search at Indiana University (USA), the Ecole Polytech-
nique Fédérale de Lausanne (Switzerland) and IFISC In-
stitute (Spain). She came back to Barcelona in 2009, when she was awarded a Ramén y
Cajal Fellowship at UB. In February 2009, she obtained the Outstanding Referee award
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of the American Physical Society. She is a Founder Member of Complexitat, the Cata-
lan Network for the study of Complex Systems, and a Promoter Member of UBICS, the
Universitat de Barcelona Institute of Complex Systems. M. Angeles Serrano is ICREA
Research Professor at the Universitat de Barcelona from October 2015.
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Wikimedia Public (Research) Resources

Diego Saez-Trumper

Wikimedia Foundation

The Wikimedia Foundation’s mission is to disseminate open knowledge effectively
and globally. In keeping with this mission, the Wikimedia Foundation support research
in areas that benefit the Wikimedia community. We aim to make any work with our
support openly available to the public. At the same time that we do a minimalist user
data collection, all the material (text and multimedia) available in our projects is public
and reusable by everybody. Moreover, all the article versions and interactions among
users are also public, and we offer a set of tools for accessing such data. In this tutorial
we are going to give an overview on all the data sources, and a detailed explanation
of how to interact with this content, including data and tools such as the Wikipedia
Dumps, Quarry (SQL Replicas), Pageviews, PAWS (Jupyter Public Notebooks), Wiki-
media Commons (multimedia content) and WikiData.

Diego Sdez-Trumper is a Research Scientist at Wikimedia
Foundation. Before, he was a post-doctoral researcher at
Yahoo! Labs (Barcelona), Senior Research Scientist at Eu-
recat , Data Scientist at NTENT, and part time lecturer at
UPF. He holds a diploma on Acoustic Engineering (Uni-
versidad Austral de Chile, 2006) and obtained his Phd in
Information Technology from Universitat Pompeu Fabra
(2013) under the supervision of Dr. Ricardo Baeza-Yates.
During his PhD he interned at Qatar Computing Research
Institute (2013), University of Cambridge (2012) and Uni-
versidade Federal de Minas Gerais (2011). His research interests include: Diffusion of
information, innovation, and influence in online social networks; User modeling; Free
knowledge; Relationship between social and mainstream media; Algorithms on graphs;
and privacy issues.
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Reflections of social networks

Lada Adamic
Facebook

In this talk I will describe two studies based on friendship ties on Facebook. In the
first, aggregate county-to-county ties in the United States tell of geographical distance
but also characteristics of the counties and past migrations between them. In the second,
we show how college social networks take shape, a process influenced by the type of
college and the seasonality of academic life

Lada Adamic leads the Computational Social Science
Team at Facebook. Prior to joining Facebook she was an
associate professor at the University of Michigan’s School
of Information and Center for the Study of Complex Sys-
tems. Her research interests center on information dynam-
ics in networks.
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Network-based dynamic modeling of biological systems:
toward understanding and control

Reka Albert

Penn State University

My group is using network science to understand the emergent properties of biolog-
ical systems. As an example, we think of cell types as attractors of a dynamic system of
interacting (macro)molecules, and we aim to find the network patterns that determine
these attractors. We collaborate with wet-bench biologists to develop and validate pre-
dictive dynamic models of specific systems. We then use the specific knowledge gained
to draw general conclusions that connect a network’s structure and dynamics. An ex-
ample of such a general connection is our identification of stable motifs, self-sustaining
cyclic structures in the network that determine a trap subspace of the system’s state
space, or equivalently determine points of no return in the dynamics of the system. We
have shown that control of stable motifs can guide the system into a desired attractor.
Such attractor control can form the foundation of therapeutic strategies on a wide appli-
cation domain. I will illustrate such applications in our model of a cell fate change that
represents the first step toward cancer metastasis. Several model-predicted therapeutic
interventions to block this cell fate change were validated experimentally.

Prof. Réka Albert received her Ph.D. in Physics from
the University of Notre Dame (2001), working with Prof.
Albert-Laszl6 Barabdasi, then did postdoctoral research
in mathematical biology at the University of Minnesota,
working with Prof. Hans G. Othmer. She joined Penn State
in 2003, where she currently is a Distinguished Professor
of Physics with adjunct appointments in the Department
of Biology and the Huck Institute of the Life Sciences.
Prof. Albert is a network scientist who works on predic-
tive modeling of biological regulatory networks at multi-
ple levels of organization. Dr. Albert’s pioneering publications on the structural hetero-
geneities of complex networks had a large impact on the field, reflected in their iden-
tification as "Fast breaking paper" and "High impact paper". Prof. Albert is a fellow
of the American Physical Society and of the Network Science Society and an exter-
nal member of the Hungarian Academy of Sciences. She was a recipient of an NSF
Career Award (2007), the Maria Goeppert-Mayer award (2011), and the Distinguished
Graduate Alumna Award of the University of Notre Dame (2016). Her service to the
profession includes serving on the editorial board of the Biophysical Journal, Bulletin
of Mathematical Biology, npj Systems Biology and Applications, and as peer reviewer
for more than 35 journals.

The keynote is sponsored by Applied Network Science
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On a Positional Approach to Network Science

Urlik Brandes
ETH Ziirich

This presentation is about network science methodology. By viewing it as a data
science rather than, say, a collection of methods or a unifying theory, we create op-
portunities for more rigorous research, both mathematically and empirically. Pivotal to
the adaptation of methods to general, multivariate and temporal, situations is the notion
of network position, which summarizes the relationships of a node with the rest of the
network. I will give examples showcasing how the analysis of centralities, roles, and
communities can benefit from a positional perspective.

Ulrik Brandes is a professor of social networks at ETH
Zurich since 2017. With a background in algorithmics, his
main interests are in network analysis and visualization,
with application to social networks in particular. He is a co-
author of the visone software for network analysis and of
the GraphML data format. Deutsche Forschungsgemein-
schaft (DFG) awarded him a Reinhart Koselleck-Project
on Social Network Algorithmics, in which he took a shot
at improving the methodological foundations of network
science, and he was a principal investigator in the ERC
Synergy Project NEXUS 1492 where he worked on reconstructing archaeological net-
works from fragmented and heterogeneous observations. Brandes received a Diploma
degree from RWTH Aachen in 1994and a PhD from the University of Konstanz in
1999, both in computer science. After postdoctoral research visits to Brown University
and the University of Sydney, he completed his habilitation in 2002 and became asso-
ciate professor at the University of Passau the same year. From 2003-2017 he was full
professor of algorithmics at the University of Konstanz. He is a member of the board
of directors of the International Network for Social Network Analysis (INSNA) since
2008, and was a member of the Graph Drawing Steering Committee 2007-2014. He acts
as the coordinating editor of Network Science and as an associate editor of Social Net-
works, and he is an editorial board member of the Journal of Mathematical Sociology
as well as the Journal of Graph Algorithms and Applications.
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Temporal networks: past, present, future

Jari Saramaki
Aalto University, Finland

The key strength of network science has been its ability to strip away unnecessary
details, making it easier to grasp the inner workings of systems that are large and com-
plex. At the same time, however, entire subfields have emerged that build on adding
back some of this detail: weighted networks, multilayer networks, and temporal net-
works, the latter being the topic of this talk. I will provide an overview of what temporal
networks are and what the temporal networks framework can do, and discuss when the
temporal-network treatment is useful and when not. I will discuss some key findings
and methods, using time-stamped social interactions as an example case, and finally,
try to sketch some future directions for temporal-network research.

Jari Saramiki is a full professor and vice head at the De-
partment of Computer Science, Aalto University, Finland.
He received his PhD in applied physics in 1998, study-
ing quantum crystals at milliKelvin temperatures. After
some career twists and turns involving technology com-
panies and what we would nowadays call data science, he
returned to academia in 2003 to study complex networks, a
new and rapidly expanding field at that time. Jari Saraméki
is probably best known for his work on social and tempo-
ral networks, but his broad range of research interests has
included topics from ant supercolonies to the human immune system.
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How to eliminate systemic risk from financial
multi-layer networks

Stefan Thurner
Medical University of Vienna, Austria

Given the detailed network structure of financial obligations in financial markets one
can compute not only compute the systemic risk contribution of the individual financial
players, but also it becomes possible to estimate the contribution of systemic risk of
every single financial transaction. This in turn allows us to design incentive schemes
for market participants to become systemic risk sensitive, by preferring systemically
unrisky transactions. We show that such schemes lead to a restructuring of financial ex-
posure networks in ways that suppress the possibility of cascading failure and thereby
drastically reduces systemic risk. We discuss ways to compute optimal financial net-
works that can be used to benchmark and monitor actual financial networks.

Stefan is full professor for Science of Complex Systems at
the Medical University of Vienna. He is the president of the
Complexity Science Hub Vienna, external professor at the
Santa Fe Institute, and a senior researcher at IIASA. Ste-
fan obtained a PhD in theoretical physics from the Tech-
nical University of Vienna and a PhD in economics from
the University of Vienna. Stefan started his career in the-
oretical particle physics and gradually shifted his focus to
the understanding of complex adaptive systems. He pub-
lished about 200 articles in physics, applied mathematics,
network theory, evolutionary dynamics, life sciences, economics and finance, and lately
in social sciences. He holds two patents. His work has been covered by international
media such as the New York Times, BBC world, Nature, New Scientist, Physics World,
and is featured in more than 400 newspaper, radio and television reports. Stefan was
elected Austrian “scientist of the year” in 2018.
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Machine learning for Graphs based on Kernels

Michalis Vazirgiannis
Ecole Polytechnique, France

Graph kernels have attracted a lot of attention during the last decade, and have
evolved into a rapidly developing branch of learning on structured data. During the past
20 years, the considerable research activity that occurred in the field resulted in the de-
velopment of dozens of graph kernels, each focusing on specific structural properties of
graphs. Graph kernels have proven successful in a wide range of domains, ranging from
social networks to bioinformatics. The goal of this presentation is to provide a unify-
ing view of the literature on graph kernels. In particular, we present a comprehensive
overview of a wide range of graph kernels. Furthermore, we perform an experimental
evaluation of several of those kernels on publicly available datasets, and provide a com-
parative study. Finally, we discuss key applications of graph kernels, and outline some
challenges that remain to be addressed. The experimental comparison was based on an
open source python library (Grakel) we designed implementing all the known so far
graph kernels.

Dr. Vazirgiannis is a Professor at LIX, Ecole Polytechnique
in France. He has conducted research in Frauenhofer and
Max Planck-MPI (Germany), in INRIA/FUTURS (Paris).
He has been a teaching in AUEB (Greece), Ecole Polytech-
nique, Telecom-Paristech, ENS (France), Tsinghua, Jiao-
tong Shanghai (China) and in Deusto University (Spain).
His current research interests are on deep and machine
learning for Graph analysis (including community detec-
tion, graph classification, clustering and embeddings, in-
fluence maximization), Text mining including Graph of
Words, deep learning for word embeddings with applications to web advertising and
marketing, event detection and summarization. He has active cooperation with indus-
trial partners in the area of data analytics and machine learning for large scale data
repositories in different application domains. He has supervised twenty completed PhD
theses. He has published three books and more than a 200 papers in international refer-
eed journals and conferences and received best paper awards in ACM CIKM2013 and
IJCAI2018. He has organized large scale conferences in the area of Data Mining and
Machine Learning (such as ECML/PKDD) while he participates in the senior PC of Al
and ML conferences — such as AAAI and IJCAI. He has received the ERCIM and the
Marie Curie EU fellowships, the Rhino-Bird International Academic Expert Award by
Tencent and between 2015 and 2018 he lead the AXA Data Science chair.

The keynote is sponsored by Frontiers in Big Data
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Network models of fracture in materials with
hierarchical microstructure

Nosaibeh Esfandiaryl, Paolo Moretti!, and Michael Zaiser!'2

! Dept. of Materials Science, WW8-Materials Simulation, FAU Universitt, Erlangen-Nrnberg,
Dr.-Mack-Strae 77, 90762 Frth, Germany
nosaibeh.esfandiary@fau.de,

WWW home page: http://matsim.techfak.uni-erlangen.de
2 School of Mechanics and Engineering, Southwest Jiaotong University
Chengdu 610031, China

1 Introduction

Hierarchical materials are characterized by modules that repeat several times on dif-
ferent length scales in a self-similar fashion. Biological materials provide examples of
heirarchical systems. Collagen protein, for instance, exhibits a hierarchical fiber or-
ganization in different scales from Angstrom until centimeter, comprises molecules,
microfibrils, fibers, and fiber bundles [1]. This structure provides some properties like
enhanced fracture toughness, which isolated collagen molecules can not show. Some
authors [2] have suggested that hierarchical structures may delay or prevent the nucle-
ation and spreading of critical flaws which control failure of non-hierarchical heteroge-
neous materials [3,4].

Hierarchical structures play also a key role in adhesion, as it is evident in the case of
the gecko. The peculiarity of this reptile is its ability to walk on ceilings and vertical
walls, despite its comparably high weight. This is due to the particular fractal structure
of the gecko toes, whose extremities are composed by hundreds of thousands of 100
micrometer long fibers, named setae, each of them branching in hundreds of fibrils, or
spatulae, in the scale of nanometers. This structure optimizes the ability of the gecko to
use van der Waals forces to adhere to a surface, even if it is rough, to detach easily and
to resist flaws [5, 6].

In this work we use network models to study properties of hierarchical structures [7]
and to explore how hierarchical system affects the precursor activity in the run-up to
failure and ultimately changes the mode of failure, we formulate for the first time hi-
erarchical generalizations of the well-known random fuse network (RFN) [8, 9]. At the
same time we emphasize that RFN models represent a scalar caricature of tensorial elas-
ticity. RFN models can describe fracture of materials only in exceptional cases [10]. We
consider both 2- and 3-dimensional network models of hierarchical materials and we
show that both bulk fracture and interface adhesion and detachment of such systems are
characterized by a novel failure mode, in which crack growth is hindered at all scales.
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2 Results

In our work, we generalize fuse network models in different variants to investigate the
impact of hierarchical organization on failure modes and highlight differences between
hierarchical and non-hierarchical materials. We consider variants of deterministic and
stochastic fuse networks, both of the hierarchical (fractal) and of the non-hierarchical
type. While non-hierarchical systems are characterized by structural gaps (or voids)
with a well defined mean size and a short-tailed distribution, the hierarchical ones nat-
urally display heavy-tailed power-law gap size distribution, resulting in the ability of
such systems to confine crack growth.

Our numerical results confirm this picture. We use the standard Random Fuse Model to
investigate the elastic response of our systems and their failure behavior under load. Fig.
1 shows the crack profiles in non-hierarchical random reference fuse network (R-RFN)
and deterministic hierarchical fuse network (D-HFN), in their simpler 2-dimensional
variants. The non-hierarchical systems produce the typical self-affine crack profile, as
studied in the literature on RFN models[11], and pointing to fracture as a critical phe-
nomenon: the failure point is effectively a critical point, displaying scale-invariant be-
havior. The hierarchical systems, instead, do not fail by growing a single large crack at
the critical point, they rather accumulate micro-cracks all along the subcritical regime,
resulting in highly deflected crack profile at failure. Deflections are power-law dis-
tributed in size and point to a fracture scenario that does not change when reaching
the failure point. To understand better this fact, we study the distribution of avalanche
sizes in the subcritical and critical regimes, which is defined as the number of links that
fail without any further increase in the applied load. Once again, the non-hierarchical
systems exhibit a standard phase transition behavior, with avalanche size distributions
becoming power-laws at failure. In the hierarchical case, instead, no difference arises
between the behavior before failure and at failure: avalanche sizes are power laws at
every loading stage, with non-universal exponents that depend on the proximity of the
failure point. Therefore in hierarchical systems there is no qualitative difference in the
mechanical response at the failure point and before it, no precursory activity and no
critical crack growth.

Our results carry over to our three dimensional models of adhesion and interface fail-
ure of hierarchical materials in contact with heterogeneous substrates, motivated by the
case study of the gecko pad. In this case too, detachment of the hierarchical system
is not characterized by a single catastrophic event in which the spatial symmetry of
micro-crack layouts is broken in favor of a single critical crack. Micro cracks remain
localized instead. This ability to confine damage results in higher fracture toughness,
making the hierarchical system more effective in adhering to a heterogeneous substrates
with quenched disorder.

Summary. We study numerically fracture and failure in network models of bio-inspired
hierarchical materials, using the Random Fuse Model to simulate mechanical loading
and breaking. We find out that unlike non-hierarchical systems, in which failure occurs
as a critical phenomenon, with scale invariant behavior at a critical tipping point, in our
hierarchical systems no tipping point is found and breaking processes advance by dam-
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Fig. 1. Crack shape in a hierarchical (D-HFN) and a non hierarchical (R-RFN) model material.

age accumulation only, effectively limiting crack growth and enhancing the resilience
of the system at hand.
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1 Introduction

Human brain networks are well known examples of biological systems, which exhibit a
hierarchical modular structure [1, 2]. Collagen based biological matter, including bone
and tendon, share the same hierarchical organization. The ubiquity of hierarchical or-
ganization in biological systems is often ascribed to the enhanced resilience that the
hierarchical organization brings about.

In this work we address the problem of persistence of the hierarchical organization
upon variation of relevant system parameters. Can we highlight universal measures of
the hierarchical organization of a biological system? How robust are these measures
against parameter changes? While there is a general agreement about the hierarchical
nature of brain organization, their properties seem to depend on the correlation thresh-
olds applied to the dense correlation matrices as well as on the nature of the functional
process hosted by the network (e.g. subcritical vs. supercritical). Similarly, hierarchi-
cally organized biomaterials undergo significant changes under load, as damage (the
number of broken links) advances [3]. Is a damaged hierarchical material still hierar-
chical?

2 Results

In order to verify to which extent small spectral gaps extend to functional connectiv-
ity, we generate functional netwoks by computing coactivation matrices, as suggested
in [4], simulation spreading dynamics on hierarchical modular networks (HMN) [2, 5].
Spreading dynamics is associated with a spreading rate A, which can be below or above
a critical A.. We generating dense coactivation matrices in both cases, we apply varying
finite and positive thresholds 7" and extract the sparse adjacency (or weight) matrix of
the functional network. Upon increasing T in Figure 1, in the subcritical case, the spec-
tral gap drops by more than two orders of magnitude well before the network fragments.
The functional network indeed inherits the small-gap property of the structural one that
generated it. In other words, it is hierarchical too. In the supercritical case, instead, the
two transitions become closer and, more importantly, as soon as the spectral gap starts
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decreasing, the giant connected components shrinks too. In this case the functional net-
work never exhibits a small spectral gap except when it is fragmented: the functional
network is not hierarchical. Figure 1 also shows how this clear-cut separation between
subcritical and supercritical is reflected by the degree distributions of the ensuing func-
tional networks, which exhibit exponential tails in the subcritical case (mimicking the
degree distribution of the underlying structural network), and heavy power-law tails
in the supercritical regime. We show that in the case of functional brain connectivity,
the hierarchical organization is persistent upon variation of thresholds in the subcritical
and near-critical state that is commonly associated with healthy brain function, and is
lost in the supercritical regime which is often associated with pathological conditions
such as epilepsy. We observe the same persistent behavior in the context of fracture of

Fig. 1. comparisons between spectral gaps and giant connected component sizes (left) and Degree
distribution (right) for functional coactivation networks generated from HMNs of size N = 1024.

hierarchically patterned network models of biological materials using the Hierarchical
Fuse Network model (HFN) [3]. The critical point for such systems is represented by
the peak load, the maximum amount of mechanical stress such systems can withstand.
We measure eigenvector localization as an indicator of the hierarchical organization
of such networks as damage progresses, quantified as the inverse participation ratio
(IPR) of the eigenvectors corresponding to eigenvalues in the lower spectral edge of
the network laplacian. We also consider the case of a non-hierarchical reference square
lattice for comparison. As it is shown in Figure 2 top, in hierarchical systems, IPR val-
ues always increase with damage and the corresponding eigenvalues always decrease.
In Figure 2 bottom, the IPR determined for a typical eigenvector increases exactly at
the peak current, providing a clear-cut indicator of system’s incipent failure. Given the
rescaling on the vertical axis of Figure 2 bottom, we can conclude that damage induced
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Fig. 2. Eigenvector localization in a hierarchical fuse network (top left) and in a reference square
lattice (top right), at three different load stages and Evolution of localization in large-scale hier-
archical fuse network under load (bottom).

localization is a robust and persistent phenomenon in hierarchical systems, while in
non-hierarchical systems it only appears at the peak load. The robustness of our results
is further confirmed in Figure 2 (bottom right), where the above results are averaged
over different network realizations.

Summary. We study the persistence of hierarchical organization against structural changes,
in network models of biological relevance. We focus on two examples, functional brain
networks and network models of collagen based biological materials. We quantify the
hierarchical organization by looking at specific spectral properties such as spectral gaps
and eigenvector localization. We find that in both cases, normal function is associated
with persistent hierarchical traits that do not depend on parameter variation or damage
accumulation.
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1 Introduction

Dynamical behavior of complex systems of several interacting components can be mod-
eled by either continuous or discrete state models [1]. If the amount of the interacting
components is high, it is reasonable to use continuous differential equation based mod-
eling approaches to characterize the dynamical behavior of the system. However, in
the case of low abundance of the interacting components, it is worth introducing dis-
crete state models capable of quantitatively describing the discrete state evolution of
all the components. In the latter discrete state case, the so-called reachability problem
is strongly related to the quantitative dynamical behavior encoded by the underlying
network topology: given an initial state X, and a target state X, is it possible to reach
X’ from X along a finite non-negative state transition sequence? Through reachability
analysis several problems of great importance can be analyzed, such as the existence
of malicious states in a biochemical system or extinction events, i.e. state transition
sequences resulted in the lack of cretain components.

In this paper we consider discrete state Chemical Reaction Networks (d-CRNs),
a commonly used modeling approach employed for (bio)chemical systems when the
molecular count of the species is low (e.g. < 100 molecules). We discuss subclasses
of d-CRNs obeying conservation laws. We provide a set of conditions under which the
reachability realiation is equivalent to the existence of a non-negative integer solution
of the respective d-CRN state equation. We show how the results can be used in practice
to efficiently analyse the dynamical behavior of d-CRNs in terms of the decidability of
reachability problems. Our findings are shown on a representative example.

2 Results

A discrete state Chemical Reaction Network (d-CRN) can be described by a triple
(S, €, %) so that:

S ={si|lie{l, ... ,n}}
¢ ={v=
i=1

A ={0iyj) CEXC|iF ]}

QjiSi | Oji €Z>p, j € {1, ,m}, iG{l, ,n}}
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where s; is the ith species and y; is the jth complex of the network. o;; is the
stoichiometric coefficient of the ith species in the jth complex. A reaction y; — y;
with source complex y; and product complex y; is represented by an ordered pair
VisYj)-

A directed graph G = G(V,E) can be uniquely associated to a d-CRN so that the
edge set E and vertex set V correspond to the complex set 4" and the reaction set Z,
respectively. Two nodes v; € V and v; € V are connected by a directed edge e € E
pointing from v; to v; iff y; € € and y; € ¢ have a common reaction (y;,y;) € Z.
From now on under the term structure we mean the topology of the directed graph
representation of the examined d-CRN.

The stoichiometric matrix I" € Z"*™" of .4 is defined as

C=r ... ry) (1)

where r; is the ith reaction vector, i.e. [r;]; gives the number of molecules of species
s; € &/ produced or consumed by the ith reaction. For each reaction vector r; we can
introduce the vectors y; and y;~ so that [y; |; and [;"]; denote the stoichiometric co-
efficient of the jth species in the ith reaction’s source complex and product complex,
respectively. We also introduce the matrix I~ as follows:

I =[ ..l

We note that a pair (I',I"~) uniquely characterizes the underlying reaction network
structure.

In this paper we restrict our attention to the subclasses of sub-and superconservative
reaction networks. A d-CRN of stoichiometric matrix I" € Z"*" is said to be subcon-
servative (superconservative), if there exists a strictly positive real-valued vector z of
dimension m, sothatz' ' <0 (z' " > 0).

Astate X € 7 is said to be reachable from a state X € Z” (denoted by X ~» X l
) if there exists a path in the state space so that X = X, (1) = Xy2) = ... = Xy() = X'

!

The associated state tranisition sequence is denoted by ox = Xp... X .

Problem statement: consider a d-CRN 4" = (., %, %) of stoichiometric matrix
Iy and two integer states X, X e Z~,,. Is it possible to find a non-negative state
transition sequence 6y = Xp... X ' [4]?

A necessary condition of the above reachability problem is the existence of a non-
negative integer ¢ € ZZ, solution of the respective d-CRN state equation:

Tye=X —Xo, ceZ. 2)

E.q. (2) implies an integer programming problem which in general requires the
introduction of additional supplementary variables [2]. This may lead to computational
intractability. This problem motivates us to seek network topology related conditions
under which E.q. (2) is a sufficient and necessary condition of the reachability relation.

Before we state our main result the follwoing supplementary variable is introduced:

M) =max{ ([ j=1,...,m}, i=1,...n. 3)
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Proposition 1 [3] Let us consider d-CRN N = (., €, %) with stoichiometric matrix
r e {-1,0,1}" and T~ € {0,1}™! for which € = .. Assume that ¥ is either
subconservative or superconservative. Assume that for all r € % reactions Y1 [y i =
Land Y| [y )i < 1 hold. Let us consider two states Xy, X € 72 so that Xo = M and

X' = M hold where M = M(I"™). Then

XOWLMX/@HCEZIZO: Xo+Tc=X %)

For more details on the above theoretical findings the reader is refereed to [3].
Figure 1 depicts a representative example of a reaction network structure satisfying
the conditions of Proposition 2.

Fig. 1. Nuclear factors of activated T-cells (NFAT) are transcription factors that can exist in both
highly phosphorylated and dephosphorylated states [5]. The transition between active and inac-
tive states of the protein is regulated by the level of phosphorylation. Lower case letters denote
the protein located in the cytoplasm while upper case letters refer to the protein in the nucleus.
aj, Aj and ij, I; for j =0, ... 13 denote the active and inactive proteins, respectively. Lower
indices denote the number of phosphorylated residues.
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1 Introduction

We have applied the theory of complex networks to earthquakes, characterizing the
complete Chilean subduction zone with parameters of complex networks, for this pur-
pose, we have built a time-based complex network [1-3], making cells of side size § in
the zone under study. If one of these cells contains an earthquake, we call this cell as
a node. The network is built following the time occurrence of the seismic events, i.e.,
the nodes connect with each other follow the temporal sequence of seismic events the
nodes [3, 4].

For this study we have divided the subduction zone of Chile into regions, from
the northern zone to the southern zone, each region is 300 km long. The time-based
complex network was built in each region. The seismic data set analyzed were collected
between January 2005 and March 2017 by the National Seismological Centre of Chile
(Servicio Sismolégico Nacional, CSN [7]), so we have a completeness data set with a
total number of 38 083 seismic events measured along the Chilean coast, from 17.9°
to 39.1° South Latitude and between 67.5° and 75° West Longitude. The magnitude of
completeness is M,,3.0 for all the data set. The data set used in this analysis could be
found and downloaded in www.sismologia.cl [7].

2 Results

We compute the critical exponent g from the probability distribution of connectiv-
ity (P(k) ~ k~7) and the Average Shortest Path Length (ASPL) for 22 regions along
Chilean coast. We compare these results against the average coupling of the tectonics
plates, because the subduction is the physical mechanism that induces the earthquake
occurrence in Chile and the coupling and stress play an important role in the in this
occurrence, in order to looking for some connection between the physical parameters
related to the occurrence of seismic events and complex networks. The results are shown
in Figs. 1, 2 and 3.

Fig. 1 shows the spatial evolution of the parameter y between 2005 and 2017 along
the Chilean coast. We can observe a change of this parameter, in the northern and the
southern zone the value of 7y is lower than the central zone. Fig. 2 shows the spatial
evolution of the ASPL from the northern zone of Chile to the southern zone of Chile,
as Fig. 1, this value changes in each window studied. In Fig. 3 we can observe the
agreement between the coupling between Nazca plate and South American plate and
the value of the critical exponent 7.

i
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Fig. 1. Value of the critical exponent ¥ for the probability distribution of connectivity, computed
along the Chilean coast, from the 18° to the 39° South Latitude.
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Fig. 2. Value of the ASPL for each region of 300 km, between the northern zone of Chile and the
southern.

3 Conclusions

In this work we present a first effort to find a relationship between the parameters of
complex networks, as the critical exponent Y of the probability distribution of connec-
tivity (P(k) ~ k~7) and the physical dynamics involved in the earthquake occurrence.
Fig. 1 shows how the critical exponent y change along the Chilean coast. This exponent
has its greatest value in the central north zone of Chile, and decreases in the northern
and the southern zone. The Average Shortest Path Length (ASPL) has a similar behavior
than the exponent ¥, the greatest value is in the central north zone of Chile, Fig. 2.

Fig. 3 shows the average coupling measured by Métois et al. [5, 6] versus the values
of the critical exponent y. Fig. 3 suggests an agreement between these two parameters
in the central zone of Chile, but it is possible to observe a disagreement between the
values of these two parameters in the northern zone and the southern zone of Chile.
Another important fact to consider is the occurrence of three large earthquakes in Chile
during the time analyzed. The M,, 8.8 Maule megathrust in 2010 (southern Chile), with
a rupture zone of 450 km, the M,,8.2 Iquique earthquake in 2014 (northern Chile), with
arupture zone of 150 km and the M,, 8.3 Illapel earthquake in 2015 (central-north Chile)
with a rupture zone of the 200 km. If we consider the effect of these three mega earth-
quakes, we could suggest a relation between ¥ and the occurrence of a large earthquake.
The epicenter of Maule megathrust it was at 36.2°, in Fig. 3 we can observe a growth of
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Fig. 3. Average coupling in the subduction zone between Nazca plate and South American plate,
versus the critical exponent g along Chilean coast.

7Y in the southern area of the epicenter. For the large earthquake in Iquique, the epicenter
it was located at 19.5°, with a similar trend for the value of 7. Finally, the epicenter of
Illapel large earthquake is located at 31.5°.

The main goal of this analysis is the proposal of a relation between the occurrence
of a large earthquake and a change in the value of the critical exponent 7.

This is a first approach to try to connect the critical exponent g with the physical
dynamics of the subduction mechanism of earthquake occurrence.
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1 Introduction

The process of genetic regulation is often influenced by other processes in a cell,
for e.g., metabolism. The structure of genetic regulatory networks (GRN) at a sys-
tem level, however, has often been studied in isolation. We study the architecture of
GRNs of two bacteria, Escherichia coli and Bacillus subtilis, under the effect of feed-
back from respective metabolic networks (MN). We organize the GRNs in a causal
flow-of-command hierarchy and show that the inclusion of feedbacks from MN into
GRN greatly alters this causal flow of information in the GRNs. Through a combi-
nation of graph theoretic approach of finding modules via strongly connected compo-
nents (SCCs) [1] and computational functional approach of flux balance analysis (FBA)
for simulating growth through metabolic models, we further show that the SCCs of
the GRN augmented with feedbacks from MN can be considered as modules or sub-
systems with logically relatable and biologically relevant functions.

2 Results

2.1 Feedback into GRN from MN

The GRN and MN of E. coli and B. subtilis were obtained from publicly available
databases and previous published works [2-5]. We identify the metabolites in metabolic
network which can form complexes with transcription factors (TFs) in GRN, and then
use this information to elucidate feedbacks from metabolic network into different levels
of a hierarchically organized GRN in which all regulations point downward [6], Fig. 1A.

2.2 Hierarchical structure of GRN augmented with feedback from metabolic
network

We obtain functional feedbacks from metabolic network into the GRN by choosing
metabolites from reactions deemed essential by flux balance analysis upon simulation
of growth in minimal media environmental conditions (ECs)—E. coli: 158 ECs (89
aerobic, 69 anaerobic), B. subtilis: 212 ECs (all aerobic). Using these feedbacks from

i
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Fig. 1. Feedbacks, hierarchical structure and modules in GRNs with feedback from
metabolic network. (A) Schematic of feedback from metabolic network into different levels
of GRN. (B) Hierarchical structure of the GRN of E. coli augmented with functional feedbacks
from metabolic network (graph ¢). The blue nodes represent the SCCs/modules, shown in next
panel. (C) Strongly connected components (SCCs) from GRN augmented with feedback from
metabolic network for E. coli. Their location in the hierarchy is shown in panel B. (A few SCCs
ize have been omitted from the figure due to space constrains, for details and for B.
see [6]). (D) An exTinpR/ofmonedidaair@onfereabeabn g ovithldts Weowionk} einduit di-
agram_and its activity undefheioApplidateshentronimdneal , @9idifibisbom Hugtppakimal circuit
Hfgg%%ﬁ(sa pointed arrow implies activation/production/up-regulation and a blunt arrow implies
deactivation/consumption/down-regulation, depending upon whether the regulated node is a TF,
metabolite or enzyme, respectively. Nodes highlighted in yellow indicate active part of the mod-
ule in respective environmental conditions.
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metabolic netowork, we augment the GRN and obtain graph ¢. Next, we organize the
augmented GRN into a causal hierarchical organization by applying graph condensation
and iterative leaf removal algorithms on graph ¢ [6]. The hierarchical structure of E.
coli graph ¢ is shown in Fig. 1B. The hierarchical structure of ¢ is very different from
that of GRN without inclusion of feedback in that the causal flow of information is
significantly altered. The blue nodes represent strongly connected components (SCCs):
28 SCCs for E. coli and 14 SCCs for B. subtilis. Many strongly connected components
of E. coli for graph ¢ are shown in Fig. 1C, (see [6] for full list). The blue node at
the top of the hierarchical structure is the largest SCC (LSCC), which has a size of 97
nodes for E. coli (13 for B. subtilis). The largest strongly connected component has a
more complex structure and requires further study.

2.3 Regulatory modules in GRN augmented with feedbacks from metabolic
network

Next, we study the activity of all strongly connected components (SCCs) of graph ¢ in
each of the simulated environmental conditions (ECs) by carefully developing proximal
‘circuit diagrams’ around the nodes of these SCCs. We find that most of the strongly
connected components can be ascribed biologically relevant functional roles and the
proximal circuit diagram relates well to their activity in different environmental condi-
tions under elementary on/off -logic. An example of this is given in Fig. 1D through the
Idonate-Gluconate module in E. coli which is partially active in right manner for the
uptake of Idonate or Gluconate as food in their respective simulated minimal media en-
vironmental condition. For a complete list of modules, ascribed biological function and
corresponding proximal elementary circuit diagrams, for both E. coli and B. subtilis,
see [6].

Summary. We studied the architecture of gene regulatory network (GRN) under the
effect of feedback from metabolic network (MN) and present an updated hierarchical
structure thereby showing that the inclusion of feedbacks from metabolic network into
the GRN significantly alters the causal flow of information in the GRNs. We algorithmi-
cally identify dynamical sub-systems of the joint genetic-metabolic network and show
that the identified modules posses biologically relevant and logically relatable function-
ality. The list of identified modules obtained in our work may be used in future as a
starting point for improved modeling of sub-systems in these bacteria. Further, our al-
gorithmic approach may be automated to find important sub-systems in other organisms
as and when their GRN and MN become available.
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1 Introduction

In this work, we aim to generate gene coexpression networks in which nodes corre-
spond to the genes and edges represent high positive correlations in their expression
across different samples (6). Therefore, genes which are expressed under the same con-
ditions are connected in the network, easing the study and visualisation of the expres-
sion data (8, 11). Genes that are coexpressed across multiple conditions are likely to
have related functions (4, 9, 10). This makes possible to deduce gene function using
guilt by association approaches. Network-based methods such as community detection
may help in this process. This procedure is especially useful if the studied organism is
poorly annotated.

The most commonly used methods to generate gene coexpression networks are
based on the absolute value of the Pearson correlation coefficient of the expression of
each pair of genes (11). Based on this value, there are two possibilities: treating the co-
expression as a continuous value and constructing weighted networks; or constructing
an unweighted network by applying a threshold. The later approach allows the selection
only the strongest relationships but may give rise to a loss of information.

We use Rhizobium leguminosarum gene expression data from a collection of mi-
croarrays to generate both unweighted and weighted coexpression networks. R. legu-
minosarum is an ¢-proteobacterium that fixes atmospheric nitrogen when associated
with legumes (eg. peas, beans, lentils). R. leguminosarum transforms molecular nitro-
gen into ammonia which can be assimilated by plants. Nitrogen fixation improves the
growth of plants as nitrogen is one of the limiting factors during the growth process (3).
R. leguminosarum experiences very large changes in its metabolism from the free-living
bacteria to the plant-associated bacteria (12). These changes are reflected in the gene
expression levels (5) and we aim to detect them in our gene coexpression networks.

2 Results

We present a pipeline to generate and study gene coexpression networks from gene ex-
pression data (Fig. 1). Firstly, we set the expression of the 20% lowest expressed genes
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from each microarray to zero to remove noise that may compromise later steps in our
network construction methodology. We also apply the quantile normalisation method
(2) to our expression matrix to make the distribution of the expression values of each
experiment identical in statistical properties. This allows us to compare values from dif-
ferent microarrays. After the preprocessing steps, we calculate the correlation between
the expression of each pair of genes in the expression matrix to obtain a symmetric
correlation matrix.

Fig. 1: Pipeline to generate gene coexpression networks. The correlation matrix is ob-
tained from the gene expression data. Afterwards, there are two possibilities: generating
an unweighted network and use community detection to find functionally-related genes,
or generating a weighted network and use an ego-network based approach.

We impose a threshold to the correlation matrix to obtain an unweighted network
network with edges only between the genes whose expression correlation is higher than
the threshold. We test different thresholds and score the resulting networks using a
Monte Carlo test and metabolic information from biological databases. The optimal
threshold (0.63) balances noise reduction whilst retaining functional information. In this
network, with density 1.2%, 82% of the top 500 pairs genes reported to be coexpressed
according to the database STRING are connected. To optimise the network partitions,
we use the Louvain method (1), using 101 different resolution parameter values. We
study communities enriched in genes which are involved in the same biological process,
restricting our evaluation to only those with between 6 and 60 nodes since sizes outside
this range are not interesting from a practical point of view (7). We find that genes
involved in the same metabolic pathways tend to be in the same communities. It would
be interesting to study other methods of association and different community detection
algorithms to assess performance and robustness of the network.

Alternatively, the correlation matrix can be used to generate a weighted network.
In this case, the weights of the edges between pairs of genes are the values of the
correlation of their expression. We use only positive correlation values greater than 0.3.
We use an ego-network based approach to obtain the genes related to a given set of
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genes. This approach allows us to recover half of the genes annotated as ribosomal
genes in R. leguminosarum by using the other half of those genes as seed.

The next step in our analysis will be the use of RNAseq data from transcriptional
regulators mutants. This information will allow us to study the role of those proteins in
the coexpression network.

Summary We have applied our pipeline to generate unweighted and weighted R. legu-
minosarum gene coexpression networks. Our results suggest that both such networks
can be a useful guide in the identification of genes involved in the same biological pro-
cesses, in the prediction of gene function, and in the verification of genome annotations.
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1 Introduction

Networks encoding symmetric binary relations between pairs of elements are mathe-
matically represented by (undirected) graphs. Graph theory is a well developed math-
ematical subject, but empirical networks are typically less regular and also often much
larger than the graphs that are mathematically best understood. Several quantities have
therefore been introduced to characterize the large scale behavior or to identify the most
important vertices in empirical networks. As the crucial structure of a graph is, however,
given by the set of its edges rather than by its vertices, we should systematically define
and evaluate quantities assigned to the edges rather than to the vertices.

Curvature is a notion originally introduced in the context of smooth Riemannian man-
ifolds to measure local or global deviation of a manifold from being Euclidean. Ricci
curvature specifically, as a local measure, provides relatively broad information about
the structure of positively curved manifolds. Therefore, there have been several attempts
to discretize curvature notions to other settings such as cell complexes [5], graphs [4]
and undirected hypergraphs [7] for obtaining similar results. By this discretizations they
have been able to transfer some of the analytical or topological properties of original
smooth curvatures to these discrete spaces [6]. For the directed hypergraph case, these
curvatures were introduced recently and very little is known about their descriptive
power. In this paper, we first present the results of our discretizations of Forman-Ricci
[1] and Ollivier-Ricci [2] curvature notions, then, we show that they are powerful tools
for exploring local properties of directed hypergraph motifs. To conclude, we carry out
a curvature-based analysis of the metabolic network of E. coli.

2 Results

Forman-Ricci Curvature. The structure of a graph is given by its edges. Therefore,
a structural analysis of a graph should involve quantities describing local properties of
edges, as a complement of the usual quantities of local properties of nodes. Forman-
Ricci curvature serves that purpose. This notion was introduced by Forman for simpli-
cial complexes and therefore, for graphs (graphs are one-dimensional simplicial com-
plexes). Considering an undirected unweighted graph and an edge e with nodes i, j, it is
simply given by F(¢) = 4 — deg(i) — deg(j). Edges connecting nodes with large degree
have very negative Forman-Ricci curvature values, allowing a readily identification of
those edges playing a key role in the cohesion of a network.

We generalize this notion to directed hypergraphs, [1]. Formally, a directed hypergraph
isacouple H = (V,E) where V is a set of vertices and E a set of ordered pairs of subsets
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of V called hyperedges. Moreover, given a hyperedge e = (e;,¢;) €E,¢; CVande; CV
are called the tail and head of e respectively. We define the Forman-Ricci curvature of
eas F(e) = lei| +|ej| — Y in-deg(i) — Y out-deg(}) M
ice; JEe;

Ollivier-Ricci Curvature. Similar to its smooth Riemannian counterpart, the definition
of Ollivier-Ricci curvature involves comparing the average distance between the points
of two balls (neighbourhoods) with the distance of their centers. In [2] we introduced
this curvature notion for directed hypergraphs by using the Wasserstein distance be-
tween two probability measures associated to a directed hyperedge. We say that u — e;
if there exists a hyperedge e = (ex, ;) such that u € e;. Similarly, e; — v if there exists
a hyperedge e = (e;,ex) such that v € ¢;. Given a hyperedge e = (e;,¢;), we define two
sets 4 1= {u:u— e;} U{i € ¢; : there is no incoming hyperedge to i} called masses
and 7 = {v:e; — v} U{j € ¢; : there is no outgoing hyperedge from j} called holes.
Then, we assign a probability measure to each set, namely t , and u . For u € .4 and
v e, we call iy (u) and U (v) the size of the mass u and the size of the hole v, re-
spectively. Considering the distance between each mass and each hole as the minimum
number of directed hyperedges connecting them, this distance is at most 3. Now the
question (formally called optimal transport problem) is how the first probability mea-
sure can be moved to the second one in an optimal way. We want to minimize expression
(2) which iterates over all those matrices & (called transport plans) whose entries repre-
sent the amount of mass, out of 1, (), to be moved from vertex u to vertex v, denoted
by &(u,v). Moreover, d(u,v) stands for their distance (with d(u,v) € {0,1,2,3}).

Z Z d(u,v)& (u,v) 2)
u—reje;j—v
Given an optimal transport plan, if m, is the amount of mass that is moved at distance
x, then the Ollivier-Ricci curvature k of e is defined as x(e) = my — my — 2m3. It is
bounded above by k¥ = 1 (reached when my = 1 i.e. when each mass coincides with a
hole of its same size) and below by k¥ = —2 (reached when m3 = 1 i.e. each mass has
to be moved at distance 3).

Connectivity motifs: Forman-Ricci vs Ollivier-Ricci. Fig. 1 shows the local structure
of directed hypergraphs with positive, negative and zero values for both Ricci curva-
tures. For the given orange directed hyperedge e, O(e) and F(e) correspond to Ollivier
and Forman curvatures respectively. Therefore, from left to right we can detect changes
in the signs for Ollivier curvature while the sign of Forman is fixed. On the other hand,
when we move vertically in the plot, Forman’s sign change while Ollivier’s sign is fixed.
In the diagonal, directed hyperedges have the same sign for both curvatures.

Metabolism of E.coli. Fig. 2a) shows the number of metabolic reactions with |e;| re-
actants and |e;| products. 90% of chemical reactions have at most three reactants and
three products (also observed for the whole Chemical Space [3]), which, according to
equation 1, indicates that frequent curvature values in Fig. 2b) are ruled by the accu-
mulated in- and out-degree. In particular, frequent values of curvature were found to
distinguish bottle neck and redundant reactions in the metabolic network [1]. On the
other hand, when considering the number of incoming neighbors of reactants and of
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- e — — o - - Fig. 1. Hypergraph motifs and
- - \ ./ I ./ I their curvature sign. F(e) is a
- < e e balance between edge degree
0>0,F>0 0=0F>0 0<0F>0 and node degree (in-degree for
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is known in metabolic networks
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outgoing neighbors of products for every reaction, frequencies are of the order of hun-
dreds and, for some reactions, almost the whole substrate set, as shown in Fig. 2c). The
question that arises is how close are those masses and holes in the metabolic network.
Ollivier-Ricci curvature distribution in plot Fig. 2d) gives us the answer: most masses
and holes are at distance lower than 3, since the vast majority of them have curvature
greater than -0.5. Less than 10% of incoming and outgoing neighbors are at distance
3. Only four reactions have curvature -2, indicating that their masses are at least three
reactions away from their holes.

s . a) 400 100—(1)
7 6 ) b o oo “
o 1 b 8| & L) -o--ie® .
5 1 1 z 10! 2 E
5 @6 e 2 5200 ° 2 0
886 -, i ‘ j o il
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F((j) Number of masses Ollivier Curvature

Fig. 2. a) number of reactants and products; b) F (e) distribution; ¢) number of masses and holes;
d) O(e) distribution
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1 Introduction

A key, and often debated, concept in the physics of life is the criticality of living sys-
tems. The idea first put forward by Kaufman [1, 5] is that life evolves on the “edge of
chaos®, that is, a living system is sufficiently stable to sustain its organization, but has
the ability to easily adapt itself to changes in the environment. It has been reported that
a number of biological systems such as neural firing, animal motion and gene regula-
tion [2—4, 8] indeed display behaviour evidencing their operation near criticality. Such
critical behaviour is also present in ecological systems, which can therefore be prone
to small perturbations, and are commonly said to reside near a tipping point. It is com-
monly believed that there are three modes of operation which are shared by all criti-
cal biological systems: (i) stable, (ii) critical, (iii) chaotic (super-critical). In the sem-
inal work of Kaufman [1, 5] it was first stated that gene regulatory networks (GRNs)
are critical and (random) Boolean networks have been developed to study their criti-
cal behaviour. An explanation behind why biological systems are poised at criticality,
however, is still lacking [2, 8]. In this paper we address this question by developing a
new nonlinear minimal model of interacting co-evolving GRNs to help shed light on
this intriguing question. In contrast to the existing approaches, which mainly use Ran-
dom Boolean Networks, we use ordinary differential equations with nonlinear boundary
conditions to model the GRNs, which was originally put forward by Stokic, Hanel and
Thurner [6]. Our main idea is to use similarities between critical systems in physics and
in biological systems. To be able to address biological systems using techniques from
statistical physics, a generalized non-equilibrium statistical mechanics [5] is needed in
order to describe the properties of ensembles of complex systems with very many dy-
namically coupled elements. Understanding the characteristic structure and behaviour
of the members of the ensemble will help to understand both the emergence of order in
organisms and its adaptive evolution.

2 Results

We start from an existing model for a single regulatory network with dynamics as pro-
posed by Stokic, Hanel and Thurner [6, 7], which we generalize to accommodate many
co-evolving GRNs. The set of linear stochastic evolution equations is complemented
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with nonlinear constraints (x{* > 0). The concentrations of mRNA (x{*) evolve accord-
ing to

dxlq — Y AY o o
‘ —Z inj—FJ,- +ri (1)
J

d

Here Af‘j is the weighted adjacency matrix of the full (autocatalytic) reaction network,
whose entries may be zero, positive or negative, indicating that species i is stimulated,
not affected or supressed by species j. J* models the flow of molecular species i into
(> 0) or out of (< 0) the system. Typically J* arises as a consequence of the fact that the
average concentration x* is positive. The noise terms r; comprise both multiplicative
and additive noise. For a single network this model can generate oscillatory, chaotic
and stable behaviour [6]. In particular it can be numerically calculated for what kind of
network structure and in particular for which average degree k (10 < k < 25 in [6]) the
network is critical by computing the largest Lyapunov exponent of the equations (1).
Largest Lyapunov exponents near zero signal critical behaviour.

Here we also take evolution of the networks Aio‘j into account. How the network
topology will evolve in time is an extremely relevant question in biology, but has so far
been hardly addressed. In this paper we discuss different classes of evolution. One im-
portant class of evolution equations may be obtained by using the so-called Kullback-

Leibler divergence between the rows of matrix Af; and Ag» (Dkw( ,‘3‘|Ag)) where Ai[j.

constitutes an average of all GRNs, which quantifies the information loss when the
B
ij*
(DxL (A,OJ‘|A€)) to be minimal, we can evolve the adjacency matrices in time. We nu-
merically show that this indeed leads to a critical state, that is, the evolution naturally
gives rise to networks with an average degree in the range of the critical networks; see
Fig. 1

matrix A,‘?‘j is used to estimate the environment constituted by A%.. By requiring the

Fig. 1. The behaviour of the average value of the degree < k > as a function of the time 7. The
network ends in the range where the system is critical, that is k € [10,25].
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Summary. We have studied a dynamical system on a network that models GRNs. The
nonlinearities in the system give rise to interesting behaviour depending on the network
topology. The topology that arises when the network evolves according to a principle of
minimal Kullback-Leiber divergence is such that indeed the network evolves to a state
where the Lyapunov exponent is nearly zero.
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1 Introduction

The medical referral between Primary Care Physicians (PCP) and specialists represents
the formal mechanism in the health system to address the need of patients for specialty
care [5]. Typically, for a given patient with clinical needs, PCP can make a choice
of several specialists to whom they may refer and their choice would have important
downstream effects. As such, primary-specialty referral may affect many aspects of
patient care, such as quality of care, patient satisfaction and health care costs, etc. [3].
Researchers recently leveraged the patient consultation history extracted from insur-
ance claims data to construct the patient sharing network between physicians based on
the shared patients [3, 6]. Essentially, patient sharing network operationalizes an infor-
mal information-sharing network in which physicians provide care to shared patients.
This network does not necessarily conform to the formal organizational structure that
physicians are affiliated with, but may provide valuable insights in explaining the re-
ferral mechanism. For example, both [3] and [7] performed social network analysis on
Medicare administrative data and showed that structure of patient sharing networks and
the position of physicians in the network has a significant relationship with the over-
all cost and intensity of care. [2] further discovered small-world structure and strong
correlations between certain network statistics with health system statistics. These met-
rics derived from network science can serve as informative features to boost predictive
model performance and optimize health system for improved medical outcomes [1].

2 Primary-Specialty Referral Network Analysis

In this paper, we aim to add to the literature of understanding the primary-specialty
referral mechanism. We obtain a large-scale patient consultation dataset from a private
European health provider with over 9 million consultations between 1.3 million patients
and 2,308 physicians (515 PCP and 1793 specialists) in 7 hospitals between 2012-2017.
The primary-specialty referral is defined as when a patient consults a PCP and then a
specialist within 30 days. In other words, there only exist links between two distinct
set of physician nodes, namely PCP and specialists. As such, we develop a weighted
bipartite network where 460 PCP are connected with 1,542 specialists through 78,593
edges. The edge weight of referral network represents the number of patients that PCP
refer to the specialists. Importantly, 306 physicians do not have any edge to the referral
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network, which raises the potential inefficiency concerns for their lack of involvement
in referral process.

Besides, we obtain additional physician registration data from the Human Resource
department of the provider, including gender, age, education and internship institution,
specialty, working hospital, etc. As we augment the referral network with such infor-
mation, summary statistics show PCP and specialists indeed have different background.
The gender composition for PCP is 69% of female and 31% male, and 43% of female
and 57% of male for specialists. Also, we observe certain level of homophily. For ex-
ample, more than half of the referrals are made between the physicians with the same
gender and more than 70% of the referrals are made between those with the age dif-
ference less than 10 years. More interestingly, 67% of the referrals are made between
physicians that work at the same hospital, implying that referral network may exhibit
strong clustering in terms of physicians’ background.

Following [8], we compute macro-level structural metrics from the resulting referral
network and compare them against those of a synthetic Erd6s-Rényi random network.
We find that degree distributions (the number of specialists that PCP refers to, and the
number of PCPs that specialist receives from) for the referral network do not follow
Poisson distribution. Meanwhile, we obtain average clustering coefficient for the refer-
ral network (0.17) to measure the fraction of the number of observed squares to the total
number of possible squares in the network. It is about 2.5 times higher than that of ran-
dom network (0.07). This represents an essential precondition for referral network to
exhibit small-world structure and suggests that physicians in the referral network have
higher tendency to cluster together. We also quantify both betweenness and closeness
centrality for physicians in the referral network. The former describes the number of
shortest paths that pass through a physician while the latter describes the reciprocal of
the sum of distance to all other physicians in the network. Top 25% and bottom 25%
of PCP in terms of betweenness centrality initiate 58.4% and 0.07% of referrals, re-
spectively. Top 25% and bottom 25% of specialists in terms of betweenness centrality
receive 55.9% and 3.3% of referrals, respectively. Again, this raises the inefficiency
concern as referral process occurs high skewed towards a small number of physicians.

We adopt the popular modularity-based optimization algorithm Louvain to extract
communities from the referral network [4]. In total, we identify 7 distinct communi-
ties, which happens to correspond to the number of hospitals of the provider. Figure 1
shows the visualization of community structure. In general, PCP tend to refer patients
to specialists belonging to the same community, which indicates that physicians may
form a “referral clique” wherein referral process occurs more likely than to physicians
from different communities. Meanwhile, there is one community (in purple) that is lo-
cated distantly from other communities, which contains physicians mostly working at
the hospital in a different region. Moreover, we demonstrate that physicians within the
same community share more similarity in terms of their background, namely, they are
at the similar age, have similar number of years of experience, used to study and intern
at the same institution and now work at the same hospital. Our results show that refer-
ral network may highly overlap with the social network of physicians and in the future
work we plan to explore the correlation between them.
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Fig. 1. Communities extracted from the referral network
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1 Introduction

Alternative splicing is a tightly-controlled transcriptional regulatory mechanism where
exons can be selectively included or excluded during pre-mRNA processing. These ex-
ons may have essential roles in protein structure and function. Splicing is composed of
a variety of event type definitions which are characterized by exon positions and rules
governing exon usage. Skipped-exon (SE) events are the most common and refer to
the inclusion or exclusion of single exons. Splicing has a significant influence on many
aspects of cellular physiology, including cellular identity, plasticity, signaling and can-
cer [1,2]. Splicing has also been linked to cancer drug resistance [3,4]. Certain spliced
isoforms can manipulate kinase signaling and alter cellular drug response [5,6]. De-
spite this, few studies have explored connections between drug response and splicing.
It is well known that many drugs exploit similar targets or pathways as development
of structurally homologous compounds is cheaper and faster than development of novel
therapeutics. Yet, to the best of our knowledge, no one has investigated the commonality
between predictive splicing signatures and various related or unrelated compounds.

In previous work we identified differentially spliced SEs in pre-treatment transcrip-
tional profiles from cancer cell lines, the SEs’ relationships with drug response and the
regulatory elements that play a role in their splicing [7]. We found that alternatively
spliced SEs were highly predictive of doxorubicin drug response. Additionally, extend-
ing the same modeling approach to other drugs yielded similar results. We then hypoth-
esized that drugs from the same class or with similar activities would share predictive
splicing features. Here, we expand our work to incorporate other categories of alter-
natively spliced events and construct tissue-specific drug networks utilizing common
predictive splicing features. We describe the drug network characteristics and explore
individual drug modules across networks.

2 Methodology

RNAseq data for 975 cell lines from the Cancer Cell Line Encyclopedia (CCLE) were
integrated with drug-response data for 501 drugs (tested in 860 cell lines) from the
Cancer Therapeutic Response Portal (CTRP) [8,9]. The number of cell lines with both
RNAseq and drug response data differed by drug. RNAseq data was mapped with STAR
using Hg19 and GRCh37v87 annotation [10,11]. A list of spliced events in reference
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genes was generated from the annotation GTF file and junction read counts for each
splice variant were collected. For each drug, cell lines were separated into sensitive
and resistant groups based on the quantile of the area under the concentration-response
curve (AUC) value in CTRP; 33% or less were considered sensitive and 66% or above
were considered resistant. Differentially-spliced events across sensitive and resistant
cell lines were identified for each drug by using a previously published quasi-binomial
generalized linear modeling framework and applying a FDR cutoff of <= 0.01 [7]. To
select for validity and biological significance, we required each event to have at least
one splice-junction read in >= 35% of all cell lines and a minimum difference in the
mean fraction of inclusive to total junction reads between sensitive and resistant cell
lines >= 0.10. Drug-drug networks for each tissue were constructed using a modified
Jaccard index for edge weight:

(AQB) — Dy

W, —
ab AUB

ey
where D, = divergent, (i.e. the number of exons observed to have a higher inclusion
level in sensitive cells of drug A but lower inclusion level in sensitive cells of drug
B). Module identification was accomplished in three steps. First, hierarchical clustering
was performed on the network matrix using average distance. Next, all clusters in the
bottom 15% of tree heights with between 3 and 15 members were extracted and merged
if one contained all members of another. Finally, clusters were filtered for significance
<=0.05 using their b- and c-scores, which are metrics analogous to the probability
of observing a module in the random network given the network size, module size,
inner- and outer-degrees [12]. Modules were annotated with drug activity from CTRP.
Differentially-spliced events present across multiple drugs in a module were identified
and annotated with gene symbol, protein structure, function and domain information.

3 Results

We combined two large public datasets, CCLE and CTRP, to maximize the number of
cell lines and different classes of drugs in the networks. Cell lines were grouped by tis-
sue type and the two groups containing the most cell lines, haematopoietic & lymphoid
(HL) and lung, were selected for further study. We observed a total of 437 connected
drugs with 38,802 edges in the HL tissue network and 441 connected drugs with 43,371
edges in the Lung tissue network (Table 1). Both networks exhibited random network

Table 1. Tissue-specific Network Summary
Tissue|Nodes| Edges|Unfiltered Modules|Filtered Modules
HL 437|38,802 35 14
Lung | 441}43,371 30 11

structure and upon bi-partite inspection, there appeared to be a small number of drugs
with many differentially spliced events. These drugs created hairballs in the network
by facilitating weak connections with many smaller degree nodes and made module
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identification more difficult. Therefore, we applied a module identification strategy that
would take advantage of the expected behavior of drugs in a network while minimizing
the size of extracted modules. Some of the stronger modules we identified, as defined
by larger size and a high average W,;, shared many of the same drug members in both
tissue types. These modules primarily contained chemotherapeutic agents such as the
platinum and anthracycline families of anti-cancer drugs. Other modules were more
specific to the respective tissue and members clustered with different partners. One such
example is erlotinib, an EGFR tyrosine kinase inhibitor (see Fig. 1). Erlotinib modules
from HL and Lung networks both included tyrosine kinase and EGFR inhibitors.

Fig. 1. Erlotinib modules from HL and lung networks are highly connected and share similar
activity but different compound identities. a. HL. module, out of 513 events 70 were found signif-
icant in more than one compound. b. Lung module, out of 332 events, 69 were present in more
than one compound.

4 Conclusions

We found network analysis using pre-treatment splicing information shows drugs of
similar activity cluster together by having common splicing features associated with
drug response; however, clusters may not retain the same cluster partners or predictive
splicing features in other tissues. We suspect this is due to tissue-specific splicing regu-
lation and that drugs of the same class may have altered activity in certain tissues. We
intend to further characterize this and other observations from the networks.

References

1. Baralle, FE., Giudice, J.: Alternative splicing as a regulator of development and tissue iden-
tity. Nat. Rev. Mol. Cell Biol. 18, 437 (2017)

2. David, C.J., Chen, M., Assanah, M., et al.: HnRNP proteins controlled by c-Myc deregulate
pyruvate kinase mRNA splicing in cancer. Nature. 463, 364-368 (2010)

3. Dehm, S.M.: mRNA Splicing Variants: Exploiting Modularity to Outwit Cancer Therapy.
Cancer Res. 73, 5309-5314 (2013)

4. Zammarchi, F., Stanchina, E. de, Bournazou, E., et al.: Antitumorigenic potential of STAT3
alternative splicing modulation. Proc. Natl. Acad. Sci. 108, 17779-17784 (2011)

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



44

5. Cesi, G., Philippidou, D., Kozar, 1., et al.: A new ALK isoform transported by extracellular
vesicles confers drug resistance to melanoma cells. Mol. Cancer. 17, (2018)
6. Peng, H., Peng, T., Wen, J., et al.: Characterization of p38 MAPK isoforms for drug resis-
tance study using systems biology approach. Bioinformatics. 30, 1899-1907 (2014)
7. Simpson, E., Chen, S., Reiter, J.L.., Liu, Y.: Differential Splicing of Skipped-Exons Predicts
Drug Response in Cancer Cell Lines. Genomics Proteomics Bioinformatics. [In Press]
8. Barretina, J., Caponigro, G., Stransky, N., et al.: The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature. 483, 603-607 (2012)
9. Basu, A., Bodycombe, N.E., Cheah, J.H., et al.: An interactive resource to identify cancer
genetic and lineage dependencies targeted by small molecules. Cell. 154, 1151-1161 (2013)
10. Dobin, A., Davis, C.A., Schlesinger, F., et al.: STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 29, 15-21 (2013)
11. Zerbino, D.R., Achuthan, P., Akanni, W., et al.: Ensembl 2018. Nucleic Acids Res. 46, D754—
D761 (2018)
12. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding Statistically Significant
Communities in Networks. PLOS ONE. 6, e18961 (2011)

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



Part 11

Community Structure

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



Mean Consensus Time of the Voter Model on Networks
Partitioned into Two Cliques of Arbitrary Sizes

Michael T. Gastner and Kota Ishida

Yale-NUS College, Division of Science, 16 College Avenue West, #01-220 Singapore 138527
michael.gastner@yale-nus.edu.sg,
WWW home page: http://michaelgastner.com/

1 Introduction

The voter model is a paradigmatic agent-based model that represents opinion dynamics
in social networks. The dynamics of the model consists of repeatedly choosing one
agent uniformly at random. The selected agent then copies the current opinion of a
randomly selected neighbour. As long as the network is connected and finite, this update
rule guarantees that the agents must eventually reach a consensus after a finite time 7.
The mean consensus time (7) depends on the initial distribution of opinions and the
network structure.

While early studies of the voter model focused on complete graphs or regular lat-
tices, interest has recently shifted towards networks with more complex topologies, for
example networks with a community structure [1], [2], [3]. Here we analyze the voter
model on the simplest possible multi-community network: two cliques (i.e. fully con-
nected subgraphs) connected by a small number X of intercommunity edges (Figure 1).
Previous work on networks with two equally large cliques has shown that the mean
consensus time (7') is proportional to the number N of vertices in the network unless
the connections between the cliques are extremely sparse [2]. Because (T') «< N is the
same scaling relation as in the case of a single-clique network [4], it has been argued
that community structure is of limited importance for the voter model. Here we show
that, on the contrary, the two-clique topology gives rise to many intriguing features.

2 Results

Let us denote by o the relative fraction of vertices in clique 1. For example, in the
network depicted in Figure 1, « is equal to % For all values of «, sparsely connected
cliques need a long time to reach a consensus, as one might intuitively expect. Coun-
terintuitively, however, additional links between the cliques do not necessarily speed up
the consensus (except in the special case o = %). Instead, numerical simulations (Fig-
ure 2) show that there is an optimal intermediate connectivity that minimizes (T'). The
simulations suggest that the optimal number of interclique edges scales as Xy o< N3/2,
which puts the optimum between the case of a constant number of interclique edges per
agent (Xpin o< N) and a complete graph (Xpip o< N?). Hence, to accelerate a consensus
between cliques, agents should reach out to members in the other clique, but not to the
extent that cliques lose their identity as distinct communities.
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We confirm the numerical results with an equation-based analysis. For the sake of
simplicity, we show the equations only for the case of a polarized initial condition (i.e.
both cliques are internally unanimous, but there is disagreement between the cliques).
Similar results can be derived for other initial conditions. We make two heterogeneous
mean-field approximations for the consensus time (7'):

— a Taylor expansion for small X,

a’(1—a)’N

— 2 a®-2a+1)X>+2(a® - 1)NX? 1
Xd(a,N,X)“a a+1)X°+2(a”—a+1) (1)

<T> & Isparse =
+a(l—a)2a? —2a+3)N*X + o?(1 — )N
with the auxiliary function
d(a,N,X) =(3a* = 3a+1)(20> — 20+ 1)X> 2)
+oa(l—a)4a* —8a> +11a* —Ta+2)NX
+a*(1—a)*(2a* — 20+ 1)N?,
— an adiabatic approximation for large X,
<T> & ldense = 3

a(l—a)N[2a? =20+ 1)N? +2X]?

_ a(1—a)N?[(3a2 —3a+ 1)N2 +2X] + X2 [mInm+ (1 —m)In(1 —m)],

where
(0>N? — aN +X)

“

m =

(202 -2+ 1)N?—N+2X

Fig. 1. Small illustrative example of a two-clique network. Each vertex represents an agent that
has exactly one of two possible opinions: “red” or “blue”. In this example, clique 1 is a complete
graph with 7 vertices, whereas clique 2 has only 5 vertices. The cliques are connected by two
intercommunity edges (thick lines). In our analysis, we vary the relative sizes of the two commu-
nities and the number of intercommunity edges. We apply the update rules of the voter model.
That is, we first choose a random focal vertex, for example A in the depicted network. Then we
choose a random neighbour of the focal vertex and copy the neighbour’s opinion. In our example,
if the chosen neighbour is B, A changes its opinion to blue. However, if the chosen neighbour is
C, A keeps its current (i.e. red) opinion.
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Fig. 2. Mean consensus time (7') as a function of the number of interclique edges X. Point sym-
bols represent simulation results. In all simulations, the initial opinions are completely polarized:
both cliques are internally unanimous, but there is disagreement between the cliques. The curves
are equation-based predictions. In (a), we fix the number of vertices to be N = 1000 and vary the
fraction & of vertices in the first clique. If o # %, the minimum of (7'} is attained at an intermedi-
ate value of X, where the cliques are neither sparsely nor fully connected. In (b), we fix o = 0.9
and vary N. The value Xp;, that minimizes (7'} is proportional to N3/2,

By interpolating between the two asymptotic approximations, we obtain an equation
for (T') that is in excellent agreement with the simulations for all values of X,

<T> = Idense (X) + tsparse (X) - Xl/lin Isparse (X/) . (5)

This interpolation is shown by the curves in Figure 2. From equations (1)—(5) it can be
shown that Xyi, o< N°/2 [5], consistent with the numerical results.

Summary. We show that, counterintuitively, the mean consensus time (7') is typically
not a monotonically decreasing function of interclique connectivity. To minimize (7T'),
the optimum number of interclique edges Xy, should scale as Xy, o< N3/2, where N
is the number of vertices. Consequently, to reach a consensus quickly, the agents must
strike a balance between a sparse and a dense interclique connectivity.
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1 Introduction

Despite the fact that many important problems (including clustering) can be described
using hypergraphs, theoretical foundations as well as practical algorithms using hyper-
graphs are not well developed yet. In [2], we proposed a hypergraph modularity func-
tion that generalizes its well established and widely used graph counterpart measure of
how clustered a network is. In order to define it properly, we generalized the Chung-
Lu model for graphs to hypergraphs. Moreover, some theoretical foundations about our
hypergraph modularity function as well as some simple experiments on synthetic hy-
pergraphs are provided. In particular, we showed that a strict version of our proposed
modularity function often leads to a solution where a smaller number of hyperedges
gets cut as compared to optimizing modularity of 2-section graph of a hypergraph. The
conclusion is that the proposed novel approach to deal with hypergraphs yields sub-
stantially different clusters than its 2-section graph counterpart. It is different but the
question is: is it better or worse?

In order to answer this question, we work on developing fast algorithms for clus-
tering on hypergraphs. We have implemented a SimpleHypergraphs. j1 library*
using the Julia language [1]. In this way our algorithms are computationally efficient
and easy to develop and maintain at the same time. Our next step is to perform more ex-
periments on real networks that are naturally represented as hypergraphs, see Section 3.

The presented research was partially financed by NAWA — The Polish National
Agency for Academic Exchange.

2 Theoretical Foundations

Review of Graph Modularity. The definition of modularity for graphs was first intro-
duced by Newman and Girvan in [3].

For a graph G = (V,E) and a given partition A = {A1,...,A;} of V, the modularity
function is defined as follows:

w6A) = Y (eG(Ai) _ (VOZ(Ai))z) ’ )

2 e T AR

41'1ttps ://github.com/pszufe/SimpleHypergraphs. jl
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where eg(A;) = [{{vj,w} € E : vj,vx € A;}| is the number of edges in the subgraph
of G induced by the set A;, and vol(A;) = ¥, .ca, deg(v;). The modularity measures the
deviation of the number of edges of G that lie inside parts of A from the corresponding
expected value based on the Chung-Lu distribution 4 (G) [4]. The modularity ¢*(G) is
defined as the maximum of ¢ (A) over all possible partitions A of V.

Hypergraph Modularities. In [2], we generalized the Chung-Lu model to hypergraphs
and used it as a null model allowing us to define hypergraph modularity. Consider a
hypergraph H = (V,E) and A = {Ay,...,A;}, a partition of V. For edges of size greater
than 2, several definitions can be used to quantify the edge contribution given A, e.g.:

(a) all vertices of an edge have to belong to one of the parts to contribute; this is a strict
definition that we focus on in this paper;

(b) the majority of vertices of an edge belong to one of the parts;

(c) at least 2 vertices of an edge belong to the same part; this is implicitly used when
we replace a hypergraph with its 2-section graph representation.

We see that the choice of hypergraph modularity function is not unique and it depends
on how strongly we believe that a hyperedge is an indicator that vertices belonging to it
fall into one community.

In [2], we derived a general formula that covers all variants but here, for illustration
purpose, we concentrate only on the extreme case, option (a), that we call strict. The
strict modularity function of a hypergraph partition A is defined as follows:

. d
wn =g (gem-gr g (o)) o

A;€eA a>2 Aj€A

where E; C E is the set of hyperedges of size d and vol(V) = ¥ ;>,d - |E4|. Just as for
graphs, the corresponding modularity ¢j; is defined as the maximum of gz (A) over all
possible partitions A of V.

Note that similarly to graphs, finding a graph partition that yields the highest modu-
larity is an NP-hard problem. Within the fore-mentioned SimpleHypergraphs.jl library
we are working on heuristics for detection of communities which are also discussed in

[2].

3 Experiments

In [5] we performed some initial experiments on a hypergraph obtained from Yelp data-
set which consists of thousands of nodes (restaurants) millions of their reviews (that
from hyperedges). Additionally, we observed that the additional information conveyed
via hypergraphs (as opposed to their 2-section representations) lead to better partition-
ing of the vertices in the analyzed data-set with respect to considered ground truth.
Now we want to test the hypergraph-based approach in web-graph applications. The
growth of Internet usage in last two decades has created unprecedented opportunities
for social scientists. Digital services, especially social media, are amazing reservoir of
data, holding valuable insights about social systems. As a result, researchers are able to

i
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experiment on real systems on the previously unprecedented scale. The usage of the so-
cial media data allows to better understand the dynamics of the protests movements [6,
7] and polarisation of the political debate [8]. However, Internet also has changed the
way how the people behave and communicate. The rise of the social media creates new
mechanisms shaping the society.

In this work we show that hypergraphs, are superior to their traditional counterparts
which are widely used in the network science. In the context of the social network, the
representation of the social circles (e.g. followers on Twitter or friends on Facebook) as
a hyperedges seems more natural than the edges connecting only two nodes.

In order to prove that, we design an experiment measuring the polarization of polit-
ical views of Twitter users. The phenomenon of the Internet bubbles or echo chambers
(closed groups of users showing strong resemblance and interacting mostly inside spe-
cific clusters) is crucial to understand the way how the political debate is or might be
shaped by the different actors. The selective exposure to sources of information makes
the citizens more prone to the discourse framing techniques such as fake news [9] or
political bots [10].

By using tweets concerning different political and nonpolitical issues we build hy-
pergraphs and then measure the strength of their community division and similarities
between nodes in each cluster. As a result, we are able to detect the most important
topics and better understand the online communication patterns regarding different sub-
jects. Finally, we compare obtained results to the clustering of the regular graphs build
around the same data and results previously obtained in the literature.
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1 Introduction

The computational demands of community detection algorithms such as Louvain and
spectral optimization can be prohibitive for large networks. These community detection
algorithms require either numerous iterations through combinatorial partitions of the
network nodes or linear algebraic operations on the adjacency matrix. More recent
literature on community detection extends the use of these methods, altering calculations
and processes, but do not deviate from the iterative maximization of modularity. For large
complex networks the computational and memory requirements often prove impractical.

This work demonstrates the utility of Katz centrality and eigenvector centrality as
indicators of community membership in large undirected networks. This method is
shown to produce well-defined communities (when sufficient modularity is present in
the network) in a much faster runtime than Louvain. Based on our datasets our proposed
approach has runtimes as low as 8.6% of the Louvain community detection runtime for
smaller networks, and 0.002% of the Louvain runtime for larger networks.

2 Methods

Eigenvector centrality is based on the idea that a node’s importance is related to the
importance of its neighbors. The eigenvector centrality of node i (x;) is measured by the
scaled sum of the eigenvector centralities of its neighbors,

X= o X, (1)
where A, is the leading eigenvalue of the adjacency matrix A, and x = [x,x2,...,x,]"
[1]. This is clearly the equation for the leading eigenvector of the adjacency matrix, thus
it only describes the most dominant mode of the network. In modular networks, this has
been shown to confine the large eigenvector centrality values to a certain collection of
nodes, despite the existence of other collections that appear to have similar importance
[2].

Katz centrality is calculated similar to eigenvector centrality, but with free centrality
B given to all nodes and & chosen such that o < )Tll [3],

x=(I—aA)"!B1. )
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As shown in [2], the inverse operation above can be expressed in terms of its power
series, allowing Katz centrality to be equivalently written as

S k S k
X=aju (06341> +---tayuy, Z(Odfn) s 3
k=0 k=0
with real coefficients ay, .. .,a,. Since o < %}, each infinite sum will converge and reveals

that Katz centrality spans the entire eigenbasis of A. Thus the localization of centrality
in modular networks will be significantly reduced compared to eigenvector centrality. In
this work we leverage the localization of eigenvector centrality against the robustness of
Katz centrality in sufficiently modular networks to identify the communities that give
rise to the modularity by plotting them against each other (Fig. 1). Because of the radial
structure of these plots, we use an algorithm similar to the radon line detection algorithm
[4] to perform cluster identification in the Katz vs Eigenvector Centrality (KE) plot.
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Fig. 1. Three communities discovered in the Amazon beauty review network [5].

3 Results

We apply the KE community detection method on a suite of synthetic and real-world
networks [5], measuring the resulting modularity (Q) of the detected communities,
comparing to the results obtained from the Louvain method (summarized in Table 1). The
KE method is shown to be far superior to Louvain in runtime, and to generally produce
comparable modularity values indicative of high performing community detection. The
resulting O from the KE method on many of the test networks is lower than the that from
Louvain. But the maximum obtainable modularity (Q4y) given the assigned community
members is also lower than Louvain, so the normalized modularity for both methods is
similar. This is likely because the two methods are extracting similar communities at
different scales. For example, Louvain discovers 25 and 34 communities in the Amazon
Beauty and Health networks, respectively, while the KE method discovers 3 and 2. The
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combinatorial, iterative nature of Louvain method is likely causing the detection of
micro-level community structures; whereas the KE method’s use of a network’s spectral
properties causes the detection of macro-level community structures. This assertion is
supported by Figure 2, where the Louvain-detected communities of an ad-hoc modular
network also organize into larger communites detectable by the KE method.

Runtime Modularity (Q/Qmax) N
Network L S KE L S KE L S KE

AMZN Product 371 ms 231 ms 32 ms 0.801/0.908 0.781/0.893 0.359/0.467 14 17
AdHocBA1 11.8s 877 ms 329 ms 0.485/0.491 0.485/0.490 0.480/0.498 2 2
AdHocBA2 2.03m 3.88s 228 ms 0.291/0.930 0.454/0.464 0.228/0.471 17 2
DBLP 12.0 m 1.15 hr 751 ms 0.805/0.982 0.713/0.974 0.019/0.034 129 191
AdHoc BA3 2.07hr 4.65m 1.97s 0.203/0.931 0.382/0.393 0.123/0.492 18 3
AMZN Beauty 11.7 hr 14.5m 11.8s 0.499/0.840 0.566/0.735 0.365/0.645 25 4
AMZN Health 16.2d 530m 35.7s 0.413/0.543 0.00/0.00 0.423/0.608 34 1 2
Table 1. Comparison of runtime, resulting modularity, and number of detected communities (N)
between Louvain community detection (L), spectral community detection (S), and the KE plot
method of extracting communities from various networks with n nodes and m edges.
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Fig. 2. 16 communities detected using Louvain, reduced to two groups that largely follow the
pattern utilized by the KE method.
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Summary. We analyse the behaviour of users navigating on a web portal with tools from
Information Theory. We show that the higher order Markovianity of such dynamics is a
fundamental part of the system complexity and a first order Markovian approximation
can include several errors. We propose a partition detection algorithm based on an in-
formation theoretic criterion, the maximization of the auto—information, which leads to
a low-dimensional model that simulates the real dynamics more closely.

1 Introduction

Dynamical systems that evolve on top of networks, such as disease spreading, informa-
tion diffusion, or transportation systems are nearly ubiquitous. Analysing the properties
of a such dynamical systems often offers valuable insights about the relevant connec-
tion patterns present in the underlying network. Indeed, dynamical properties have been
used to find community structures [1,2], to rank nodes (e.g, via random—walk centrality
and pagerank [3]), or to analyse other aspects of complex networks.

While the topology of the underlying network will add to the complexity of the
system behavior, part of that complexity may emerge from the dynamics themselves:
in particular, if the system behaves in a non—-Markovian way and the evolution of the
system depends on its own history; see for example the highly cited works [4,5,6] and
a recent paper on epidemics on networks [7].

In this work we demonstrate how the non-Markovianity of a dynamics on a network
should be considered when analysing the system behaviour. To this end we consider the
behaviour of users navigating on a web portal of a Belgian broadcasting network. We
show that this dynamics is more accurately described by a non-Markovian dynamics
where memories plays a fundamental role, even though our urge to understand and
simplify the system often leads the researcher to model it as a simple Markov process
with no memory [3].

2 Results

The entrogram [8] (see Figure 1A) is a set of information theoretical quantities defined
as follows:
L= T3 1, 0 X1, %) i € Np, (1

where (-;-) is mutual information and X = {... ,x;—1,%;,X+1,...} represents the states
of the dynamics at each time—step. The entrogram provides a concise characterization
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of the complexity of the dynamical system. The area };I; of the entrogram represents
the total dynamical complexity of the system [8]. The latter can be divided into a mea-
sure of predictability (Ip), and a measure of the non-Markovian memory inherent in the
dynamics (Y ;> ;). The dynamics displays a non-negligible amount of memory (see
Figure 1A), with a Markovian behaviour of at least order three.

Fig. 1. Analysis of a non-Markovian dynamics of users browsing a web portal. The Entrogram [8]
of the web browsing (A) shows clear signs of dynamical memory. The analysis of the three—steps
patterns shows how two of such patterns are under-represented in a Markovian approximation of
the dynamics (B). Detecting communities preserving the Markovian order of the dynamics gives
a slightly different partition than classical approaches (C, D). We show that Markovian—order—
preserving community detection can be used to better simulate the original dynamical complex
system.

The analysis of the dynamical patterns contained in the dataset further supports that
the real dynamics is far from being well approximated by a simple first order Markov
process (see Figure 1B), and some patterns are under-represented in the latter.

As a second contribution, we introduce a state aggregation procedure that respect
the Markovian order of the dynamics. To do this we maximise the auto—information
between two distant time—steps in the dynamics projected to the partition space:

1y ye-1), 2
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where T is set to three to respect the Markov order of the original dynamics. This
results in a slightly different partition of the web portal pages as compared to classical
partitioning algorithms, see Figures 1C and 1D. Despite the apparent small distance
between the two partitions, simulating a Markovian evolution on the reduced graph
obtained from maximizing the auto—information leads to a dynamics sensibly closer to
the original non—Markovian dynamics.
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1 Introduction

Currently, the big data revolution is changing the way many disciplines perform a large
amount of experimental measures and their interpretation and modeling. In fact, due to
the successes of information technology revolution and the advances in robotics many
scientific experiments have today an observational character rather then a design investi-
gating a fully controlled set up. Examples are space-time records of particles dynamics,
climatological monitoring of large scale regions, earthquake investigations, brain ac-
tivities, gene expressions, dynamics of social and financial systems. All these types of
complex systems present datasets that are genuinely multivariate and that are recorded
in the presence of sources of uncertainty (modeled as noise). Their interpretation and
modeling with statistically validated data mining tools require the characterization of
the hierarchical sub-units present in them. A traditional unsupervised tool for the char-
acterization of sub-units of a complex system is hierarchical clustering. In spite of the
effectiveness and simplicity of this approach the extraction of a hierarchically nested
partition from a hierarchical tree is still today an open problem. The most widely used
approach for cluster detection used in the scientific literature is an approach originally
proposed in phylogenetics and today implemented by the algorithm called Pvclust [4].
This algorithm is widely used in many disciplines and especially in genomics. It is
the standard reference in the literature but present two serious limits. The first limit
concerns computational time and scalability with system size. The algorithm is rela-
tively slow and has a limited scalability and therefore it is not appropriate for very large
datasets. The second limit (partly overlapping with the previous one) is related to the
open problem of how to deal with the so-called familywise error. This type of error is
a source of statistical errors occurring when a large number of statistical tests is per-
formed in parallel in a system. This type of errors originates naturally in very large
datasets.
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2 Results

In this work, we propose a greedy algorithm based on bootstrap resampling that as-
sociates a p-value at each clade of a hierarchical tree. Our algorithm gives good re-
sults when applied to benchmarks mimicking the complexity of hierarchically nested
complex systems. We call our algorithm statistically validated hierarchical clustering
(SVHO)[2, 1]. Specifically, for each pair of parent and children nodes in the hierar-
chical tree, we test the difference between the proximity measure (in our approach a
dissimilarity) associated with a clade h and the dissimilarity measure associated with
the clade defined by its parent node in the genealogy of the dendrogram. The statistical
test we perform consider as a null hypothesis that the dissimilarity of the parent node
is larger than the dissimilarity of the children node. Our tests are performed by consid-
ering multiple hypothesis test correction. In fact, we always apply the control of false
discovery rate. By selecting those clades that reject our null hypothesis, we identify a
hierarchically nested partition involving a certain number of elements of the investi-
gated systems. In order to evaluate the performance of our method, we test it with some
benchmarks obtained by using a hierarchical factor model.

By performing numerical experiments on a representative benchmark and on a ref-
erence empirical dataset, we show that our algorithm is quite accurate and much faster
and scalable than the state of the art algorithm (Pvclust). Moreover, it shed light on the
role and limits of the presence or absence of a procedure for the multiple hypothesis
test correction (Fig. 1). For these reasons, we believe the new algorithm will be of in-
terest for those scholars working with large multivariate datasets in biology, computer
science, neuroscience, physics, sociology, and other disciplines dealing with large scale
multivariate data.

(a) (b) (©

Fig. 1. (a) and (b) Numerical experiments with a benchmark composed by 12 overlapping clus-
ters. (a) Number of statistically validated clusters detected by the algorithms as a function of the
system size N. (b) Computational time of the algorithms as a function of the system size N; (c)
hierarchical tree (average linkage HC) and correlation matrix of lung tissues dataset [3]. In the
correlation matrix we highlight hierarchically nested clusters detected by our method.
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Summary. We develop a greedy algorithm that is fast and scalable in the detection of a
nested partition extracted from a dendrogram obtained from hierarchical clustering of
a multivariate series. Our algorithm provides a p-value for each clade observed in the
hierarchical tree. The p-value is obtained by computing a number of bootstrap replicas
of the dissimilarity matrix and by performing a statistical test on each difference be-
tween the dissimilarity associated with a given clade and the dissimilarity of the clade
of its parent node. By performing numerical experiments on a representative benchmark
and on a reference empirical dataset, we show that our algorithm is quite accurate and
much faster and scalable than the state of the art algorithm (Pvclust). Moreover, it shed
light on the role and limits of the presence or absence of a procedure for the multiple
hypothesis test.
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1 Introduction

The number of methods proposed for community detection (CD) in graphs is constantly
increasing, however, those typically do not support setting the number of resulting com-
munities upfront [1],[2]. Nevertheless, in real-life problems, the number of existing
communities could be known and one “just” needs to assign instances to the most ap-
propriate communities. One such problem that we are considering here is whether in a
multi-language country it would be possible to separate language communities based on
the (solely) customer calling data (hence without any additional attributes that might be
more related to the language used). To this end, we propose using k-means clustering
on top of learnt proximity preserving customer representations (and not hand-crafted
topological features as has been a common practice so far).

Therefore, the main contribution of this study is providing the evidence that even the
simplest clustering algorithms can perform better than some well-known, sophisticated
CD methods, if they are applied on top of learnt representations. This is especially the
case when only a network topology is available and no other seemingly related attributes
could be derived from the underlying network.

2 Methodology and Experimental Setup

Methodology Our methodology consists of three main steps. The first one is a call
network construction, implemented (classically) by assigning nodes to customers and
adding links if corresponding customers had a call. We resort to exploiting the largest
connected component (LCC) with ~3.9M nodes and ~5.7M edges as it achieves better
performance than the original graph. Secondly, we perform representation learning
on the call network, whereby we learn node (customer) representations (aka embed-
dings). To this end, we use a learning method based on random walks and word2vec
[3], proximity preserving neural network language model. More concretely, we exploit
both SkipGram and CBOW methods to generate embeddings. Finally, the third step
is clustering of the embeddings. More specifically, we perform k-means clustering on
previously generated embeddings, imposing the number of clusters to be equal to that of
the ground truth. Finally, we evaluate the quality of clustering using the Adjusted Rand
Index (ARI) and balanced accuracy (BACC), to account for the imbalanced number of
instances in the ground truth clusters.
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Data We operate with anonymized call detail records (CDRs) containing info about
caller, callee, date/time and duration per call. In addition, for a subset of users we have
their voicemail language settings. These serve as a proxy for the language spoken by
a customer. Among four identified languages (denoted as Langl-Lang4), Lang2 and
Lang3 are far more used, so both 2 and 4 clusters were considered as a ground truth.

Baselines Three methods were used: 1) Louvain [1], a well-known CD algorithm orig-
inally proposed as well for distinguishing language communities, 2) the Asynchronous
Fluid (AF) community detection algorithm [4], based on the interaction of fluids in an
environment, that allows for a predefined number of communities (the main motivation
for using it) and, 3) K-means clustering combined with various hand-crafted network
features (denoted as net_feat) which would permit to directly compare the efficiency of
learnt embeddings against the manually derived topology-based information.

3 Results

Applying Louvain [1] on the LCC, yielded as much as 2175 different communities.
An analysis of the largest 50 of them (Figure 1), shows that typically one particular
language (mostly Lang2 and Lang3) dominates each community. However, there is a
problem of the same language users being scattered over many clusters. Furthermore,

Fig. 1. Language distribution across the largest 50 Louvain communities.

Louvain does not allow specifying the number of communities, and merging them post-
hoc does not guarantee (to say the least) maximal modularity (the Louvain’s main idea).

The rest of the methods could be properly benchmarked given that the number of
pre-set communities was the same (2 or 4). As can be seen from Table 1, both ARI and
BACC are the highest when embeddings were used, with SkipGram providing better
results than competing CBOW. Moreover, the ARIs close to 0.0 for methods based on

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



63

Table 1. ARI (the best in boldface) and BACC using 4 different methods and 2 versions of ground
truth. Embgg and Embcpow stand for embeddings obtained by SkipGram and CBOW methods,
respectively, while net_feat refers to hand-crafted features derived from the LCC directly.

ground truth: 4 clusters||ground truth: 2 clusters
ARI [ BACC ARI [ BACC

Asynchronous Fluid|| 0.0413 0.2713 -0.0114 0.4735
k-means+net_feat ||-0.0001 0.2500 -0.0001 0.4998
k-means+Embgg || 0.3651 0.4075 0.8002 0.9466

k-means+Embcpow || 0.1736 0.3261 0.4297 0.8036

Method

AF and net_feat, clearly indicate that the corresponding labelings are almost random.
Furthermore, using only 2 clusters as ground truth provides better results (except for the
AF method), probably as the two less used languages introduce some noise otherwise.

It is worth mentioning that due to the huge size of the LCC, calculating many fea-
tures that deemed as potentially informative, was not feasible within a reasonable time
frame (48 hours). This was particularly the case with most of the centrality measures. As
such, the final set of features (per node) included in net_feat were: first-order degree, av-
erage neighbor degree, clustering coefficient, degree centrality, number of triangles and
PageRank score. Similar computational issues were encountered with standard commu-
nity detection algorithms such as [2].

Summary. The obtained results clearly demonstrate that embeddings can improve the
quality of clustering and lead to outperforming sophisticated CD methods. This is espe-
cially valuable when there is a lack of any additional data (except for network topology,
that is). Furthermore, presented method was proven to be scalable on large networks.

As a future work we envision benchmarking obtained results with the methods aim-
ing at learning network (node) representations taking into account underlying commu-
nities such as [5]. Additionally, it would be worthwhile taking a further look into the
dynamics related to observed communities.
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1 Introduction

Networks are ubiquitous in modern society; from the Internet and online blogs to pro-
tein interactions and human migration, we are surrounded by inherently connected
structures [4]. A fundamental problem in network analysis and machine learning is that
of clustering, which aims to identify groups of nodes that are highly inter-connected
or exhibit similar features. Spectral methods for network clustering have a long and
successful history, and have become increasingly popular in recent years due to their
computational efficiency and amenability to theoretical analysis under various proba-
bilistic models. However, traditional spectral methods have shortcomings, which stem
from their inability to capture latent higher-order network structures [2], and the chal-
lenges faced when handling directed edges [3], which renders the adjacency matrix no
longer symmetric. Motif-based spectral methods have proven more effective for cluster-
ing directed networks on the basis of higher-order structures [7], with the introduction of
the motif adjacency matrix (MAM). We explore motif-based spectral clustering meth-
ods with a focus on addressing these shortcomings for weighted directed networks, and
augment our findings with numerical experiments on synthetic and real-world networks.

2 Problem Statement and Main Results

We consider clustering a weighted directed graph without self-loops or multiple edges.
To exploit higher-order structures, we look for the occurrence of motifs (small con-
nected subgraphs, Figure 1). We consider the weighted motif adjacency matrix M as-
sociated with a graph & and motif .#, where M;; is the total weight of all instances of
A in ¢4 containing both nodes i and j, and apply traditional spectral clustering to the
resulting (symmetric) matrix M. For motifs on at most three nodes, Proposition 1 gives
a fast and parallelizable matrix multiplication-based procedure for computing MAMs.
In addition, we also present a novel motif-based method for clustering bipartite graphs.

Proposition 1 (MAM formula). Suppose & is a graph on n vertices, and M is a
motif on at most three vertices. Then calculating an MAM takes at most 18 matrix
multiplications, 22 entry-wise multiplications and 21 additions of n X n matrices.

2 2 2 2 2 2
SN /N /N /N SN N
1 <—(3 1 +<—(3 1 <3 1 3 1 3 1 3
M My M, Ms My My My,
Fig. 1. Example of directed motifs which might appear as subgraphs of a larger graph.
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2.1 Motif-Based Clustering in Directed Graphs

We consider a family of directed stochastic block models (DSBMs) that exhibit im-
balanced flows in terms of the edges between clusters, and show that our motif-based
method performs better than traditional spectral clustering. Figure 2 plots the popular
Adjusted Rand Index (ARI) [6] attained by various motifs, averaged over 20 trials, for
asymmetric two-block DSBMs with n = 200 nodes. The first motif .Z; yields the tra-
ditional spectral clustering algorithm, while the others consider higher-order structures.
The top of the plot shows |C|, the number of nodes clustered by the algorithm. Higher
values of ARI and |C| are better, and clearly motif .#; outperforms traditional methods.

|C| =200 199 200 200 198 17 200 200 200 200 200 200 200 200 199

(e—®) W

P | Q1

F= 00 +2L ,,,,, JL +,$_§_+2L+ALA

qQ | P

ARI

Mg Mg M; My Mz My M; Mg My Mg Mg Mg My Mja My

Motif
Fig. 2. Left: block structure and sparsity matrix of the asymmetric two-block DSBM. Right: ARI
violin plot for the asymmetric two-block DSBM.

Next, we consider the US Migration data set [8], where the n = 3107 nodes denote
the counties in mainland US, and the weighted directed edges indicate human migration
flows during 1995-2000. Figure 3 shows the motif-based second eigenvector embed-
dings (x) and clusterings (C) obtained using various motifs, with k = 7 clusters.

M

X2

Neut = 1.13 Ncut = 1.35 Ncut = 1.17

Fig. 3. Top: motif-based colorings of the US Migration network, from the second eigenvector of
M. Bottom: clustering structure recovered from standard random-walk spectral clustering on M.

We also considered the US Political Blogs network [1], with n = 1222 nodes denot-
ing blogs labelled as “liberal” or “conservative”, and weighted directed edges indicating
the number of citations between blogs. Figure 4 plots ARI against number of vertices
clustered by various motifs, and shows the eigenvector embedding given by motif .Z/,.
2.2 Motif-Based Clustering in Bipartite Directed Graphs

We consider bipartite stochastic block models (BSBMs), and show the effectiveness of
motif-based methods for clustering them. We also demonstrate bipartite clustering on

-
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Fig. 4. Left: The US Political Blogs network. Middle: ARI versus largest connected component
size for various motifs. Right: eigenvector embedding for motif .4, colored by political leaning.

the Unicode Languages network [5], where source nodes denote territories, destination
nodes denote languages, and weighted directed edges indicate number of speakers. Fig-
ure 5 shows a clustering of territories into 6 clusters based on their common languages.

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
No Cluster

Fig. 5. Clustering of the territories from the Unicode Languages network.

3 Discussion and Conclusion

Motif-based spectral clustering is a valuable tool for clustering weighted directed net-
works, which is scalable and easy to implement. Potential extensions include an anal-
ysis of the differences between clustering based on functional and structural MAMs, a
comparison with the Hermitian-based clustering in directed graphs [3], and application
to directed core-periphery detection.
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Finding meaningful communities in complex networks
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Introduction

Community detection has grown to become a standard tool for the observation of mod-
ular structures [3]. One of the most used approaches is optimising the so-called modu-
larity function [6], for which a wide range of algorithms exist [5, 2, 9]. Next to modular-
ity based approaches, new graph-generating ideas based on stochastic block modeling
emerged [8], allowing the discovery of disassortative community structures and even
the inclusion of metadata in the partitioning [7].

Another way to detect communities can be considering coordination games on net-
works. The social feedback model [1] provides an agent-based interaction model in
which agents change their opinion based on the reaction of their neighbors. In a binary
opinion space, the stability of the final opinions (or communities) on the network can be
assessed using the cohesion measure [4]. We will see that the per-node cohesion, which
we call “node belongingness”, is closely related to the modularity.

The following efforts aim to provide an interpretation of the modularity metric in re-
lation to game-theoretic models. In this context, we want to ask how many opinions
a certain network configuration supports, and what the roles of single nodes can be in
enabling the emergence or disappearance of certain opinions in networks.

Social Feedback Model

There are different opinions o; that agent i can adopt and express to their neighbors.
Agents become more convinced of an opinion if the response from their neighbors is
positive, and less convinced otherwise.

The internal evaluation of the agent is updated by:

_ (1—a) (o) +ar;: if o = expression
i(0) < { %i(o) : else

with reward r; = 1 if 0; = 0; and —1 else.
Agents express the opinion they most strongly support during the current timestep:

0; = argmax %;(0)
o
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Modularity and mean belongingness

The modularity is defined as:

1
szg}(f\u—l’i,‘)ﬂgigj) )

where k; is the weight of node 7, P;; is a null model and g; is the community index
of node i. Usually, the null model is based on the degree distribution of the network,

resulting in:
_ ! LKk s
Q=5 LA —5 ) 8sig)) @)

i,J

We define the belongingness of a node to its community as the fraction of its neighbors
that share the same opinion:

= Y, 6(gigj) Aij 3)
LjAij
We compute the mean belongingness:
1 . gzg Lj0(&i8j) Aij gzg 2j018i8)) Aij A
NZ—; YA, —Z “
The modularity can be rewritten in the following way :
Q0= ZA o (gig)) K:ZLC'—K (5)
le,j & e iijjl
The value x depends on the null model F;;:
1 kik j
K= 8igj P 6(gig 6
Yok & 2m (3igj) = lelzj:tJ i8;) (6)

We see in (5) that the modularity is proportional to the node belongingness. This is
a first step in interpreting the modularity function in terms of game-theoretic stability
criteria. For a space of two opinions, the stability criterion based on cohesion [4] is
quite straightforward: an opinion configuration is stable if min;(c;) > 0.5. However, if
we consider more than two possible opinions, the criterion is not as clear. We aim to
connect these notions of stability to a multi-opinion context, which could be one path
to testing modularity-based partitions for meaning.

Results

We test the social feedback model on the paradigmatic Karate Club network [10]. Links
in the network represent social ties between the members of a university karate club.
The club is torn by a dispute between the instructor and the president, which eventually
leads the network to split in two, resulting in the so-called “ground truth” partition. Ex-
cept for member number 9, who picked his final faction stategically, Zachary was able

i
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Fig. 1. Different partitions of the Karate Club network and their node belongingness dis-
tribution. Nodes are colored according to their community. The Karate Club network’s “ground
truth” partition is presented on the left. In the middle is a Louvain partition, which presents
four communities. On the right is the outcome of the social feedback model, in which the in-
dividual opinions were initialised using the Louvain partition. Only two opinions survive. The
learning rate is set to & = 0.015. On the lower plots, each node’s belongingness ¢ is shown:
min_ciz%< min ci=%< ~min ci:%.
louvain groundtruth social feedback

to find the partition using a maximum flow algorithm [10].

We compute a Louvain partition of this network with resolution 1.0. The resulting par-
tition is used to initialise the node’s opinions for the social feedback model at t = 0.
The learning rate is set to &¢ = 0.015. At ¢ = 100000, only two opinions survive, corre-
sponding to the ground truth partition except for member number 9. Figure 1 shows the
different partitions of the network and the according node belongingness values for each
node. The Louvain partition presents several nodes with ¢; < 0.5. From this first look,
it is possible to get an intuition of stability of certain partitions. For instance, the ab-
sorbtion of two out of four communities from the Louvain partition could be predicted
using the node belongingness value.

Summary and Outlook

This abstract provides a first approach at interpreting the abstract modularity function
in the game-theoretic context of the social feedback model. The model can be used to
test a given network partition for stability, which is demonstrated on the Karate Club
network. Here, two small commmunities are absorbed by larger ones, resulting in a
two-opinion network.
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Further work will investigate the role of individual nodes in an opinion space, especially
at the borders of communities, to see if there are interaction patterns that enhance or
suppress opinion absorbtion. Ultimately, the question of how many communities are
supported given a network structure will be addressed in the course of this research.
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1 Introduction

Community structure is an essential property that helps us to understand the nature
of complex networks. Since algorithms for detecting communities are unsupervised
in nature, they can fail to uncover useful groupings, particularly when the underlying
communities in a network are highly overlapping [1]. Recent work has sought to address
this via semi-supervised learning [2], using a human annotator or “oracle” to provide
limited supervision. This knowledge is typically encoded in the form of must-link and
cannot-link constraints, which indicate that a pair of nodes should always be or should
never be assigned to the same community. In this way, we can uncover communities
which are otherwise difficult to identify via unsupervised techniques.

However, in real semi-supervised learning applications, human supervision may be
unreliable or “noisy”, relying on subjective decision making [3]. Annotators can dis-
agree with one another, they might only have limited knowledge of a domain, or they
might simply complete a labeling task incorrectly due to the burden of annotation. Thus,
we might reasonably expect that the pairwise constraints used in a real semi-supervised
community detection task could be imperfect or conflicting. The aim of this study is to
explore the effect of noisy, incorrectly-labeled constraints on the performance of semi-
supervised community finding algorithms for overlapping networks. Furthermore, we
propose an approach to mitigate such cases in real-world network analysis tasks. We
treat noisy pairwise constraints as anomalies, and use an autoencoder, a commonly-
used method in the domain of anomaly detection, to identify such constraints. Initial
experiments on synthetic network demonstrate the usefulness of this approach.

2 Methods and Experimental Design

The key aspect of our work is an iterative approach using an autoencoder to remove
noisy pairwise constraints selected by the AC-SLPA algorithm [2]. An autoencoder
(AE) refers to a neural network architecture that attempts to reconstruct a given input
in an effort to learn an informative latent feature representation. Formally, for an input
vector x, we attempt to map x to a reconstruction of itself x’. By doing this, a latent repre-
sentation of the data is created in the hidden layer(s) of the network [4]. These networks
can utilize a “bottleneck” configuration where the hidden layer(s) of the network com-
press the data [4]. The network is trained by minimizing the mean squared error (MSE)
between the reconstruction and input. Additionally, autoencoders can be constrained to
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enforce sparsity in the network and therefore no longer require a compressed network
capacity. One type of constrained autoencoder adds a sparsity penalty to hidden repre-
sentations by constraining their absolute value. This penalty term is weighted and added
to the cost function. In our work we employ the above neural network architecture to
identify potentially noisy pairwise constraints selected by AC-SLPA before applying
the community detection process.

Firstly, feature vectors are constructed as inputs to the autoencoder, one vector per
input constraint pair. Along with the constraint type, the other features include standard
measures based directly on the network topology: whether the pair of nodes shares an
edge, their number of common neighbors, shortest path length, and cosine similarity.
We also include more complex features: their SimRank similarity [6] and their simi-
larity as computed on a node2vec embedding generated on the network [5]. From this
data, the model then learns to reconstruct the original constraints from the latent repre-
sentation. The reconstruction error is then given by the difference between the original
constraints and the reconstruction. A large error is indicative of an anomaly (i.e. a noisy
constraint), while a low error indicates a “normal” example (i.e. a correctly-labelled
constraint). The expectation is that, as the vast majority of pairwise constraints are non-
noisy, the autoencoder’s latent representation will be biased towards these examples.
This makes the model somewhat robust to outliers. Based on this property, it is then
assumed that examples which are noisy will have a high reconstruction error.

As our initial evaluation, we assess the capability of autoencoders to detect noisy
constraints. Once the set of constraints is selected by AC-SLPA and labeled by the
oracle, the autoencoder is trained on this set. These are then passed through the autoen-
coder once again to obtain a reconstruction error for each constraint. The AUC over this
error is calculated, which provides an estimate of the number of constraints that were
successfully detected in the absence of a definitive threshold. The number of layers in
each autoencoder is varied to examine whether this task benefits from a deeper model.
We consider both compression-based autoencoders and sparse autoencoders.

Evaluations are performed on 64 LFR benchmark networks containing either small
or large communities, for a variety of parameters {N,Om,On,u} (see Table 1). The
depth of the autoencoder is varied to assess its effect on performance. In the case of
the compression autoencoders, the nodes are gradually decreased in the encoder and
increased in the decoder, while this compression is not necessary for the L1 constrained
models [4]. In the case of the constrained autoencoders, the sparsity weight is kept at
1073, All models were trained with a learning rate of 10~ for a maximum of 100
epochs and a batch size of 256.

3 Results

The results in Table 1 are divided into two parts, which represent the AUC scores of the
autoencoder on networks with 10% and 50% overlapping nodes respectively, averaged
across 10 runs. Each table entry shows the AUC value of an AE model (on the rows)
for each network (on the columns). For each network, the AUC scores of AE models
are ranked, and the best performance is highlighted in bold. The last column reports the
average rank score of each model. As we can see, all AE models show high AUC scores,
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Table 1: AUC scores on LFR networks with 10% of noise in pairwise constraints. AE*
[ layers dimension]: indicates the number of layers in compression autoencoders, and
AE*_11 [ layers dimension]: indicates the number of layers in L1 constrained autoen-
coders: AE1: [7,3,7], AE1_L1: [7,7,7], AE2: [7,5,3,5,7], AE2 L1: [7,7,7,7,7], AE3:
[7,6,5,3,5,6,7], AE3_L1: [7,7,7,7,7,7,7].

(a) AUC scores on networks with 10% overlapping nodes

Comm.
size Average
u 0.1 0.3 0.1 0.3 Rank

Om 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
AEl 0.752 10.736 [0.777 [0.736 [0.829]0.770 [0.744 |0.751 ]0.775 |0.757 [0.756 [0.773 [0.795 [0.733 |0.773 [0.739 | 4.4 (4)
AE1.L1]0.759 [0.800 {0.801 |0.758 [0.837]0.772 [0.829 |0.732 [0.832 [0.828 |0.774 |0.766 |0.810 |0.824 [0.826 |0.759 | 2.9 (2)
AE2 0.760 10.739 10.803 [0.776 [0.797]0.787 [0.798 |0.749 ]0.783 |0.795 [0.765 [0.764 [0.786 |0.780 |0.775 [0.773 | 3.3(3)
AE2.L1]0.762 |0.706 {0.791 |0.760 [0.792]0.801 [0.789 |0.784 [0.775 [0.795 |0.798 |0.769 |0.770 |0.834 [0.831 |0.813 | 2.9 (2)
AE3 0.754 10.809 [0.771 [0.810 [0.794]0.797 [0.796 [0.792 ]0.817 |0.833 [0.836 [0.822 [0.769 [0.839 |0.827 [0.849 | 2.3(1)
AE3_L1]0.720 [0.777 {0.773 ]0.776 [0.779]0.751 [0.764 |0.740 [0.729 [0.753 |0.726 [0.793 [0.786 |0.795 [0.774 |0.782 | 4.4 (4)

Large Communities Small Communities

(b) AUC scores on networks with 50% overlapping nodes

Comm.
size Average
u 0.1 0.3 0.1 0.3 Rank

Om 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
AEI 0.74410.797 0.823 [0.793]0.832 [0.815 |0.804 {0.798 |0.779(0.829 |0.828(0.778{0.813 [0.831 [0.849 |0.806| 3.3 (3)
AE1_L1]0.766 [0.804 |0.811 [0.834]0.788 [0.788 [0.826 |0.766 [0.847|0.755 |0.874|0.818|0.756 |0.826 [0.842 (0.836| 3.1 (2)
AE2 0.741 0.767 [0.799 [0.668]0.771 [0.806 |0.803 {0.676 |0.783(0.760 |0.784[0.799{0.762 [0.808 [0.823 |0.812| 4.9 (5)
AE2_1.1]0.780 [0.798 |0.791 {0.833]0.794 [0.827 [0.818 |0.783 [0.801{0.776 [0.867]0.790(0.792 |0.879 [0.848 [0.819| 2.6 (1)
AE3 0.696 |0.720 [0.706 [0.757]0.782 [0.745 |0.823 {0.779 |0.822(0.770 |0.858{0.669{0.820 [0.837 [0.808 |0.803| 4.4 (4)
AE3_L1{0.752 0.824 [0.835 |0.805(0.831 |0.808 {0.837 [0.774 [0.787]0.785 {0.860(0.669{0.801 [0.853 |0.852 [0.811| 2.6 (1)

Large Communities Small Communities

with the lowest scores around 70%. However, we see the AE3 models perform better on
networks with On = 10%, while AE1_L1 and AE2_L1 also perform well here. On the
networks with On = 50%, AE2_L1 and AE3_L1 are the top-ranked models. In general,
these results suggest that deeper autoencoder models do not perform significantly better
than simpler ones when detecting noisy constraints.

In summary, our proposed approach currently yields promising results on bench-
mark networks. A second set of experiments is currently in progress, which directly
evaluates the performance of AC-SLPA when incorporating reliable constraints as se-
lected by the autoencoder model, on both synthetic and real-world networks.
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1 Introduction

In the classical network theory, in weighted (or valued) networks, edge weights are
constants [1,2]. However, in real-world applications these weights may vary within
ranges rather than being constants [3]. To better model such variability of weights in
a network, instead of using constants or point values (real numbers) and associated
methods to represent the information present in the edges of the networks, we represent
weights as intervals [4]. A representation of these values in the form of closed intervals
composed with the precise information following the ontic approach [5], can be more
meaningful and useful in a dynamic environment than point—valued output, as these
intervals contain more information in expressing raw data variability [6].

Although several extensions of modularity to weighted networks were proposed,
none takes into account the variability of link weights. To fill this gap, we extend
both, Newman’s modularity for weighted networks [2], and one state—of—the—art greedy
method to optimize modularity introduced by Blondel et. al. [7] (the Louvain algo-
rithm), to the general case of interval-weighted networks (IWN). Finally, we apply our
community detection approach for IWN to a real-world commuter network between
the Portuguese mainland municipalities.

2 Modularity in Interval-Weighted Networks

The generalization of the (unstandardised) modularity for weighted networks, Q" =
Ycew Lijec (0ij — eij) (where € is a partition of the vertices into g sets), gain of mod-
ularity (AQY = QW — Q}/Zst) and consequently of the Louvain method to this new
approach, was done considering that the IWN can be represented as a contingency ta-
ble, denoted by O', whose cells represent the observed interval-weighs of; = [0;;,0ij]
(0ij > 0;; > 03 0{]- C RY), if there is an weighted edge between vertices (i, j) and
zero otherwise. The interval total weight/strength attached to vertex i, is denoted by
519 =Y"1_,[0;;,0i;], and the total weight is, Y1, s1° =Y1_ 55.0 =Y X)-10;,0i] (to
simplify, hereafter we will use the notation [2w,2w]). Analogously, and assuming inde-
pendence between the vertices, the contingency table for the expected interval-weights
is defined as E/ = ¢! j» Where el ; is the interval-weight that would be obtained if the hy-
sl0410 510510
pothesis of row—column independence were true, e/ ;= [” T }, (0 ¢ [2w,2w]).
Further, these expected frequencies must pass through an “adjustment” of its total lower
(2w) and upper limits (2). The generalization of modularity (Q") and modularity gain

The 8" International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal

co LEX
NETWORKS
2019



75

(AQY) to interval data was done as follows: assuming that we have a fixed partition
consisting in two communities C, and Cy, the modularity for interval-weighted net-
works is equal to: Q" =Y. D(0,r,e,), where “D” represents the difference between
the observed o, and the expected e,, interval-weights; likewise, to evaluate the modu-
larity gain resulting from the merging of the two communities C, and C; into a single
community C; = C,UCy, the modularity gain for interval-weighted networks is equal to:
AQW =W Q%t. Then following the same procedure, Newman’s normalization of
w ﬂ _ Y D(orr.err)
norm — oIW D([2m,2W],Zr€rr) ’
In the previous generalizations we face two major setbacks: interval dependency; and
the fact that the value of the distance between intervals is always positive. To con-
tour these drawbacks we propose the following three types of measures to evaluate de
difference between two intervals [x,x] and [y,¥]: di ([x,%],[y,y]) = max {x —y,x—5},

modularity [9] was generalized for the case of IWN by: Q

dy ([x,],[y,5]) = max {|x — y|,[x— |} sign argmax{|x—y|,|¥—7¥|}, and a “vectorial
difference” d 3 ([x,%],[y,3) = (x—y,Xx—¥). According to the type of difference used,
other alternative modularity measures were defined. Similarly, various community de-
tection methods based on the Louvain algorithm have also been developed.

3 Application to a Commuters Interval-Weighted Network

We analyse the community structure that emerges from the movements of daily com-
muters in mainland Portugal between the twenty three Regions NUTS 3 (Nomenclature
of Territorial Units for Statistics) [8]. The applied methodology is capable of detect-
ing productive regions composed of cohesive NUTS 3 in terms of commuting flows.
The elements o{ ; denote the maximum variability of the bi—directional flows ij and ji

between the NUTS i anq j (Figurelb): oll-j = [min{ggj,.g’j/i}.,max{5§j75’j/l- |= [Qijva_ij}
(flows greater than 50 daily movements). Therefore, taking into account the assumption
of regular bi—directional movements along the edges, the adjacency matrix is symmet-

ric, o!; = 0!, and the network is described as an undirected interval-weighted network.

ij = %jic

Fig. 1. (a) Bidirectional interval flows i — j and j — i, (b) Undirected interval flow between i;.

For the sake of simplicity, we only report the results for the difference d;. The final clus-
tering reveals the existence of three NUTS 3 communities, with normalised modularity
oW =0.596 (QW =10792.1, and Q'W = 6371.6), which means a moderate/strong
clustering structure. The Louvain algorithm for IWN reached maximum modularity at
the end of the second pass. These communities roughly represent the division of the
country into two major regions, the northern region (Cy: AMI, ATA, AMP, AVE, CAYV,
DOU, RAV, RCO, TES, TTM, VDL) and the southern region (C;: ACE, AAL, BAL, ALI,
ALG, AML, LTJ, OES, MTJ, RLE). However, the less “important” region, centre interior
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of Portugal (C3: BBA, BSE), forms a community of its own. Table 1 and Figure 2 be-
low, show the adjacency matrix for the interval-weighted network and geographical
representation that outcomes from this community detection method for IWN. These
intervals account for the maximum variation in daily commuters flows within and be-
tween those communities.

Table 1. Interval-weighted adjacency matrix®.

G C; (&}
ACE. AAL, BAL, ALL | AML ATA, AMP, AVE,
ALG. AML, LTJ, OES, | CAV, DOU, RAV, RCO. | BBA, BSE
MTJ, RLE TES. TTM, VDL
ACE, AAL, BAL, ALL
ALG, AML, L1, OFs, | [[2562)24720] [966,3483]  |[269,411]
MTJ, RLE
AMI, ATA, AMP AVE,
CAV, DOU, RAV, RCO, [966,3483] [4328,41994] |[221,731]
TES, TTM, VDL
BBA. BSE [269,411] [221,731]  |[110,996]

A NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alen-

tejo, AMI-Alto Minho, ATA-Alto Tamega, AML-Area Metropolitana de Lisboa, AMP-Area

Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra

da Estrela, CAV-Cdvado, DOU-Douro, LTJ-Leziria do Tejo, MTJ-Médio Tejo, OES-Oeste,

e R S A s s e T Fig, 2. Geographical representation.
Summary. We consider Interval-Weighted Networks (IWN) where the weights are rep-
resented by closed intervals, thus taking into account the variability of network edge
weights. Accordingly, both Newman’s modularity (Q), and modularity gain (AQ) for
weighted networks, as well as Louvain’s algorithm, were generalized to the general case
of IWN. Further measures have been developed to evaluate the difference between the
observed and expected values. Finally, we apply our community detection approach for
IWN to a real-world commuter network between the Portuguese mainland municipali-

ties to put in evidence homogeneous groups (communities) of territorial units.
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Abstract

Latent geometry has been recently shown to be relevant in applied fields of network
science such as community detection and greedy routing [1]. However, there have
been no general investigations so far on the extent to which latent geometry inspired
graph dissimilarities can boost the task of community detection regardless of the par-
ticular type of principle adopted in the graph partitioning algorithm (stochastic flow,
message passing, modularity optimization, etc...). For instance, Affinity propagation
(AP) [2] and Markov Clustering (MCL) [3] are among the most effective algorithms
for data clustering in high-dimensional feature space. However the numerous attempts
to test their performance for community detection in real complex networks have
been attaining results very far from the state of the art methods such as Infomap [4]
and Louvain [5]. Indeed, the crucial problem is to convert the network topology in a
‘smart-enough’ pre-weighted connectivity or dissimilarity matrix that is able to
properly address the algorithmic procedure behind these clustering techniques. Here
we discuss how to leverage network latent geometry notions in order to design
weighted matrices for community detection. Our results demonstrate that the dissimi-
larity measures we designed can boost AP [6], MCL and also Louvain, not only on
several original real networks, but also when their structure is corrupted by noise
artificially induced by missing or spurious connectivity. On the other side, further
investigations are needed for enhancing Infomap. Finally, the results obtained on real
networks are also con-firmed in tests performed on synthetic networks generated ac-
cording to a hyperbolic latent geometry model [7] that induces community structure.
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Fig. 1. Community detection on nPSO networks: comparison between different affinity
propagation variants. Synthetic networks have been generated using the nPSO model with
parameters y = 3 (power-law degree distribution exponent), m = 7 (half of average degree), 7' =
[0.1, 0.3, 0.5] (temperature, inversely related to the clustering coefficient, whose respective
value is reported on the upper part of each plot), N = [100, 500, 1000] (network size) and C =
[3, 6, 9] (communities). For each combination of parameters, 100 networks have been generat-
ed. For each network the community detection methods LGI-AP-RA, LGI-AP-EBC, J-AP, CN-
AP, ESP-AP and SP-AP have been executed and the communities detected have been com-
pared to the annotated ones computing the Normalized Mutual Information (NMI). The plots
report for each parameter combination the mean NMI and standard error over the random repe-
titions. For further details, please see the Reference [6].
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Table 1. The table reports the Normalized Mutual Information (NMI) computed between the

grou

nd truth communities and the ones detected by every community detection algorithm for 8

real networks. NMI = 1 indicates a perfect match between the two partitions of the nodes. For
Affinity propagation (AP) different dissimilarity matrices are compared: the best latent geome-
try inspired (LGI) variant and the ones introduced in previous studies, i.e. Jaccard (J), Common
Neighbours (CN), Shortest Path (SP) or Euclidean Shortest Path (ESP). For further details,
please see the Reference [6]. For Markov Clustering (MCL) the best latent geometry inspired
(LGI) variant is compared with the unweighted version. The respective variants for each of the
two methods are ranked by mean performance over the dataset.

Method Karate Op;ahl Op;ahl Oplsghl Oplslahl Polbooks Football Polblogs T\}?\;‘T
LGI-AP  0.67 0.52 0.42 1.00 0.93 0.56 0.91 0.69 0.71
J-AP 0.73 0.48 0.45 1.00 0.96 0.39 0.89 0.40 0.66
ESP-AP  0.57 0.38 0.35 0.96 0.96 0.50 0.92 0.47 0.64
CN-AP  0.16 0.40 0.54 0.89 0.72 0.52 091 0.68 0.60
SP-AP 0.83 0.50 0.20 0.65 0.09 0.46 0.63 0.29 0.46
LGI-MCL 0.83 0.59 0.39 1.00 0.96 0.57 0.93 0.00 0.66
MCL 0.73 0.55 0.43 1.00 0.68 0.57 0.93 0.00 0.61
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1 Introduction

Exploiting random walk is an effective approach to designing methods for detecting
communities from networks [1-3]. Following this approach, we have recently proposed
a probabilistic machine-learning formulation of community detection, which we have
called modular decomposition of Markov chain (MDMC) [4, 5]. This formulation pos-
tulates decomposition of an infinite random walk spreading over the entire network,
from which we wish to detect communities, into local modules as proxy for communi-
ties. The decomposition is mathematically expressed by the mixture distribution:

pn)=Y 5 m(k)p(nlk) . (1)

where N is the total number of nodes; p(n) is the ‘global’ probability that a random
walker is at node n [6]; p(n|k) is the ‘local’ probability that he/she is at node n con-
ditioned that he/she is staying in community k; (k) is the probability that he/she is
staying in community k. We have derived the EM algorithm to infer p(n|k) and 7(k) [4,
5], by which community detection is attained.

The structure of each community k detected by MDMC is delineated by p(nl|k),
which defines the relative strength of membership of each node n in community k. Since
p(nlk) normally takes a non-negative graded value, such a community has no clear
boundary that separates members and non-members of the community. Such a structure
of communities is described as “pervasive” [7]. Thus, MDMC detects communities as
pervasively structured objects.

The present study is devoted to demonstrating that pervasive community detection,
which is out of reach of most existing methods [7], is a key advantage of MDMC. First,
we propose to use a specific type of stochastic block modelling to synthesize benchmark
networks planted with pervasive communities. Then, MDMC’s performance of perva-
sive community detection is quantitatively evaluated using these benchmark networks.

2 Methods

Benchmark networks planted with pervasively structured communities are mathemat-
ically synthesized using Ball-Karrer-Newman’s stochastic block model (BKN’s SBM)
[8], which defines the probability of generating a network with adjacency matrix A =

o
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(Anm) by Poisson distribution in the form

N (ZkKll enk emk)Anm K
p(A)= H A exp <_ Z enkemk> . (2)
k=1

n, m=1 nm:*

Here, K, is the number of planted communities; 6, is a parameter representing the
“propensity” of node n to block k and takes a continuous non-negative value, whereby
delineating the pervasive structure of block k (namely, planted community k); ):f;l 6,k i
is the rate for a Poisson event of generating a link between nodes n and m.

The {Gnk}f; is stochastically generated so that they follow a power-law distribu-
tion p (O,x) ~ Gr;f. Assuming the power law stems from the observation that the degree
distribution obeys a power law in many of real-world networks. The parameter values
for the synthesis are set as follows: N = 1000; K, = 10; y=3.

To quantitatively measure how correctly planted pervasive communities are recov-
ered by community detection, we introduce the “maximum rank correlation (MaxRC)”,
defined as follows. Let R, (k) and R(k’) be the rank order of nodes defined in planted
community k and detected community k¥’ according to the descending order of 6, and
p(n|k’), respectively. Spearman’s rank correlation between R, (k) and R(k"), denoted
by r(R.(k),R(k")), is then calculated for all combinations of k (k=1, ---, K,) and
kK (K =1, ---, K). Therefore, MaxRC is given by

1 & )
MaxRC = G 1; maxr (R.(k),R(K)) . 3)

BKN’s SBM can also be used to detect pervasive communities. This is achieved by
inferring 6, for the adjacency matrix A = (A,,) of a given network [8]. Indeed, BKN’s
SBM is one of few existing methods that can detect pervasive communities. Therefore,
BKN’s SBM is taken as a baseline for quantitative evaluation of MDMC'’s performance
of pervasive community detection.

3 Results and Discussion

Each planted community k is delineated by 8,;, or equivalently, ‘normalized’ propen-
sity defined by p.(n|k) = 6,1/ ZnN:1 0,%. Panels in Fig. 1a show the normalized propen-
sities for planted communities of the same network but with the node number (#) n
sorted in descending order of p,(n|k) for a specific k. Note from these panels that per-
vasive communities are extensively soft-overlapping. MDMC has only one parameter,
a, which has turned out to be controlling the resolution of community detection (the
smaller «, the network is decomposed into more communities of smaller sizes) [4, 5].
Therefore, we have calculated MaxRC as a function of o (Fig. 1b). KBN’s SBM has
no such resolution-controlling parameter and is required to predetermine the number of
communities to which the network should be decomposed [8]. We therefore examined
KBN’s SBM for K =10, 20 and 30 (note that K =10 is consistent with the number of
planted communities). MaxRC given by MDMC for a wide range of o surpasses that
given by KBN’s SBM for any K, indicating that MDMC outperforms KBN’s SBM.

=
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Fig. 1. (a) Pervasive structure of communities planted in the benchmark network. The same set of
{p« (n\k)}kK:*T 10 is shown in the top, middle and bottom panels with the node number (#) sorted in
descending order of p.(n|1), p«(n|2) and p.(n|3), respectively. (b) MaxRC for MDMC averaged
over 24 benchmark networks is plotted as a function of « (filled circle). MaxRC by BKN’s SBM
for K =10, 20 or 30 is indicated by red, orange or yellow horizontal line, respectively.

Computational cost of MDMC scales ~ O(LK) with L being the total number of
links, which means that it belongs to the fastest class of algorithms to detect pervasive
communities [4,5]. Together with this, the results obtained suggest that MDMC is a
feasible approach to detecting pervasive communities from real-world networks. In the
conference, we will demonstrate hierarchical organization of pervasive communities
using brain networks constructed from connectome data of Allen Brain Atlas [9].
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1 Introduction

There are many social and economic situations where two or more communities need
to be integrated in an efficient and stable way that facilitates overall resource access
throughout the network. We study structures for efficient integration of multi-community
networks where building bridges across communities incur an additional link cost com-
pared to links within a community. Building on the connections models with direct link
cost and direct and indirect benefits, we show that the efficient structure for homoge-
neous cost and benefit parameters, and for communities of arbitrary size, always has a
diameter no greater than 3. We further show that if the internal cost is not small enough
to justify a full graph for each community, integration always follows one of these three
structures: Single star, two hub-connected stars, and a new structure we introduce in
this paper as parallel hyperstar, which is a special multi-core/periphery structure with
parallel bridges that connect the core nodes of different communities and includes a
wide range of efficiently integrated structures. Then we investigate stability conditions
of these structures, using two different definitions: The standard pairwise stability, as
well as a new stability notion we introduce in this paper as post transfer pairwise stabil-
ity, which allows for bilateral utility transfers. We show that once post transfer pairwise
stability is used, efficiency guarantees stability. Our results imply that both under and
over integration (building too few or too many bridges) could negatively impact both
stability and efficiency. More details of the results can be found in [1].

2 Model and Background Definitions

Agents, Networks, and Communities: Consider a set of nodes .4 = {1,...,n+n'}
each belonging to community / or I’ (also called community 1 and 2 respectively) with
|| =nand |I'| = n'. A network ¢ is a set of pairs of agents {i, j} that describes which
agents are connected. We assume that the links are undirected and unweighted. For a
given network ¢, we use N;(¥) to denote the neighborhood of node i,and d;;(¥) to
denote the distance (the minimum path length) between i and ;.

Benefits, Costs and Utility: Following [2], the benefit that i receives from j is b(d;;)
for b : N — R such that for any k > 0, b(k) > b(k+ 1) > 0 and for any k > n+n/,
b(k) = 0. Also, the cost of a link to j for i, denoted by ¢ij, 18 ¢, if j is from the same
community and is ¢+ &, otherwise, for some & > 0.
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Fig. 1. Three efficient structures for two community networks.

Fig. 2. Parallel hyperstar structure.

Let u;(¥) and U(¥) represent the net utility that agent i receives under ¢ and the
total utility of ¢, respectively. We assume U(0) = 0. Therefore, we have: u;(¥) =
ZjEL/Vf{i} b(dl](g)) - ZjEN,-(g) Cij, and U(g) = l”zlu,(%)% is efficient if it maxi-
mizes U(¥). Also, ¢ is (weakly) more efficient than ¢’ if U(¥) > U(¥'). ¢ is a star
if there exists i € .4 such that for any two distinct nodes j, k € A7, {j,k} € ¢ if and
only if i € {j,k}. In addition to this standard structure, we introduce the following def-
initions.

Parallel Hyperstar Structure: One can regard a parallel hyperstar as a structure in
which each community includes a core,a set of nodes that act as a super-hub where
the connections across communities are only between those core nodes. An illustrative
figure of the parallel hyperstar structure is depicted in Figure 2.

3 Efficient Integration

We focus on the less trivial (and more realistic) case where ¢ > b(1) —b(2) and a general
benefit function. Our first result below shows that when integration does not make sense
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Fig. 3. Most efficient structure (color coded) for each combination of model parameters. Only
values that result in integration are shown.

at all (i.e., it is not efficient to create any bridges between the two communities), then
the efficient network is either empty, or it would consist of two separate stars, each
residing in one of the two communities. On the other hand, when integration makes
sense, then depending on the cost and benefit parameters only two classes for efficient
structures are possible: Single star with a node from the larger community that acts as
the global hub; and the new class of structures that we introduced in the previous section
as parallel hyperstar. These results are formally stated in the following two theorems:

Theorem 1: If the connection cost ¢ > b(1) — b(2), the efficient network is either an
empty network, two separate stars, a parallel hyperstar, or a single star.

In Theorem 1, we proved that the efficient network, if connected, is either a parallel
hyperstar or a single star. The following theorem shows that when indirect benefits
decay relatively slowly with distance, or the cost of forming internal links is relatively
high, then a parallel hyperstar with more than 1 bridge cannot be efficient. The special
case of 1 bridge is in fact a two (hub) connected starts structure.

Theorem 2: When ¢ > b(1) — b(3), no parallel hyperstar with more than 1 bridge is
efficient.

Figure 3 shows sample plots where the efficient structure is color coded and labeled.
When benefits fall considerably with distance, i.e., b(d + 1) is sufficiently smaller than
b(d), for a wide range of cross-community connection costs, parallel hyperstar is the
most efficient structure. This makes parallel hyperstar a crucial design form for many
practical applications where cost parameters in the mid-range, and benefits drop signif-
icantly as a function of distance.
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4 Integration Stability

A central question of integration is that whether we can achieve simultaneous efficiency
and stability, thus allowing a stronger role for direct intervention by a central authority
during the integration process. We investigate the stability conditions of the efficient
structures that were introduced in the previous section. We show that this is not in gen-
eral possible, using the standard definition of pairwise stability. However, we argue that
the standard definition of pairwise stability is too strict and does not include intuitive
cases where agents are willing to subsidize formation or maintenance of some links
through direct payment of cash or favour to their current or potential neighbors. To in-
clude such cases, we introduce a modified notion of stability, i.e. pairwise stability with
bilateral transfers and prove that all three possible efficient structures are simultane-
ously stable.

A network ¥ is pairwise stable, if for every two nodes i, j, the following two conditions
hold:1) If ij € ¢4, then u;(¥4 —ij) < ui(¥) and u;(4 —ij) <uj(¥).2)If ij ¢ & and
ui(9+ij) > ui(94), thenu;(4 +ij) <u;(¥). Based on this definition, we then show that
simultaneous stability and efficiency isn’t possible for integration structures in general.

Theorem 3: The single star structure is both efficient and stable when & is small
enough. A parallel hyperstar can be both stable and efficient only when it has just one
bridge; i.e., it is a two-connected-stars.

Post Transfer Pairwise Stability: A network ¢ is post transfer pairwise stable if for
every i,j € A, we have: 1)ij € 9 = A;V(9)+ 4,7 (4) <0, And, 2)ij ¢ 4 =
A (4)+ A7 (4) < 0.Under this more realistic notion of stability, we can prove that
efficiency can insure stability, in all the integration structures, particularly in the parallel
hyperstar.

Theorem 4: Efficiency for parallel hyperstar structures guarantees post transfer pair-
wise stability.

This is a notable result, since it indicates that for all values of network parameters, the
central authority can interfere in the integration process by leading the integrated net-
work towards efficiency, and if pairwise direct transfer is allowed, the resulting network
will automatically be stable. These results also indicates that both under and over inte-
gration (building too few or too many bridges) could negatively impact both stability
and efficiency.
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1 Introduction

One of the most important topological properties in complex networks is the organi-
zation of nodes as communities, a division of the nodes in groups with dense inter-
nal connections and sparse external connections. Different from traditional methods for
community detection, which consider the division of the network as a partition problem,
many works in the literature are focused on the identification of overlapping community
structure in networks.

This work presents SOCS (Spectral Based Method for Overlapping Community
Structure), a method for overlapping community detection built on the top of a tra-
ditional method for community partition: Newman’s spectral method [5], a bisection
divisive method for modularity optimization which calculates, at each bisection, the
leading eigenvector of a modularity matrix, based on the adjacency matrix, solving a
relaxed version of the modularity optimization problem. As proposed by Newman, after
each bisection, the solution of the spectral method is improved by a fine-tuning stage,
based on Kernighan-Lin algorithm [3] that swaps nodes from one community to the
other in order to induce, at each step, the largest increase in modularity. SOCS performs
a variation at the fine-tuning stage, allowing each node to belong to both communities
in the bisection if it causes a positive gain to the modularity of both communities.

The proposed method is based on a high performance implementation of Newman’s
spectral method [8] and works with networks in the scale of millions of nodes, being
able to be applied to several real world contexts. Preliminary experiments with real
world benchmark networks, omitted in the current work due to lack of space, show that
the method proposed in this work presents superior or similar quality when compared
to state-of-art overlapping community detection methods.

2 Spectral Based Method for Overlapping Community Structure
(SOCS)

In order to detect overlapping communities, SOCS performs successive bisections, as
proposed by the original formulation of Newman’s spectral method for modularity op-
timization. After each bisection, in [5], Newman proposes to swap nodes from commu-
nities in order to increase the modularity in a fine-tuning stage based on Kernighan-Lin
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method. SOCS focuses on this fine-tuning stage to identify the overlapping nodes. As
originally stated, Newman’s original fine-tuning calculate which nodes were placed in
a certain community (C;) by the spectral stage but increases the overall modularity of
division if placed in the other community (C;). Then, Newman’s spectral method swaps
these nodes from C; to C;. The methodology proposed in this work is based on a slightly
different idea: if a node contribute positively for the modularity of two communities C;
and C}, then it should remain in both communities.

Some modifications are made to the original fine-tuning stage such that overlapping
communities can be identified. The original fine-tuning stage evaluates, at each step,
which are the nodes that may be swapped between two communities C; and C; in order
to estimate those that cause the largest increase in the modularity when moved (from
C; to C; or the opposite). The method stores the intermediate states and considers, as
output, the one that represents the modularity with largest partition. For the overlapping
approach, whenever a node increases the modularity in both C; and Cj, it is considered
as a member of both communities.

3 Results

After applying SOCS to a set of benchmark networks, the performance of SOCS can be
assessed and compared to other methods found in the literature, regarding the execution
time and the overlapping modularity Q,, as proposed by Shen er al. [7]. The results
are shown in Table 1. The computational environment consists of an Intel Core i9-
9900K processor with 32Gb RAM running an Ubuntu 18.04 OS. The results presented

Table 1. Execution time (in seconds) and Overlapping modularity Q,, for the studied networks.

SOCS CFinder [6] Bigclam [10] Demon [1] COPRA [2] SLPA [9] OSLOM [4]
Time Q,  Time Q, Time Q,  Time Q, Time @, Time Q, Time Q,

CAHepPh! 1.64 0.51 - - 5.03 035 7465 0.14 237 016 431 025 480.86 0.46
CitHepTh! 8.65 0.33 - - 3537 016 86.18 0.04 9.67 001 1502 0.14 1782.84 0.32
Dolphins?> 0.01 0.48 0.01 029 045 0.08 0.12 028 0.09 026 008 039 034 037
Football> 0.01 0.54 002 055 1.89 0.16 0.15 027 010 025 015 024 036 0.60
Karate? 0.01 0.40 001 0.1147 0.27 0.09 0.11 0.04 0.10 0.18 007 033 0.10 0.367
Keys? 120 0.60 2111.34 038 1.93 0.63 298 031 1.64 068 250 0.71 12220 038
Lesmis? 001 053 0.01 028 1.15 0.13 039 0.5 0.07 041 013 041 038 049
Polbooks?> 0.01 0.48 002 043 1.84 0.13 0.15 008 013 035 016 043 056 0.49

in Table 1 allow us to see that SOCS is able to identify the overlapping community
structure of the benchmark networks in a very low execution time. It is worth to notice
that SOCS is able to identify communities in less than 10 seconds in networks with
tens of thousands of nodes, as in the case of CitHepTh, with 27700 nodes and 352324
edges. SOCS can also identify overlapping communities in large scale networks (with
more than one million nodes) in a reasonable time (less than one hour) without applying
any sample strategy or reduction in the size of the network.

"Downloaded from: http://snap.stanford.edu/data/
2Downloaded from: http://www-personal.umich.edu/~mejn/netdata/
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Regarding modularity, community structure identified by SOCS presents a better
quality than those identified by most other methods. For more than half of the networks
explored, the communities detected by SOCS are more modular than those found by the
other methods. For some networks, such as Karate and Les Miserables, the modularity
measured for the communities extracted in this work is more than 25% higher than
modularity observed for most competing methods. Even for networks where SOCS
does not obtain the best results, Q,, is very similar to the other results.

Despite the good results obtained in this work regarding modularity, other aspects
can highlighted to confirm the suitability of the method on real world contexts. The
method is based on a high performance implementation of Newman’s spectral method
[8], which allows it to be applied to large scale networks (in the order of million of
nodes). The proposed methodology is simple, since it is based on a traditional and
consolidated method for non-overlapping community detection, taking advantage of
some benefits of the method, such as its well-known behavior.

For the next steps of the work, the resulting community structure identified by the
proposed methodology should be more deeply studied in order to investigate the rela-
tionship between different network properties, such as modularity, community size and
overlapping size, and better understand numerical aspects of the method. The adaptation
proposed for the fine-tuning stage can be also applied to other non-overlapping com-
munity detection methods, potentially revealing high quality methods for community
detection based on popular community detection methods. Yet, the methodology must
be tested in a wider set of networks, in order to explore other contexts and, specially,
larger scales of problems in a more appropriate computational environment.
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1 Introduction

Knowledge heterogeneity has been investigated based on the observation of the bene-
fits of integrating distant knowledge in the diversity of firm collaborations. Many re-
searchers have demonstrated the effectiveness of incorporating knowledge from rare
links, with widely accepted concepts such as shortcuts in small world [10], bridges
between cliques as weak ties [S] and bridges over structural holes [1]. However, con-
trary to the prevailing conceptual works and case studies, there are fewer studies on the
measurement of rareness of the links in a network.

The driving hypothesis of the present study is that the importance of a node is esti-
mated from the heterogeneity of the links it brings. We already know, hubs which are
nodes with many links, are important [4], but there is comparatively less evidence for
the composition or values of the links that makes a node important. Most conventional
network indexes, such as betweenness centrality [3], PageRank [8], or Burt’s constraint
[1] tend to be affected by the link density with adjacent nodes, which is sometimes
unrelated to the community structure in the whole network. Although these indexes
are effective to extract apparently significant nodes that have many important links [4],
another method is required to find rare nodes that have a few important links.

In this paper, we propose an analyzing schema to comprehend the inter-community
structure by combining the measures of nodal importance and community relevance.
We demonstrate that the proposed index shows better performance compared to the
participation coefficient P (P;) in detecting nodes that connect distant communities. We
validate the performance of the proposed index with the visualization of node rankings
in networks with varied communities, and rank correlations, suggesting that proposed
index identifies nodes that would make the average shortest path longer if they are if
removed. Our approach sheds new light on node values by offering a way to detect
latent mediators in heterogeneous communities with different number and density of
nodes and links, that is consistent with the theories and numerous empirical studies in
social and industrial networks [10, 5, 1].
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2 Results

Firstly, we designed a new index PW; by using experimentally verified community rele-
vance (CRJC) and P,. Based on the theory of information entropy [9], we took negative
logarithm of the average of CRJC multiplied by F;, and named the index as PW¥;, which
is defined as follows:

CRIC(¢;, ¢;
PW; = —P,log Z; # (1)
e, j/=i

JEL(

where P; quantifies the proportion of links of the node i connecting to different modules
[6]. CRIC(c;, c;) is Jaccard coefficient computed between the set of nodes and their
neighbors of the communities ¢; and ¢; [2]. I ()¢ is the set of node i’s neighbors
that do not belong to c;. L represents the number of the nodes in I"(i)’C. § has an
infinitesimal value of 0.000001 to prevent zero division error. We chose this equation
because the amount of new information brought by node i to communities is given
by the probability Pi of connecting communities while predicting the difference using
existing knowledge, represented by community relevance.

Secondly, to estimate the performance of the new index, we generated the LFR net-
work [7] with tightly connected 2 communities and weakly connected 3 communities.
We visualized the network ranked by within-cluster degree Z [6], Katz centrality, be-
tweenness centrality, P;, PW;, and inverse of Burt’s constraint. P, and PW; ranked the
nodes between communities highly, while the other indexes ranked the nodes within
communities highly. In addition, only PW; ranked the nodes mediating distant commu-
nities relationships higher than those connecting the most relevant communities (Fig.1).

Fig. 1. Node rankings by six indexes in LFR network. Each network has 100 nodes colored
by their values of corresponding index, 391 edges and 5 communities with 0.1 mixing rate. The
labels of the ranking in each index are limited to top 10 nodes to avoid the complexity.

Thirdly, we investigated attack tolerance by measuring the average shortest path
length (L) after removing a node sorted by community-based index of Z, P, and PW;.

-
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Table 1. Rank correlation in LFR networks with varied link rates. Each network has 100
nodes, 8 degrees per node, 10 communities with 0.1 to 0.6 inter-community link rates.

mu V4 P PW

0.1 -0.424 0.617 0.895
0.2 -0.569 0.596 0.838
0.3 -0.435 0.549 0.766
0.4 -0.357 0.404 0.504
0.5 0.019 0.258 0.280
0.6 -0.021 0.082 0.163

We generated six LFR networks with different inter-community link ratio (mu), and
calculated Spearman’s rank correlation between the ranking ordered by each index and
L. As a result, PW; showed the highest correlations in all networks, suggesting that PW
identifies nodes that if removed would make the average shortest path longer (Tablel).

Summary. While node evaluation based on the adjacency relationship mainly uses lo-
cal information, the community structure that characterizes the network has hardly been
considered. In this study, we propose a new index that contributes to the understanding
of the inter-community structure of a network by combining the measures of link distri-
bution and community relevance. The visualization of node rankings and the rank corre-
lations with respect to the attack tolerance of networks demonstrated that the proposed
index showed the highest performance in comparison with five previously proposed
indexes, suggesting a new way to detect latent mediators in heterogeneous networks.
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1 Introduction

The Internet has changed modern lifestyle and played a role of reformation in infor-
mation propagation. Nowadays information of all walks has occupied a large part of
network users’ daily routine, with various social media such as Facebook, Twitter and
Wechat. Different information propagation platforms and spread ways determine the
length of the informations survival time[1]. In the process of information propagation,
a certain piece of information can be seen and received by the users in two ways. First,
the information is pushed to the homepage with the users’ support or the control of the
websites manager, and then spread to all the online users. As most information never
spread from the homepage, the second way is propagating among friends through the
connecting networks. Researches on the propagation mechanism can discover the fac-
tors influenced the propagation rate, and then provide useful suggestions to control the
spread process. Such researches have important applications for advertisers seeking,
which expect to spread the advertisements to a range of net friends in a short time. In
addition, a contrary application is to suppress public opinion, avoiding some incorrect
information to spread fast and influence a large number of people. Here, the researches
provide the mathematical models and theoretical analysis, so that people can make some
targeted measures to control the propagation process.

2 Results

In the basic propagation model, parameters 7 and p(indicating the rate that users en-
ter and exit the OSNs respectively) are proposed to extend the original SEIR model,
as shown in Fig.1(a). In the extended SEIR model, similar definitions from epidemi-
ology[2] are used to categorize the users in information propagation. The susceptible
population (S) consists of users who have not yet seen a certain piece of information,
the exposed population (E) is made up of users who can see a certain piece of infor-
mation because their connected users have forwarded it, the infected population (/) is
composed of users who have forwarded a certain piece of information and it is visible
by their connected users, the recovered population (R) is comprised of users who have
forwarded a certain piece of information but (after a period of time) it is no longer visi-
ble on their followers homepages, or who have read but did not forward the information.
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(a) Basic propagation model (b) Propagation model considering homepage

Fig. 1. The propagation model

S'(t) = 7 — BoS()I(r) — uS(r)

E'(t) = BoS(t)I(t) — OE(t) — ¢E(t) — LE(r) M
I'(t)=aE(t)—rl(t) — ul(r)

R'(t) =rlI(t)+ GE(t) — UR(z)

The extended SEIR model can be presented as Eq. (1), where all the parameters are
non-negative and defined as follows:7 is the rate that users enroll the site; u is the rate
that users exit the site; By is the transition rate from S to E ; o is the transition rate from
E to R; o is the transition rate from E to I; r is the transition rate from / to R. Since
the explicit solution could not be found, the basic model reaches the equilibrium sta-
tus[3] when the time-dependent ratios of S(z), E(t), I(¢), and R(¢) become constant. By
calculation, two equilibrium points E'(S*, E*,I*) and E>(S**, E**,I"*) can be solved.

In the basic mode, the influence of homepage has not been taken into account.The
Information on the homepage can be seen by all users in OSNs. Therefore, the informa-
tion pushed onto the homepage will have a considerable influence because it faces to all
users and have the maximum receivers. Assuming the probability of the users in OSNs
who read the information on the homepage is 3, which means there is another way for
susceptible users transforming into exposed users. The propagation model considering
homepage effect is shown in Fig.1(b).

§'(t) = 7 — BoS()1(r) — BiS(1) — uS()

E(1) = PoS(01(1) + BiS(1) ~ (0 + a+ pw)E() ®
I'(t)=aE(t)—rl(t) — pl(t) '

R'(t) =rlI(t)+ GE(t) — UR(1)

Similar with the solution in Eq. (1), the equilibrium point E3 (I,S,E) in Eq. (2) can
be obtained.

To further verify the proposed models, the data of Digg.com is used for the case
study.It is noted that the information diffusion mode in the Digg.com is good match
with the extended SEIR model. Digg.com is an online social network platform where
users are able to post content to a personal web page, vote for this content and share the
content with other users who are connected with them. Once the posted content receives
a large number of votes over a particular period of time, the content will be posted to
the homepage of Digg.com and visible to all users. The dataset contains 3553 distinct
stories (online content), the number of votes for a particular story, the particular users
that voted for each story and the time at which each user cast the vote. It is noticeable
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that this dataset only includes the stories which were promoted to the homepage of
Digg.com in June 2009.

The most popular article, denoted by s714, is analyzed to display the one typical
propagation mechanism. The actual data of I(t) and numerical simulation are shown in
Fig 2.

(a) The basic propagation model (b) The propagation model with homepage effect

Fig. 2. The propagation model applied on Digg.com

At the end of each hour, the cumulative number of users who have voted for the story
can be calculated and used as the metric of prediction. Herein, the predict accuracy
is 82.97%, which is 11.79% lower than the accuracy of the propagation model with
homepage.

Summary. In this paper, we have extended the SEIR model for investigating the infor-
mation propagation in OSNs and obtained two equilibrium points with powerful proof.
In addition, through introducing the homepage effect, a more complex and comprehen-
sive model is proposed and only one equilibrium point is obtained. An important control
parameter R, corresponding to the basic reproduction value in the infectious disease,
has been constructed and analyzed. Finally, the paper has worked at the data of two ar-
ticles in Digg.com, respectively representing two typical propagation mechanisms. The
predictive accuracy is 94.76% for the one that posted on the homepage at the beginning
and 94.27% for the second article, which has experienced basic propagation process
and then pushed to the homepage. The results of case study verify the mathematical
analysis and simulation experiments.
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1 Introduction

In many practical applications networks are the natural representation of a complex sys-
tem (airport connections, social networks). Often, however, the complex system only
provides a general dataset (e.g. in climate) from which a data-driven network has to
be constructed. A common approach for network construction is to establish links be-
tween nodes (variables, to be determined from the dataset) with pairwise correlation
over a given threshold 7 (Correlation Networks, CNs). In climate science the applica-
tion of CNs have proven successful with a number of recent applications [1][2][3][4][5].
The choice of the threshold is however non-trivial and results in a trade-off between the
statistical significance of the allowed connections and the richness of network struc-
tures unveiled [1][3]. In [7] we revisit CNs in the context of a climate application in
which a variable X; represents the monthly mean temperature in gridbox i (lattitude A;,
longitude ¢;, AL = A¢ = 10°). We show that CNs by construction include redundant in-
formation in the network topologies. From a probabilistic perspective, this is expressed
by over-parameterized probabilistic models when considering the underlying empirical
Gaussian model with non-zero covariances for linked variables.

As an alternative approach to construct data-driven networks we propose the use of
more sophisticated probabilistic Bayesian Networks (BNs), developed by the machine
learning community as a data-driven modeling and prediction tool. A BN is learned by
a structure learning algorithm that includes only the (pairwise and conditional) depen-
dencies among the variables needed to explain the data (maximizing the likelihood of
the underlying probabilistic model). The topology of a BN is much more sparse than
the corresponding —in terms of similar likelihood of the data— CN, but allows to ex-
tract the same physical relationships when analyzed with complex network measures
(clustered regions, communities, central nodes). Also, the probabilistic model (density
function) obtained from the BN graph is parsimonious and contains only significant pa-
rameters making the model suitable for probabilistic inference. We therefore advocate
the use of BNs instead of CNs to construct data-driven complex networks as they can
be regarded, from both graph analytic and probabilistic perspective, as the probabilistic
backbone of the underlying complex system.

o
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2 Results

We analyzed complex CNs and BNs of increasing complexity (number of edges, |E|)
considering different correlation thresholds 7, and different iterations of the structure
learning algorithm [6], respectively. This resulted in CNs and BNs of sizes up to ap-
proximately 200000 and 8000, respectively. Global graph analysis, quantified by global
graph measures as clustering coefficient and diameter, reveals that small CNs (in terms
of |E|) capture local regions that are highly linked (e.g. the tropics and Antarctica), but
only few long-distance links characterizing teleconnections. Distant teleconnected de-
pendencies —resulting from large-scale atmospheric oscillation patterns— are in gen-
eral weaker than local dependencies, but they are key for regional climate variability
[8]. Bigger CNs do capture distant dependencies but show a high degree of redundancy
in both local- and distant-link density. On the other hand, a small BN captures both
locally clustered regions and long-distant dependencies without redundant links. The
balance of local and large distance links plays a role when deeper topological analysis
is to be performed. For example, a community division algorithm based on between-
ness centrality can characterize a small BN in its most important (teleconnected) regions
—Figure 1(a),— but struggles to characterize (small and big) CNs —Figure 1(b)— be-
cause of redundancy in the link distributions. Small CNs show community structures
with many isolated regions that can not be grouped into a community and large CNs
exhibit one giant community covering great part of the global area which is difficult to
disassemble.

We also analyzed the networks from a probabilistic perspective, extending the net-
works to probabilistic models in which the edges in the network represent parameters
in a Gaussian probability density function (pdf) —the global temperature dataset is as-
sumed to be multivariate Gaussian—. Using cross-validation of likelihood values of the
probabilistic models, optimum models were learnt with good generalization capabili-
ties (avoiding overfitting): BN (1796 edges) and CN (3119 edges). Larger networks do
explain the train dataset better but fail to explain the validation dataset, making physical
features extracted of both topology and associated density function non-generalizable.
We observe a discrepancy in the size of optimum CNs (around 3119 edges) and topo-
logical informative CNs; only CNs of size much bigger (~ between two and four times)
than 3119 reveal an informative network topology. On the other hand, the size of a statis-
tical optimal and topological informative BN coincide (Figure 1). The same conclusion
can be drawn analyzing the associated probabilistic models of the networks on their
capacity to propagate evidence (calculating conditional probabilities). Figure 1 shows
the propagation of el Nifo like evidence (significant alteration of temperatures in the
Pacific Ocean: E = 2). Propagation of evidence in BN (1796) is on both local and global
scale whereas in CN (3119) the propagation is only on local scale.

Summary. Correlation Networks (CNs) suffer from redundant information in their
network topology. Bayesian Networks (BNs), on the other hand, include only non-
redundant information (from a probabilistic perspective) resulting in a sparse topology
from which generalizable physical features can be extracted. We advocate the use of
BN to construct data-driven complex networks as they can be regarded as the proba-
bilistic backbone of the underlying complex system.

=
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Bayesian Network: |E| = 1796 Correlation Network: |[E| = 3119

15) 8
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Conditional probabilities

P(X>1| E=2) - P(X>1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P(X<-1| E=2) - P(X<-1)

Fig. 1. First row: Results of community division algorithm when dividing the optimum BN (1796)
and CN (3119) in 15 communities. The algorithm is not able to efficiently group the variables
in communities for the CN. Second row: Propagation of El Nifio like evidence (significant alter-
ation of temperatures in the Pacific Ocean, E = 2) in optimum BN and CN probabilistic models.
The maps show for each gridbox X the conditional probability of significantly increased (red
color scale) or decreased (blue color scale) temperature given the evidence. The CN model only
propagates the evidence on a local scale (i.e. does not capture teleconnections shown in the BN
model).
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1 Introduction

Gossip protocols concern a set up in which each agent holds initially a secret and the aim
it to arrive, by means of point-to-point communication (called calls) over a network, at a
situation in which every agent knows all other secrets. During a call the agents involved
exchange all secrets that they know. In other words, the aim of a gossip protocol is to
generate a connected temporal graph [9].

Such protocols were successfully used in a number of domains, for instance commu-
nication networks [6], computation of aggregate information [8], and data replication
[10]. For a more recent account see, e.g., [7].

In [4] a dynamic epistemic logic was introduced in which gossip protocols could be
expressed as formulas. These protocols rely on agents’ knowledge and are distributed,
so they are distributed epistemic gossip protocols. This means that they can be seen as
special cases of knowledge-based programs introduced in [5].

In [1] a simpler modal logic was introduced that is sufficient to define these protocols
and to reason about their correctness. In [3] we showed that the distributed gossip proto-
cols that use formulas of this logic are implementable and that their partial correctness
and termination of these protocols is decidable.

In spite of this progress, several intriguing questions about distributed gossip proto-
cols remain open. We discuss here these problems and establish some partial results.

2 Background

We assume a fixed set A of n > 3 agents each located on a node of a directed graph
(digraph) and stipulate that each agent holds exactly one secret. The secret of agent a is
denoted by A, of agent b by B, etc. and the set of all secrets is denoted by Sec.

The language of our modal logic .Z is defined by the following grammar: ¢ ::= F,S |
-0 | 9AP | K,¢, where S € Sec and a € A. So F,S is an atomic formula, while K,¢ is
a compound formula. We read F,S as ‘agent a is familiar with the secret §” (or ‘agent
a holds secret S’) and K, ¢ as ‘agent a knows that formula ¢ is true’. Other Boolean
connectives can be defined using — and A in a standard way.

In the paper we shall use the following sublanguages of .Z":

— %, its propositional part, consists of the formulas that do not use the K, modalities;
— 2 consists of the formulas without the nested use of the K, modalities;
- £, where a € A is fixed, is a subset of -] where the only modality used is K.

The goal of a distributed epistemic gossip protocol is to reach a gossip situation
in which each agent is an expert, i.e., he knows all other secrets, starting at a gossip
situation where each agent knows only his secret.

*This extended abstract is based on [2].
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In other words, their goal is to transform a gossip situation in which the formula
Naca(FaA N Npep pza ~FaB) is true into one in which the formula A, e FoB is true. Or,
in the context of temporal graphs, the aim is to generate a connected temporal graph.

Let us recall the definition of the distributed gossip protocols [3]. By a component
program for an agent a we mean a statement of the form >|<[[]’j":1 v; — cj|, where m > 0
and each y; — c; is such that a is the caller in the call ¢}, and y; € £} and all atomic
formulas used in y start with F},. If m = 0, the component program is empty.

We call each such construct Y — c a rule and refer in this context to y as a guard.

Intuitively, * denotes a repeated execution of the rules, one at a time, where each
time non-deterministically a rule is selected whose guard is true.

By a distributed epistemic gossip protocol, from now on just a gossip protocol, we
mean a parallel composition of component programs, one for each agent. We call a gossip
protocol propositional if all its guards are propositional, i.e., are from the language .%).

We presuppose that in each gossip protocol the agents are the nodes of a digraph and
that each call ab is allowed only if @ — b is an edge in the digraph. A minimal digraph
that satisfies this assumption is uniquely determined by the syntax of the protocol. Let
now us look at an example gossip protocol to which we shall return later.

Example 1. In [4] the following correct gossip protocol, called Learn New Secrets (LNS
in short), for complete graphs was proposed. In the syntax of [1] used here, LNS is
propositional, as it has the following component program for agent i: *[[] jea—=FiJ — ij].
Informally, agent i calls agent j, if agent i is not familiar with j’s secret.

Consider a gossip protocol P that is a parallel composition of the component pro-
grams *[[", y¢ — cf], one for each agent a € A. By a computation of P we mean any
call sequence c such:

— If c has finitely many calls then no guard v is true after all calls in ¢ are made, i.e.,
c cannot be extended any further.

— For any prefix ¢’ of c, there exists a rule Y — ¢ such that y{ is true after all calls
in ¢’ are made and ¢’ . is also a prefix of c. (Intuitively, this records the effect of
the execution of the rule l[/;’ — c;‘- performed after the call sequence ¢’ takes place.)

Any computation c corresponds naturally to a temporal (interval) graph. The k-th
call in c where agent i calls agent j corresponds to an undirected edge from i to j with
label [k, o), i.e., this edge is active from the time point k onwards.

We say that the gossip protocol P is partially correct if for all its finite computations
c, after all calls in c are made, every agent is an expert. We say furthermore that P
terminates if there are no infinitely long computations and say that P is correct if it is
partially correct and it terminates.

3 Results
We begin with the following result for propositional gossip protocols.
Theorem 1 (cf. [2]). Suppose that the agents form a star graph, so a graph in which

some agent, say a, is present in all edges. Then no correct propositional gossip protocol
exists for such a communication graph.
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Note that the LNS protocol from Example 1 shows that all complete digraphs have a
correct propositional gossip protocol. We make here the following conjecture.

Conjecture 1. The class of graphs for which a correct propositional gossip protocol
exists are digraphs with the property that the complement of the edge set does not
contain a directed cycle.

One of the early results, see for instance [11], is that for n > 4 agents at least 2n — 4
phone calls are needed and sufficient to reach a situation in which each agent is an expert.
However, such a gossip protocol is centralized and we conjecture here that it cannot be
replicated in a distributed setting.

Conjecture 2. Prove that the lower bound 2n — 4 cannot be achieved for any distributed
gossip protocol. In other words, prove that every correct gossip protocol for n > 4 agents
generates computations of length > 2n — 4.

We show that this conjecture is at least true for n = 4.

Theorem 2 (cf. [2]). Every correct gossip protocol for 4 agents generates computations
of length > 4.

On the other hand, the following holds.

Theorem 3 (cf. [2]). Suppose that n > 4. There exists a correct gossip protocol for n
agents whose all computations are of length 2n — 3.

We finally conjecture that this does not hold for propositional gossip protocols.

Conjecture 3. Prove that the lower bound 2n — 3 cannot be achieved by a correct propo-
sitional gossip protocol.
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1 Introduction

In this work we explore the impact of community on individual behavior in a model
we call the Rehab-Recovery-Relapse cycle. This model explores a system where indi-
viduals can either be susceptible to drug use or resistant to it. [1] In this system, the
ability of individuals to change from one state to another is dependent on their commu-
nity. That is, individuals can change if the community itself changes and becomes either
more healthy or more susceptible. There is scholarship suggesting that the health of a
community can be improved with the use of network intervention techniques.[2] These
studies often involve training community members over the course of a day on how to
motivate healthier practices among their peers. While these results are promising, they
do raise concern with regards to the performance of drug rehabilitation centers. If in-
dividuals attending a short training can positively impact a community, then a similar
positive effect should be seen from individuals who attend a rehab facility for a number
of days. Rehab facilities have the benefit of removing a susceptible individual from a
community. This provides individuals with time to recover in a healthier community as
well as to learn how to positively affect their home community. However, unlike the net-
work intervention studies, rehab facilities are in the open market and are not overseen
by an individual researcher. Because of this, comparisons between network interven-
tions and the rehab industry is not possible. In addition to this problem, it is also not
easy to compare the communal impact of one rehab facility to that of another. The goal
of the "Rehab-Recovery-Relapse” model is to provide a framework to examine the im-
pact rehab facilities have on their communities. We hope to use this framework to not
only compare rehab facilities with others, but to compare the practice of rehab facilities
with other methods of drug intervention.

2 Methods

We consider a mathematical model that describes the behaviour of the population of a
city composed by people with no addiction and that will not have it, people with addic-
tion that can relapse, and then recovered in the community A or B. We assume that once
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the people recover they can became again addicted or not. The variables of the model
are denoted by: H people with no addictions (and that will never have one); S people
with addictions or that can become it; R4 people in the community of rehabilitation A;
Rp people in the community of rehabilitation B. N = H + S+ R4 + Rp is the total hu-
man population. The mathematical model describes an hypothetical situation where the
people can be distinguished well in four categories (people with no addiction, people
with addiction, people recovered in community A and B, respectively). Notice that we
assume to have two different rehab communities and three different environments, H
and S live in the same place while R4 and Rp in other two different places (no relapse is
considered). We introduce a model using ordinary differential equations. It means that
every equation of the system give’s us the behavior of the considered ”population” in
time. The model reads:

dH

ar =A+¢YaRa+ WysRp — UvH, (D
ds

- =8 —B(H,S)S+ (1 —9)vaRa+ (1 —y)¥sRp — UNS,

dR

o = OB(H.S)S—1aRa — xRy,

dRp . 1+S§
B _ (1-8)B(H,S)S — ysRp — UnR h B(H,S)=-——.
ar (1-6)B(H,S)S — vsRp — uvRp, with B(H,S) o

First equation: describes the evolution of people without addictions. There is an
immigration rate A of people with no addictions. While a part of the people that recover
from community A (rate ¢ y4) and/or B (rate y7p) can be strong enough to be introduced
in this class. ¢ and y assume values in [0, 1], while 7, is recovery rate in community A
and g in community B, respectively. We assume that people in class H dies naturally
at rate Wy. Second equation: we have the evolution of the addicted people, or those that
can become it. 2 is the immigration rate of people with addictions. The people of this
group can relapse at a rate 3(H,S). The proportion of the recovered people from A and
Bare (1 —¢) and (1 — ), respectively. Third and fourth equations: are describing the
populations in community A and B respectively. Once they relapse they are recovered
in A or B, they recover at rates ¥4 and Yp, respectively. Both R4 and Rp dyes at a rate
Un. 6 € [0,1]. We assume that the parameters values are non-negative.

3 Results

The numerical simulations are made with Matlab. In particular we focus our attention
on how the densities of the four populations at equilibrium change changing the values
of two parameter values at the same time. Here we work with a rescaled version of
model (1).

In Figure 1 are represented h, people without addictions, s, people with addictions,
ra, people recovered in community A, and rp, people recovered in community B, re-
spectively, at the equilibrium for values of per capita recovery rate in A, Y4, and per
capita recovery rate in B, ¥, taking values in the intervals [0,0.005] x [0,0.005] and
the remaining parameters values fixed. Notice that 74 = 0.005 days™~' is equivalent to

=
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saying that in community A it takes 200 days to recover. The right way to read two
strain parameter plots is looking at the density of the considered population fixing a
value of the parameter on x axes and see what happens when the value of the parameter
on y axes is increased/decreased, and viceversa. In this way we know which role has the
parameter values on the output of the system. We have done the two strain parameter
analysis for (14,9), (4,9), (Y4, V), (14, 8) too, (results note reported here).

Summary. From Figure 1 we can conclude that for recovery rates 0.0015 days~" (667
days) the density of people in /4 remain constant at its maximum value, and the density
of people in r4 and rp at their minimum values, respectively, while for values smaller
than this threshold, e.g. 0.001 days~' (1000 days) the density of people in 4 remain
constant at its maximum value if the recovery rate of one community is the double
of the recovery rate of the second community. This means that if the recovery rate it
is not fast enough (assume values in (0.001,0.0015) days~' ~ (1000,667) days), the
densities of the communities A and B increase with increasing ¥z and 94 respectively,
while for recovery rates 667 days, r4 and rp remain constants. If the communities A and
B collaborate to maintain a recovery rate higher than 0.0015 days~! then the density of
people without addictions, 4, will be at its maximum value.

Fig. 1. On the first row: people without addictions (left), people that can have addictions (suscepti-
ble) (right); Second row: people recovered in community A (left), people recovered in community
B (right); varying both Y4 and yp. Notice that the color scale is different in each panel.
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1 Introduction

Several infectious diseases display oscillations in the incidence through time. In a vari-
ety of cases, the subsequent outbreaks are caused by seasonal, exogenous events, such
as the increase of influenza cases in winter, or the increase of vector-borne diseases dur-
ing rainy seasons. However, there are diseases like syphilis which display non-seasonal
periodic oscillations with a period of 8-11 years [1]. Different mathematical models aim
to capture these non seasonal oscillations, either by considering models with temporary
immunization [1, 2], or by allowing link rewiring in contact networks [3—-5]. The aim
of the latter is to incorporate the behavioral response of individuals, which eventually
leads to sustained oscillations in the disease incidence.

In this work, we present a stochastic, yet analytically tractable, epidemic spreading
model coupled with a two-strategy evolutionary game, which reflects the individuals
decision on whether to take preventive measures. In this sense, agents can choose be-
tween two strategies protected (P) and not protected (NP). In general, the decision on
prophylaxis is a trade off between the cost/effort of the prophylactic measures and their
efficacy coupled with the severity of the disease. To describe this in a game theoret-
ical framework, we introduce a protection cost ¢ and an infection cost 7. Addition-
ally, agents have information about the global extent of the disease, which serves as
an assessment of their infection risk. In this sense, we define the payoffs P, and B,
associated to the two strategies P and NP as:

Tlnip.
Snp +Inp

I
Py=—c—T—2" and P, =—

I
Sp+1, %

The variables 1, and S, represent the fraction of protected agents which are infected and
susceptible, respectively. The same for I,,, and S,,,. Accordingly, the fractions I,/ (S, +
I,) and I, / (Sp +1,p) describe the infection risk of a protected and not protected agent,
respectively. In the temporal evolution, as the disease is spreading, agents adopt more
successful strategies. We describe the disease spreading with an SIS model evolving on
a synthetic network.
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2 Results

As a first step, we will analyze the dynamics of our model with regard to the time av-
eraged fraction of protected and infected individuals, which we show in Fig. 1 (a) and
(b), respectively. We see that there are two critical values of the transmission probabil-
ity, A, in order to have a non zero fraction of protected individuals. For low values of
A, protection emerges as the disease is sufficiently infectious such that the reduced in-
fection probability of protected individuals can actually compensate for the protection
cost. Similarly, for high values of A, protection vanishes as the quality of the prophy-
lactic measures cannot balance the infectivity of the disease anymore. Furthermore, a
mean field analysis of the system allows us to get an analytical approximation of the
protection thresholds showing good agreement with the numerical solution. Regard-
ing the epidemic incidence we observe that the epidemic threshold is not altered by
the possibility of adopting prophylactic measures. As a matter of fact, at the epidemic
threshold, the infection risk can still be considered zero. Accordingly, there is no incen-
tive for individuals to adopt prophylactic measures and therefore the epidemic threshold
is simply determined by the disease dynamics. In other words, the voluntary adoption
of prophylactic measures allows to contain the disease but not to eradicate it.

) 1 9
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Fig. 1. Risk-driven epidemic spreading model. Numerical results of the risk—driven epidemic
spreading model on a power-law network of size N = 2000 and exponent 2.5. Default parameters
are c =1, 4 = 0.1, T = 10. Phase-space diagrams for the transmission probability, A, and pro-
tection quality, ¥ , of the incidence on the fraction of protected (a) and infected individuals (b).
Full protection is represented by y = 0, while ¥ = 1 means that the prophylactic measures do not
reduce the infection risk at all. The red line denotes the epidemic threshold of our model. The
blue line is the protection threshold as obtained analytically from the mean field approximation.
(c) Fraction of protected (P = S), + 1) and infected (I = I, + 1) individuals as a function of
time. We observe an oscillatory behavior that is sustained in time. (d) Detail of the oscillations.
The red and blue lines indicate the fraction of infected and protected individuals, respectively.
The black dashed line plots the payoff of the strategy not protected (P,,) while the solid black
line is the payoff of the protected strategy (Pp).
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The second part of the results focuses on the temporal evolution of the system. Fig. 1(c)
presents a trajectory of the system and we observe that the incidence of the epidemics,
I, as well as the number of protected individuals, P, oscillates in time in a sustained
way. In Fig. 1(d) we unveil the mechanism behind the oscillations: If the disease in-
cidence is low, prophylactic measures are not beneficial and individuals stop adopting
them. Therefore, the incidence increases before individuals eventually start adopting
prophylactic measures again. At this point, the incidence will decrease and a new cycle
can start. Additionally, we find that there is a critical value of the protection quality for
oscillations to be sustained over time. If the protection quality is too low, the influence
of the protection level on the epidemic incidence is not sufficient for having sustained
oscillations. Instead, oscillations are damped and eventually vanish.

Finally, we propose plausible and efficient mechanisms to damp the oscillations. We
show that targeted interventions, which are triggered as the disease incidence starts in-
creasing, are much more effective than constant interventions of the same amplitude.
In this sense, our study adds to the design of prevention campaigns, which do not only
focus on perceived but real risks, in order to ameliorate human prophylactic behavior
and contain future outbreaks as for example of sexually transmitted diseases.

In this work we present an analytically tractable epidemic spreading model in which
individuals decide whether to take preventive measures or not depending on the global
extent of the disease, being this an assessment of their infection risk. We show that
the combined feedback between the human decision on prophylaxis, and the perceived
epidemic risk, are sufficient conditions for the emergence of self-sustained oscillations
in diseases well-described by the Susceptible-Infected-Susceptible (SIS) compartmental
model. Finally, we propose plausible mechanisms to damp out the oscillations. Our
study prompts to the design of persistent prevention campaigns, substantiated on not
only perceived but real risks, to improve human prophylactic behavior and contain the
recently reported raise of sexually transmitted diseases [6].
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1 Introduction

In [1], the authors argue that, in highly heterogeneous sexual contact networks, it is
unrealistic to assume that the transmission risk per partnership is equal. Rather, an in-
dividual with numerous contacts does not transmit the infection to each partner with
the same probability as an individual with few contacts. More generally, one would not
expect infection transmission probabilities in an epidemic process to be uniform in a
heterogeneous network.

Most studies of Susceptible-Infected-Recovered epidemic models on networks [2—
4] assume that the infection begins with a vanishing fraction of the network, but not a
finite number of sites. This essentially removes fluctuations with regard to the initial
growth of the infection, and allows the problem to be mapped to a undirected bond-
percolation on the same network [2]. This allows the calculation of the epidemic thresh-
old (above which a finite fraction of the population is infected), expected epidemic size,
and other statistics. In this construction, heterogeneity in infection probabilities has no
effect, and subsequent works generally assumed a uniform infection rate when examin-
ing heterogeneous networks. Studies of epidemic models on networks have examined
the effect of degree distributions and other network structure [3, 4] and neighbor degree
correlations [5].

A few works [6-8], however, have considered epidemics originating with a single
initial infection. In this case, one must consider not only the epidemic size but also the
probability that it occurs. The bond percolation mapping is not sufficient, and instead
a generalised directed percolation method must be used [7, 6]. The total expected epi-
demic outbreak is the product of two quantities: the probability that a single infection
leades to a (giant) infection, and the expected size of the resulting epidemic (the prob-
ability that a random site receives the infection). These can be viewed as the giant IN-
and giant OUT-components, respectively, of a specific directed network construction.

Here we use such an analysis to examine a compartmental epidemic model in which
the transmission probability may depend on both the source and destination degrees.
We consider a population of agents who may be in a susceptible (able to be infected),
infected, or recovered (no longer infected and not able to be re-infected) state. Infected
agents may pass the infection to susceptible neighbors, and the rate of transmission
depends on the degree of both the infected and susceptible agents. We show that this
heterogeneity can have a significant effect.
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2 Results

We show that the epidemic threshold is strongly affected by degree-dependent trans-
mission rate heterogeneity. Interestingly, the effect of dependence only on the source
degree or only on the destination degree, is the same.

Aggregation process

Balanced process

Dissemination process

Fig. 1. Three different types of asymmetric spreading processes. The transmission probabilities
and the degree distribution together determine what category a given process falls into. Symmetric
processes (e.g., the standard SIR model) are perfectly balanced processes.

In the classical SIR model, the giant IN- and OUT- components are of equal size, but
in the presence of heterogeneous transmission rates, they may be of different sizes, even
when their product is the same. This has important implications: a infection that rarely
produces a very large epidemic must be treated very differently to one that regularly
produces a moderate epidemic. We therefore classify epidemics by the ratio of the IN-
and OUT-component sizes (we quantify this by considering their ratio just above the
epidemic threshold), Figure 1.

We give a general analysis of the problem for large locally tree like networks, when
the transmission rate is an arbitrary function A f(k, K ) of the source, k, and destination,
k', degree (A is used as a control parameter). We further give exact closed form solutions
in the case of dependence only on source or on destination degree, and find approximate
solutions in the case of dependence on both, valid for large mean degree or when the
dependence on source and destination degrees is not far from symmetric.

We find a complex dependence of the process classification on the degree dependent
transmission rate, which may be positively or negatively correlated with degree, Figure
2. Balanced, disseminating or aggregation processes variously occur according to the
specific dependence.
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Fig. 2. Ratio Gj;, /G,y of the probability that a randomly selected site gives rise to an epidemic
to the probability that a random selected node is infected in an epidemic (which gives the mean
outbreak size), for transmission rates of the form lklf"kﬁ , where k; is the degree of the infecting
node, and k; the degree of the potentially infected node.

Summary. We examine the effect of heterogeneous transmission rates, specifically rates
depending on site degree, in a generalised SIR epidemic model on complex networks.
We analyse the problem through a mapping to a generalised directed percolation prob-
lem. We classify processes as disseminating, aggregating or balanced, according to the
ratio between the probability that a single infection leads to an epidemic and the prob-
ability that a site participates in the epidemic. We find a complex dependence on the
transmission rate function.
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1 Introduction

The introduction of online social media platforms such as Twitter and Facebook, have
changed completely the ways the modern civilization consumes and share information.
If from one side they can facilitate the interaction between people from different parts
of the globe, they also provide the perfect ground for the spreading of low-quality in-
formation such as fake news and misinformation (i.e., information that is misleading or
inaccurate) that can be very harmful to our society. Traditionally, models of information
diffusion are based on tools borrowed from theoretical epidemiology where suscepti-
ble agents became infected by interaction with infected agents and, in spite of their
simplicity, they were able to reproduce several empirical observations. In situation in
which quality is not easily quantified, other metrics - such as ratings, number of views,
likes, number of downloads, etc - can be used the enhance the exposure of certain con-
tent to people. In principle, such an approach would allow high-quality information to
prevail. However, such a popularity-based approach can create bias since the systems
can be easily manipulated by social bots, for example. Another disadvantage of such
approach was proposed by Sunstein and Pariser. They have argued that the reliance on
personalization and social media can lead people to being exposed to a narrow set of
point of views and one’s existing beliefs would be reinforced because they are locked
inside so-called filter bubbles or echo chambers, which prevent the users from engaging
with ideas different from their own. Such selective exposure could facilitate confirma-
tion bias and possibly create a fertile ground for polarization and misinformed opinions.
Although several other works have been done trying to address to the crucial importance
for the problem of competition for attention, there still a lack of a better understanding
of how memes behave in on-line social network. In this work, we investigate how the
way information is presented to the users will affect the system’s quality, diversity and
discriminative power. Here, we assume that each piece of information carries a nu-
merical proxy representing its quality or truthfulness. We anticipate that by sorting the
memes, we increase the exposure of high-quality information, therefore, increasing the
overall system’s quality. However, it is still unknown how it will affect other character-
istics of the systems such as diversity of information and discriminative power.
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2 Results

In this work we consider an agent-based model inspired by the long tradition of repre-

senting the spread of memes as an epidemic process. The model consists of a network

where each agent is equipped with a memory containing o memes. Additionally, every

meme has a quality represented by numerical value drawn from an uniform distribution.

Furthermore, in contrast with classical epidemiological models, new memes are contin-

uously introduced into the system in an exogenous way.

We assume that at time ¢ = £y the system is in

its state of higher diversity where each node has

Qo unique memes. At every time step a node i is

selected at random and with probability u it in-

troduces a new meme in the system by adding it

to its memory and sharing it with all its neigh-

bors. On the other hand, with probability 1 — u the

selected node chooses a meme from its memory

and, than, transmits it to all its neighbors. Once

all neighbors receive the meme, we consider two

situations, namely (a) the memes are organized

as they are received in a first-in-first-out manner

or (ii) in order to investigate the effects of qual-

ity bias, we assume that the user’s memories are

sorted according to the meme’s popularity with

more popular information on the top and less pop-

ular memes on the bottom of the node’s lists. In

both cases, the memes at the very bottom of the

user’s memories are removed or forgotten to make

space for the incoming meme if the node does not

have the meme already in its memory. Addition- ¥ig-1. Behaviour of the average qual-

ally, the probability that an agent selects a specific 1ty @ 2 function of time for the model
.. .. . (a) without sorting and (b) with sort-

meme m from its list to transmit is proportional

R . o . ing according to the meme’s popular-
to the meme’s quality f(m) and it is giving by ity. The insets show the behaviour of

Pi(k) = % . Figure 1 shows the behaviour  the average quality at the steady state
if the avejrage System’s quality as a function of for different values of the information
time. Observe that, for long enough time, the sys- 10ad H. The parameters used in all
tem quality decreases significantly as the informa- plots were and ¢ = 14.

tion load increases (Fig. 1 (a)). On the other hand,

once sorting is introduce, high quality information prevails.

Next, to measure the amount of diversity in the system at the steady state, we start
from the entropy H = —Y,,, P(m)log P(m) where P(m) is the portion of attention re-
ceived by meme m, i.e., the fraction of messages with m across all of the user feeds. The
sum runs over all memes present at a given time and is averaged over a long period after
stationarity has been achieved.
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Figure 2(a) shows the behav-
ior of the diversity (system’s en-
tropy) for (a) the baseline model
and (b) the models with sorted
attention list according to the
meme’s popularity for different
values of o and u. Observe that
the information load does not
affect significantly the system’s
diversity in any significant way
as shown in Fig. 2(c). On the Fig. 2. The Diversity H (color scale bar) as a function of
other hand, as we will show intensity of information load and attention for (a) the base-
next, the it does decreases con- line model and (b) the model with sorted attention list ac-
siderably the system’s ability cording to the meme’s popularity. The Kendall Tau(color
to distinguish between memes. scale bar) as a function of intensity of information load
and attention for the (d) baseline model and the model

with memes sorted according to (e) the meme’s popular-

criminative power, we employ | . - .
the Kendall rP;lnk correlationpbe)-/ ity. Figures (c) and (e) shows the difference in percentage
between the two models.

tween popularity and quality,

which is computed by ranking memes according to the two criteria and then count-
ing the number of meme pairs for which the two rankings are concordant or discordant,
properly accounting for ties. The extreme case T = 1 indicates a perfect correlation be-
tween quality and popularity and fitter memes are more likely to go viral. On the other
hand, if T = —1, the two rankings are completely discordant. Figure 2(a)and (b) show in
color the Kendall correlation rank for the two models considered for different values of
o and p. We observed that in general the rank correlation decreases as the information
load increases and a comparison between the models review that in reality the intro-
duction of sorting in reality hinders the system’s discriminative power with differences
between models being as high as 82.5% as shown in Fig. 2(f) [1].

To measure the system’s dis-

Summary. We considered the problem of competition for limited attention. We investi-
gated how message sorting affect the overall system’s quality, diversity and discrimina-
tive power. Our results indicate that while the quality of information increases, the dis-
criminative power decreases significantly. No significant change was observed for the
diversity of information. We would like to thank the financial support by ARL through
ARO Grant W911NF-16-1-0524. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on.
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Abstract

We construct and study the Google matrix [4] of Bitcoin transactions during the time
period from the very beginning in 2009 till April 2013 . Google matrix of the Bitcoin
Network given by G(a) = aS+ (1 — o) 3 ee” [1] built from data obtained from [2]

Fig. 1. Left panels show frequency histograms of Bitcoin Network (from January 11th 2009 to
April 10th 2013) of transaction from user a (with red circles) to user b (with blue circles) and of
given a to a given b (with black circles). Right panels show PageRank and CheiRank distributions
ordered by indices K and K* on top and bottom panel respectively. The bitcoin networks are
taken by quarters of years (halfs in the case of 2009) for 2009 (yellow), 2010 (red), 2011 (black),
2012 (blue) and 2013 (orange) whith lines corresponding to Q1 (solid line), Q2 (dotted line), Q3
(dashed line) and Q4 (dot-dashed line).

The Bitcoin network has up to a few millions of bitcoin users and we present its
main characteristics including some topology measures, the PageRank and CheiRank
probability distributions, the spectrum of eigenvalues of Google matrix and related
eigenvectors. We find that the spectrum has an unusual circle-type structure which we
attribute to existing hidden communities of nodes linked between their members.

We show that the Gini coefficient of the transactions for the whole period is close to
unity showing that the main part of wealth of the network is captured by a small fraction
of users.
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Fig. 2. Gini coefficient evolution for PageRank and CheiRank of BCN for quarter of years (halfs
for 2009)..

We determine the dimensionless trade balance of each user and model the contagion
propagation on the network assuming that a user goes bankrupt if its balance exceeds a
certain dimensionless threshold k.

Fig. 3. Fraction N, /N of BC13Q1 users in bankruptcy as a function of k and 7.

We find that the phase transition takes place for ¥ < k. =~ 0.1 with almost all users
going bankrupt. For k¥ > 0.55 almost all users remain safe. We find that even on a dis-
tance from the critical threshold k. the top PageRank and CheiRank users, as a house of
cards, rapidly drop to the bankruptcy. We attribute this effect to strong interconnections
between these top users which we determine with the reduced Google matrix algorithm.
This algorithm allows to establish efficiently the direct and indirect interactions between
top PageRank users.
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1 Introduction

While some types of algorithmic biases have already been explored [1,2], a general
framework to describe the effect of bias in social spreading is still lacking. We formalize
the concept of bias in dynamical social systems in a general way by extending the well-
known approximate master equation formalism [3,4,5,7,8,9]. In a stochastic binary-
state dynamics, a node in the network can be in one of two possible states [x(¢) =0, 1] at
any time # and updates its status via infection and recovery rates (Fy ,, Ry ) that depend
on the degree k of the updating node and on the number of its infected neighbors m. The
transition rates Fj ,, and Ry, fully characterize the temporal evolution of the node class
(k,m). Our extended framework allows us to compute, in the presence of a bias with
arbitrary functional form, effective transition rates both analytically and numerically,
by means of approximations for several of the most studied binary dynamics of social
spreading in networks (voter model, majority rule model, threshold model of complex
contagion, etc.).

2 Results

As a concrete test, we implement algorithmic bias minimally to reflect the tailoring
of information based on personal preferences on social networks. In order to filter the
increasing amount of information produced on the web, one of the major biases in-
troduced by online media platforms is a personalization of content according to the
preferences of the user itself [6]. In order to do that, at the time of state-switching, we
let a node disregard some of its neighbours in the opposite state with probability b (due
to, e.g., an algorithmic bias to connect similar people in an online media platform): If
x = 0, the node ignores m — i of its m infected neighbours (each with probability b), and
only considers i of them (each with probability 1 — ).

We find that the introduction of bias in the selection process of interacting neighbors
modifies the transition rates of several models of social spreading in non-trivial ways.
The effective transition rates of a binary dynamics under the effect of bias are, instead,
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expected values of the original transition rates over appropriate binomial distributions,

*
Fk,m

Ry = Rutsm)B_,,(1-b)

= (Fk—mti,i) By (1-b)

; ey

withi=0,...,mand s =0,...,k—m dummy variables over the number of infected/susceptible
neighbours the node interacts with. We characterize the models according to the effect

that the presence of bias induces on the dynamics, by observing how bias influences the

time required to reach consensus, as well as by how bias amplification is related to the
degree heterogeneity of the network or its mesoscopic (i.e. community) structure.

We observe that the combination of bias with sources of noise can induce new
phases of behavior. In the case of the majority rule model [10], for example, noise
indicates the probability that a user is not switching state even if the majority of its
neighbors have the opposite opinion. The presence of algorithmic bias introduces a new
phase of opinion polarization, as opposed to the known consensus phases where an ini-
tial majority dominates opinion (Figs. 1-2). Moreover, we investigate the microscopic
effect of bias in inducing fragmentation and echo chambers in the system by observing
how the auto-correlation and spatial correlation functions of the dynamics depend on
bias.

Po
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Fig. 1: Temporal evolution of the fraction of infected
nodes p(¢) for an initially susceptible network with dif-
ferent initial conditions in the majority rule model with
transition rates

[0) ifm<k/2

Fm=141/2 ifm=k/2
1-Q ifm>k/2
and Ry, = 1 — Fy,». As the bias b increases, the system

abandons the consensus equilibrium (p = Q = 0.2) with
transient states of polarization that end up in a fully po-
larized network (p = 1/2).

Fig. 2: Phase diagram of the fraction of infected nodes
p(t) (averaged over 50 realizations at Monte Carlo time
t = 60) for the majority rule model over a regular ran-
dom graph of size N = 10%, as a function of bias b and
initial condition py. For non-zero bias a phase transition
appears, delineating a new regime of asymptotic opin-
ion polarization (green), as opposed to the two known
regimes of consensus (blue and yellow).

Summary. Our framework provides a principled way of exploring the generic effect
algorithmic bias may have on any spreading dynamics in social networks. It shows that
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some dynamics are robust against bias (notably, epidemic spreading and simple con-
tagion such as the SIS and Bass models), while some others (opinion formation like
the voter and majority rule models) show new phases of large-scale behaviour solely
due to bias. By pinpointing common aspects among the diversity of biases and social
interactions present in online environments, we identify idealized mechanisms to poten-
tially tackle some of the most harmful effects of algorithmic bias, such as information
bottlenecks, echo chambers, and opinion radicalization.
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1 Introduction

The random graph approach is a tool for systemic risk modeling when uncertainty stems
from missing information on linkages. Such is the case for financial networks, see e.g.
[1], [2]. Instead of who is connected to whom, only aggregated information at the level
of each node is available. One can think of these as node characteristics, and exam-
ples include capital, asset or liability size, degree of connectivity. The random graph
approach allows one to compute the limit (when the size of the network is large) of
the fraction of nodes that fail when a shock propagates. The assumption is that one can
categorize nodes according to some of their characteristics, and within each category,
nodes are exchangeable. Along this direction, [3] assume that connectivity of each node
is known and that the underlying graph is the configuration model, chosen uniformly
over all graphs with the prescribed degree sequence. Their exchangeability assumptions
on the linkage weights ensure that a limit exists for the fraction of nodes with an initial
threshold to contagion. The final fraction of affected nodes is given in closed form for
all values of degrees and initial thresholds.

Our main contribution in this paper is to extend the threshold contagion on the con-
figuration model to the case when nodes’ thresholds receive growth from the linkages.
Because loss from the linkages and growth are intertwined, we call this the recovery
feature of the threshold. We are motivated by the application to financial and insurance-
reinsurance networks. Indeed, in financial networks thresholds represent —depending
on the context — either capital or liquidity. An initial set of nodes fail exogenously and
affect the nodes connected to them as they default on financial obligations. If those
nodes’ capital or liquidity is insufficient to absorb the losses, they will fail in turn. In
other terms, if the number of failed neighbors reaches a node’s threshold, then this node
will fail as well, and so on. Since contagion takes time, there is the potential for the
capital to recover before the next failure. It is therefore important to introduce a notion
of growth.

The model we consider in this paper can be seen as a set of Cramér-Lundberg pro-
cesses living on the nodes of a graph and which interact through the graph links. The
capital grows linearly over time. In contrast to the Cramér-Lundberg process, losses
do not arrive according to an exogenous Poisson process. Nodes have downward jumps
when there is a failure of a neighboring node. When a node’s capital or liquidity reaches
zero, the node fails and it leads to downward jumps to its own neighbors. The notion
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of time is also important. Calendar time governs the growth of capital. On the other
hand, jumps are governed by the interaction between nodes (specifically between a
failed one and one of its neighbors, chosen according to a probability law dictated by
the random graph model). There is a natural notion of interaction time and the link
revealing filtration. Consequently, jump arrival times have to be translated from inter-
action time to calendar time. We assume that inter-arrival times are exponentials with
mean inversly proportional to the size of the network. We assume that in each time unit,
nodes’ growth is proportional to nodes’ number of linkages. The linear growth as in
the Cramér-Lundberg is also consistent with models in the wider network literature that
attribute a fixed reward (respectively cost in some models) to each link as a tradeoff to
more contagion risk (respectively network rewards), see [4], [5] and references therein.

2 Results
Let “?(li) 5o be the fraction of nodes with in-degree 4, out-degree A and threshold 6.

Assume the following regularity conditions /.L)@ 10— Ma.a_ g, as n—» oo, for some

distribution u : N3 — [0,1]. We also assume that the average connectivity converges to
a finite limit

A = ) M“/(l?,x,,e = ) L“/@,Lﬂ = Y, At e =4 € (0,).
AyA.8 As,A—,0 ArAB
(1)

We assume that the duration in calendar time between the two successive interac-
tions is given by a random variable A ,E") follows an exponential distribution of parameter
n,i.e.,

AP =1 1" Exp(n).

Suppose that growth benefits arrive uniformly over time according to the “growth pa-
rameter” o and both the in- and out-degrees. Given a growth function g, g(a, A+, A_),
one can define the minimal time when the node could survive ¢ failed neighbors

(t—0)A
=t = 2
=1, 204 20 A A ) (2)
Let U, UJ,...,U[ be i.id. uniform distribution on [0, 7r] and the order statistics be

T T T
Uy <V < < Uy
Let us denote by

Prp.0(7) 3=P(U<”9+1) > t911,Ufg 40y > to12,---,Uf) > tz), 3

for{=0+1,...,Aand Py g (7) =1for £=0,1,...,6.
Theorem 1. Ler * be the relaxed fixed point of the map J* defined as
n* :=min{z € [0,1] | J¥(7) < 7},
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where
)‘—'u/l:ml—ae BY

J(m) == 3 B3, 2 6(70),

A A0
and

min{[9+g(a,l+,l,)n']7l,l+} A,+
BY, 5 o(m)i=1— (

P LU e )
=0

We have:

(i) If " =1, i.e., if J*(7) > @ for all T € [0, 1), then asymptotically (as n — o) almost
all nodes fail during the cascade.

(ii) If 7 <1 and ©* is a stable fixed point of J%, i.e., J*' (n*) < 1, then the final fraction
of failed nodes converges in probability to

| 2"

n

5 Y waa 6By (). “
Ap Ao,

Our results show that a higher heterogeneity in the initial distribution of the thresh-
old (as captured by its standard deviation) implies a lower default probability in equilib-
rium even as it leads to a larger average connectivity in equilibrium. More importantly,
systems with higher growth/recovery rates can have equilibria with higher failure prob-
ability as well as higher final fraction of failed agents. The fact that bailouts lead to
moral hazard problems is a known fact. Our results point to the fact that even in systems
where threshold growth happens over time (as opposed to equity or liquidity infusions)
strategic agents will adapt and potentially take more risks in equilibrium as captured by
increased connectivity. This result is surprising. In anticipation of future growth agents
take higher exposure to systemic risk and therefore the growth effect is hindered by
higher exposures. To counteract this effect, the most interconnected agents should have
higher thresholds in proportion to their interconnectedness, and this proportion should
be even higher in environments with large growth. The effect of threshold growth over
time would then allow them to play a role as shock absorbers in the system.
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1 Introduction

In many spreading processes a spreading agent may have a limited lifetime 6¢: like
in case of transportation networks with a maximum acceptable transfer time; in so-
cial networks where information may become outdated or forgotten; or in case of dis-
eases where the infectious period ends after a certain amount of time. These problems,
concerning limited (0t < o0) waiting time processes, have been previously studied in
temporal networks by simulating the process from a sample of initial nodes and time
instances. This approach limits the analysis to either very small networks, or average
statistics (as opposed to event-level statistics or statistics of the tails of distributions) [3].
To alleviate this problem, recently the event graph representation has been proposed [4,
6], with weakly connected components giving an upper bound on the number of events
(resp. nodes) what a spreading process can follow (resp. reach) [4]. However, as weakly
connected components of event graphs cannot determine the exact reachable set from
a node at a given time, the detection of out-components appeared as an open challenge
so far.

In this contribution, we present a set of algorithms based on probabilistic cardinality
estimation [1,2] that allows us to simultaneously measure the number of nodes and
events that can be reached from all different starting points and times in a temporal
network. In its most basic form it consists of scanning through each node of the event
graph (corresponding to events of the temporal network) in reverse topological order
and constructing an out-component set for each node based on its successors.

Our work has several advantages as compared to the conventional initial condition
sampling approach. It can be used to accurately calculate the tails of the reachability
and spreading distributions and it can answer completely new questions on temporal
network data, such as, what is the exact maximum number of nodes that can be infected
via a spreading process. It can also be used to calculate node/event level statistics, which
may lead to new kinds of importance and centrality measures. Further, it opens up a way
to analyse percolation phenomena in temporal networks. For example, instead of resort-
ing to upper-bounds via weakly connected components calculations (and lower bounds
via sampling), we can now exactly measure the critical parameters of the temporal net-
work unfolding as a directed percolation, or a spreading process evolving on the top of
it.
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Further, our method can find the event, which reaches the largest fraction of the
network (the largest out-component in the event graph) with high adjustable probability.
Note that the reachability without limited waiting time (8¢ = o) appears as a special
case here and can be solved as well with our algorithms.

2 Results

Our method works accurately for very large networks, which we demonstrate via the
estimation of reachable set of nodes and events from all possible initial conditions in a
large mobile phone call network with ~ 325M events [4] and a Twitter mention network
of ~ 258M interactions [7]. It can also be applied to directed temporal networks and
networks with a delay between the start of the event and the time it takes effect. To
demonstrate this, we applied the same method to the public transportation network of
Helsinki with ~ 664K events [5] and air transportation network of the United States of
America with ~ 180K events. Fig. 1 and Table 2 compare results and runtime of the
estimation algorithm on the real-world networks mentioned above.

Table 1. Runtime for real-world networks when calculating the reachability (number of unique
reachable events, nodes and lifetime) from all events in the network. 6z* corresponds to a waiting
time around the time at which there is a jump in the largest out-component size and corresponds
to the grey vertical line in Fig. 1. Baseline algorithm scans events in order of time and marks each
event/node that would be reachable from a specific starting event. This is repeated for each event
in the network as the starting event.

Runtime Baseline
Name Events Error 8t=o 0t =6t* 0t =00 8t =0t"
Mobile 325M 3.3% 106 minutes 85 minutes 1695 years 21 years
Twitter 258M 3.3% 90 minutes 77 minutes 2409 years 243 years

Public transport 664K 0.81% 59 minutes 60 seconds 19 hours 13 minutes
Air transport 180K 0.81% 235 minutes 17 seconds 138 minutes 60 seconds
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Fig. 1. Maximum out-component sizes (top row) based on number of events (p, ) number of
unique nodes (P, ¢) and lifetime of the out-component (p, ;) and corresponding median runtime
(bottom row) for different value of 8¢. The vertical line in each plot corresponds to the 67* value
in Table 2.
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The consensus problem is defined as a network of dynamical systems which coordi-
nate toward a common state following a distributed algorithm. In view of its broad range
of applications, encompassing opinion formation, distributed estimation, and multi-
vehicle coordination, the consensus problem has received an ample attention in the
last decades [1,2]. However, most of the literature focuses on static networks, chal-
lenging our understanding of phenomena that are typically modeled by time-varying
networks [3].

Here, we study the discrete-time consensus problem over time-varying, stochas-
tic networks, by using the activity driven network (ADN) modeling framework [4, 5].
Within the paradigm of ADNs, each node is characterized by a fixed parameter, called
activity potential, which encapsulates its propensity to communicate and exchange in-
formation with its peers. In plain worlds, the activity potential measures the probability
that a node is activated in a time unit. The distribution of the activity potentials across
the nodes models heterogeneity in individuals’ behavior. ADNs are a powerful tool to
study dynamical systems on networks. In fact, i) they allow for representing networks
with a desired level of heterogeneity in the nodes’ propensity do generate connections,
in contrast with existing models of time-varying, stochastic networks [6], and ii) they
beget mathematical models that are analytically tractable and amenable to fast simula-
tions [4, 5].

Some preliminary endeavors toward a mathematical treatment of consensus prob-
lems over ADNSs can be found in [7, 8]. Therein, results are mostly based on numerical
simulations and on the assumption of a time-scale separation between the evolution of
the network and the nodes’ dynamics. Here, we build on these first endeavors toward
a rigorous treatment of consensus over ADNs. Our technical contributions are twofold:
i) we study mean-square convergence of the dynamical process to estimate the speed
of convergence of the self-coordination process, and ii) we characterize the consensus
state, that is, the expected common state reached by the dynamical systems [9].

To achieve the first result, we leverage methods from stochastic stability theory and
we utilize a second-order eigenvalue perturbation argument. Specifically, building on
the claims in [6], we derive closed-form results for the rate of convergence of the mean-
square error dynamics as a function of the model parameters. We establish that the
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Fig. 1. Variation of the convergence factor with respect to the case of nodes with homogeneous
activity, for increasing values of standard deviation of the activity distribution (denoted by o),
for two different choices of the model parameters with increasing network sizes. We observe that
the numerical estimations performed over 100 independent runs (red circles, error bars are 95%
confidence intervals) confirm our analytical prediction (blue curve).
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Fig. 2. Numerical simulations of the consensus dynamics on a network with 50 nodes. Activity
potentials are distributed according to a power-law. Panel (a) illustrates a sample path of the
process and compares the evolution of the state variables with the predicted consensus state (red
dashed line) and the average of the initial conditions (blue dotted line). Panel (b) illustrates the
empirical distribution of the consensus values for set of Monte Carlo simulations over 50,000
independent runs from the same initial condition of the state variables. The distribution seems to
be centered in correspondence of our analytical prediction (red line).

convergence factor increases with the square of the standard deviation of the activity
distribution. The larger is the convergence factor, the slower is the convergence to the
consensus state. Hence, we suggest that the speed of convergence could be hindered by
the heterogeneity of the nodes’ activities, at least for moderate levels of heterogeneity.
Figure 1 illustrates the results of a campaign of Monte Carlo numerical simulations,
which confirms our analytical predictions.

The second result is attained using stochastic stability theory, whereby we charac-
terize the expected value of the consensus state reached by the network nodes. Different
from homogeneous systems, where the expected consensus state coincides with the av-
erage of the initial conditions, our analytical findings lead us to conclude that the con-
sensus state is dominated by low-activity nodes. Figure 2 shows numerical simulations
of the evolution of the network of dynamical systems, supporting our analytical results.
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Toward the application of our modeling framework in real-world large-scale prob-
lems, we derive a set of asymptotic results in the limit of large networks, both for the
rate of convergence and the consensus state.

Finally, we discuss the scenario where some of the network nodes act as leaders,
steering the state of the whole network to their own state. Utilizing a first-order eigen-
value perturbation argument, we show that, in the presence of leaders, heterogeneity
among the nodes could be beneficial to group decision-making. In fact, in [10] we
prove that moderate levels of heterogeneity decrease the convergence factor, speeding
up the convergence process to consensus.
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1 Introduction

Signs of hierarchical organisation can be often observed in complex networks, sup-
ported by various studies with subjects ranging from flocks of various species [1]
through social interactions [2] to scientific journals [3] and on-line news content [4].
In most of the cases, real networks are constantly evolving in time, and some relevant
aspects of the laws forming the structure of these systems have already been uncovered
in the scientific literature. One of the most well known example is the preferential at-
tachment rule for growing scale-free networks, corresponding to the key concept of the
Barabasi-Albert model [5], which was also detected by empirical studies of network
data [6, 7]. In a very recent work, along a similar line, we have examined the statistical
features of the restructuring mechanisms in networks with a hierarchical structure [8],
where the main goal was to detect preference or anti-preference during the different
attachment and detachment events over the time evolution.

The networks we studied correspond to the hierarchies between the Medical Subject
Headings (MeSH terms) provided by the NCBI to help searching in the PubMed pub-
lication database (comprising more than 29 million citations for biomedical literature)
at various levels of specificity. The MeSH terms are sorted into 16 hierarchies (labelled
A, B, C, etc.), and at the top of the hierarchies we find very broad headings such as
“Organisms” or “Information Science”, whereas more specific headings are found at
deeper levels. Due to the rapidly developing nature of the medical-, biochemical- and
biological sciences, the set of available MeSH terms are yearly updated by the curators
of PubMed.

2 Methods

In order to briefly describe our method for detecting preference with regard to some
node property x, let us consider first only two consecutive time steps. We denote the
probability distribution of x at the initial state by p(x), and the complementary cumula-

tive distribution of x as Q(x) = ¥ p(x’). By taking the ratio between w(x), correspond-
x'>x
ing to the number of chosen nodes by the considered attachment procedure for which
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the property value is at least as large as x and Q(x) resulting in W (x) = w(x)/Q(x), we
obtain a function that is constant if the attachment is uniform in x, since in this case w(x)
and Q(x) are simply proportional to each other for any x. In contrast, if larger values of
x are preferred, the shape of W (x) becomes increasing as a function of x, whereas in the
opposite case, when the attachment/detachment prefers lower values of x, the shape of
W (x) becomes decreasing. Due to its simple construct, the expected value and variance
of W(x) under uniform random choice (where the attachment is independent of x) can
be calculated analytically, for details see Ref.[8].

To measure the preference of the attachment procedure over the whole period of
time steps in the empirical data, for every time step ¢ (except for the last) we can measure
the complementary cumulative distribution Q; (x), and compare it to w;(x), denoting the
number of nodes having a property value at least as large as x selected by the given
attachment mechanism between ¢ and ¢ + 1. By aggregating their ratio, we can define

fmax—1
max Wy ( x)
Wemp (X) = .
emp( ) 1:21 Qt ( x)
The obtained curve can be then compared to the expected value of the random variable
corresponding to the sum of the supposed W (x) under the assumption of independence
from x, which we can denote by Wana(x).

ey

3 Results

We applied the method outlined in the previous section to study the time evolution of the
MeSH hierarchies with a system size exceeding 1000 nodes during the whole recorded
time period, focusing on the following properties: number of children (out degree),
number of parents (in degree), total number of descendants, total number of ancestors.
What makes the problem non-trivial is the rather high number of different possible
attachment and detachment event types that can occur during the time evolution. In
terms of the changing links we have two large categories: added (new) links and deleted
links. When examining the endpoints of added links, both the source and the target
can be either an already existing (old) node, or a new node, thus, there are altogether
4 types of added links. The case of deleted links is much simpler in this respect, as
both endpoints must correspond to old nodes. Therefore, there are in total 5 different
possibilities for changes in the connections. However, when examining the possible
effect of a given node property on the likelihood that the node is going to take part in an
attachment/detachment event, we also have to specify whether the node is the source or
the target of the involved link. Thus, for any node property of interest we can examine
10 different scenarios over the time evolution of the hierarchies.

As an illustration of the obtained results, in Fig.1 we show the measured Wemp(x)
and corresponding Wiana(x) curves for two cases. According to Fig.la, the attachment
of new links pointing from old nodes to new comers shows a strong preference with
respect to the total number of descendants of the source node in case of hierarchies D
and C. In contrast, Fig.1b indicates that the attachment of new links appearing between
old nodes shows anti-preference with respect to the number of ancestors of the source
node.
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Fig. 1. Measuring preference under restructuring events. In both panels we compare Wemp(x)
defined in (1) to the mean and standard deviation of W (x) for random events, indicated by dashed
lines in shaded areas. a) Results for the total number of descendants of source nodes in attach-
ments of new links pointing from old nodes to new nodes in hierarchies D (orange) and C (blue).
b) Wemp(x) for the number of ancestors of source nodes on new links appearing between old
nodes for the same hierarchies as in panel a).

The results for the further attachment types and the other hierarchies are given in
Ref.[8]. Based on those, we could observe strong signs of preference with respect to
the number of children of the source node for both the addition of new links pointing
from old nodes to new ones, and for the deletion of already existing links between old
nodes. In parallel, we saw anti-preference with respect to the number of ancestors of
the source node for all possible link change types. Interestingly, if the node acts as the
target of the changing link, we could observe both preference and anti-preference with
respect to the number of ancestors for the different link change types [8]. In conclusion,
our results indicate that time evolution of these systems is far more complex compared
to simple preferential attachment models, providing very interesting future challenges
for modelling and further statistical analysis.
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1 Introduction

Many temporal networks exhibit non-stationary dynamics, such as cyclical patterns due
to daily, weekly, seasonal or yearly cycles, increase or decrease in population size or
drastic change of dynamical regime. Several works have generalized existing commu-
nity detection methods for static networks to temporal networks (e.g. [1-5]), but they
usually rely on the assumption of an underlying stationary process, or sequences of dif-
ferent stationary epochs, and a null model corresponding to the stationary state of the
process. Here, we propose a first-principle method allowing to take into account con-
tinuous time temporal networks, interactions that may have a duration and systems that
non-necessarily reach a steady state, or follow a sequence of stationary states.

2 Results

Our approach is based on the concept of the stability of a network partition [6, 7] gen-
eralized to temporal networks with non-Markovian and non-stationary dynamics.

Given a temporal network with a fixed number of nodes N and a set of directed
edges e = (vg, v, 15, At) where v and v; are the source and target vertices, respectively,
t; is the time at which the edge becomes active and At is the duration of the edge,
we compute the matrix of transition probabilities with element 7;;(t;,72) equal to the
probability of going from node i at #; to node j at #, by considering a continuous time
random walk with rate A that is constrained by the activation of the edges. Communities
are then defined as groups of nodes that retain the flow of walkers the most over a given
time span (#; to ;). They are found by optimizing the quality function that we call the
flow stability:

(11,1 H) = trace [H' S(11,1,)H] (1)

where, S(t1,t;) = diag(p(t;))T(t1,22) — p(t1)" p(t2) is the autocovariance matrix of
the process, p(¢) is the probability density vector of the random walk at time ¢ and
H is an indicator matrix that encodes which node belong to which community. The
optimization can be performed, for example, with the Louvain algorithm [8]. The rate
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of the random walk, A, plays the role of a resolution parameter, allowing to detect
communities at all scales. Interestingly, in the case of static undirected networks, this
expression evaluated at stationarity reduces to the static Markov Stability [6,9] which
is equal to the classic Newman-Girvan Modularity [10] for a Markov time (resolution
parameter) equal to one. In the case of directed static network, considering one step of
a discrete-time random walk, the flow stability reduces to a standard generalization of
modularity to directed network (9% = 1 ¥; (A,- i — (k}’“‘kij“)/ m) 0 (ci,cj)).

We show how the autocovariance matrix is asymmetric in general, whether the
edges of the temporal networks have a direction or not. Indeed, the time ordering of
events can result in different probabilities for going from a particular node i at #; to
a node j at 7, than going from j at #; to i at £, [11], even if each event allows walk-
ers to travel in both directions. To capture this asymmetry, we propose to describe the
communities in temporal networks with two partitions: the source and target partitions.
clustering the rows and columns of the autocovariance matrix separately (see Fig. 1).

Fig. 1. Temporal flow clustering. (A) We consider a toy model made of three groups of 5 nodes.
Nodes activations follow a Poisson process and edges durations are drawn from an exponential
distribution. The system follows two types of successive interactions: /1) during At#; each ver-
tex interacts with other vertices of its own group with the largest probability; /2) during At, the
vertices of two of the groups interact with one another with the largest probability. (B) The au-
tocovariance matrix we derive allows to put into evidence the temporal communities structure
and reveals the asymmetry of the system arising from the specific time ordering of events. (C)
Clustering found by our approach showing how the time-asymmetric flow of walkers is clustered
in source communities and target communities.
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Summary. Our method generalizes the concept of modularity [10] of a network partition
for general temporal networks [5], over a given temporal interval, by taking into account
time respecting paths, capturing the asymmetry created by the time ordering of events
and allowing to consider multiple scales of the system. We consider applications of our
method to a toy model and several real-world examples, such as an extensive contact
network of free-living wild mice [12].
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Constant State of Change: Engagement Inequality in
Temporal Dynamic Networks (Extended Abstract)

Hadar Miller and Osnat Mokryn

University of Haifa, Israel

1 Introduction

Temporal measures of engagement are of interest as they give a measure of member
participation, interest, influence, dominance, and more [1]. In organizations, where fre-
quent changes were found to be the norm [2], following the temporal intensity and
dominance of the interactions can help in identifying fluctuations in involvement and
engagement prior, during, and after a planned organizational change, as well as assess
the reactions to a shock. These temporal measures are of interest also in the case of on-
line social networks engagement, where participation was found to be dominated by a
few. Yet, participants change their active role in the network and their engagement over
time [3]. Currently, it is unclear whether these changes affect the temporal measures
of network activity. Hence, we set to understand the change in the average intensity of
interactions and the variance in them. The distribution of the intensity of interactions,
also referred to as ties’ strength, has long been recognized as a fundamental property [4,
5]. We continue to define indices of average connection intensity and nodal dominance
inequality in temporal networks. A measure of average intensity of the edge interactions
in a network differs from average nodes’ strength, as the measure should not favor the
number of active connections a node has.

Temporal Intensity Level index: Centrality measure in weighted networks is defined
in [5] as follows: CZ*(i) = kl(l*a) -s%¥, where o € [0,1] is the tuning parameter, k; is
the number of nodes the focal node i is connected to, and s; is its weighted degree. s;
is computed by: s; = ):f-v w;j, where N is the total number of nodes in this network, and
w;; is a non-zero value for the strength of edges that disseminate from the focal node i.
Taking a network-wide approach, we define the weighted sum as follows:

N N (1—a)
0o = cha(i) = Zki s (H
i=1 i=1

The metric ¢y—¢ corresponds to the number of edges in the graph; Alternatively, the
metric ¢g—; corresponds to the sum of all edge weights in the network, that is, the
overall intensity of interactions in a network. The Temporal Network Intensity index for
networks is the ratio between the overall intensity of edge interactions in the network
and the binary number of edges, over a predefined window of time!:

_ ¢a:1(Gr)
a Pa—0(Gr)
Where G, 7 € [1..T] is a sequence of graphs representing consecutive network snap-
shots in a period 7. y > 1 holds for all graphs.

v(Ge) @

'A discussion on the length of the time window is outside the scope of this abstract.
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Temporal Dominance Inequality: In organizations, when a change is introduced,
high interactions can be found among its supporters and opposers, but there might be a
silent majority. Understanding the level of inequality in the intensity of the participation
can aid in understanding the balance between change-involved members versus those
who are not [2]. We measure the inequality in nodal interactions dominance utilizing
the Gini inequality index [6] for measuring income inequality.

2 Results

We gathered the temporal interactions from six real world networks 2. For each of the
datasets we calculate the weekly temporal network intensity, as defined in Equation 2.
The results, as appear in Figure 1 are surprising. All networks exhibit a rather stable
temporal behavior in their intensity, regardless of the fluctuations in size. It is also in-
teresting to note that although the Intensity is not bounded in value, in all these networks
the average intensity is low. For example, the Facebook network, on the lower left panel,
show a steady increase in network size from several hundreds up to more than 10000
weekly participants. (minimal intensity is calculated from zero as explained above). We
get similar results when measuring the temporal dominance (Gini index) in these net-
works. The measured values are in the range of [0.4,0.7] for all datasets. Intuitively,
an Erdos-Rényi (ER) random network would yield very low inequality values, as all
nodes have a similar chance for communicating, and a pure Preferential Attachment
(PA) network would give a very high inequality value. Figure 2 denotes the cumulative

Fig. 1. Temporal average intensity for the six datasets, denoted by the blue line with the values
on the left y-axis. The light grey dashed line corresponds to the temporal size of the network,
denoted by the right y-axis.

distribution of the relative change in the measured indices between every two consecu-
tive weeks for each dataset. In all networks but Enron more than 80% of the changes are

2The datasets are: AskUbuntu forum (198 weeks); Facebook Wall Posts (124 weeks);
Wikipedia Conflict (156 weeks); Wikipedia Talk (132 weeks); Manufacturing Emails (38 weeks);
EU Research Institutional Emails (74 weeks).
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of less than 15%. the Enron network, used often for change point detection, is different
from the other networks examined in terms of the range of Temporal Network Intensity
index and the percentage of changes measured in the index. The network displays Tem-
poral Network Intensity in the range of 3.0 — 12.0, well above the index range for the
other networks. In addition, the index volatility is very high and the changes between
weekly measurements are high. The Temporal Dominance Inequality, as presented in
Figure 2(B), while is similar in range to that of other networks, also shows high volatil-
ity compared to the other networks. Our results determine that networks differ by the

(a) CDF of weekly change in average intensity ~ (b) CDF of weekly change in Dominance

Fig. 2. The cumulative distribution of the weekly relative change for each dataset in the measured.
((a)) Temporal Network Intensity and ((b)) Temporal Dominance Inequality.

engagement indices we defined. To further verify this result, we ran a classification ex-
periment over the weekly indices, and find that the classifier can classify the indices
tuples to their corresponding network with high validity.

Summary. Our surprising results are that for most emails and forum networks checked,
the indices introduced were stationary, implying a steady state. The robustness of the
indices regardless of significant size changes of the underlying network in time, is in-
triguing. For example, when the size of the network decreases, in a process of preferen-
tial detachment it is expected that the level of engagement and hence the indices would
be also effected. Lastly, our result show that the indices we devised fluctuated signif-
icantly in a network that was dealing with a shaky situation that let to the company’s
disintegration.
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1 Introduction

The study of dynamical processes running on top of complex networks has become
a key problem in many research fields, ranging from the microscopic realm of genes
and neurones to the large realm of technological and social systems [1]. However, in
many practical situations, there is a lack of precision in the measurements and also in-
trinsic fluctuations may be present in the interactions of the network. These sources of
uncertainty in the structure affect dramatically the dynamical properties (as the critical
threshold of a macroscopic phase transition or the stability of the dynamical attractor),
and they should be taken into account when making analytical predictions from the
available data.

Following this line, we study the uncertainty in the critical threshold of a general
dynamical process on top of a complex network, when it is induced by microscopic
noise in the intensity of the connections among the units. Here, we present an analyti-
cal formalism that captures the main statistics of the threshold when affected by white
gaussian noise in the weights of the network. Our theory has a very good agreement
against simulations and the results show how the underlying structure of interactions
plays a central role in the way the microscopic noise is propagated through the macro-
scopic threshold. In particular, the theory predicts the existence of optimal structures
that are able to amplify significantly the critical range only due to small fluctuations in
the weights.

2  Results

We consider a network with a fixed structure of links that capture the presence of con-
nections among units and we let the intensity of the links (the weights) to be affected by
random fluctuations. For simplicity, we assume that the noise is gaussian and uncorre-
lated (white noise) where each weight is drawn from a normal distribution N(i, ). The
main goal is to understand how this microscopic noise affects the value of the critical
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point in a dynamical process running on top of the network.

For a variety of dynamical processes running on top of complex networks (includ-
ing synchronization, spreading dynamics and spin models) the critical threshold K, is
estimated in terms of the inverse of the largest eigenvalue A,,,, of the adjacency matrix
A [2-4]. In order to study the exact statistics of K in the presence of noise with 0 mean,
one should use the tools from Random Matrix Theory [5]. However, for sparse networks
with arbitrary degree distributions, it becomes very challenging to obtain analytical re-
sults in this context. Also, since we are particularly interested in the scenario where the
mean of the interactions is not zero (i > 0), an alternative approach is required.

We tackle this problem by applying an error propagation method to the mean-field
approximation of the threshold [6]. This method, although being approximate, gives
surprisingly accurate results and provides closed form expressions that facilitate our
understanding on the problem. We are able to derive closed-form expressions for the
mean and the variance of the critical threshold depending on the noise parameters and
the moment of the degree distribution of the underlying network [7]. In Fig.(1), we
show the accuracy of the mean-field approximation in capturing the distribution of the
critical threshold (left) and the performance of the theoretical expressions for a fixed
Erdos-Rényi network (right). The results are also tested in many empirical networks
showing good agreement against simulations (not shown in the abstract).

p(K.) (prob. distribution)

3.35 3.40
K, (critical coupling)

Fig. 1. Left: Empirical (areas) and MF (lines) histograms for the distribution of the K, in a fixed
Erdos-Rényi network with N =200, p = 0.3, Ky = 1, u = 1 for two different noise intensities
o with 1000 realizations. The statistics are indeed affected by the noise and the MF approx.
accurately estimates the whole distribution of K. Right: Numeric vs theory: mean and standard
deviation of the critical threshold depending on the noise intensity ¢ for a fixed Erdos-Rényi
network with N =200, p = 0.3, u = 1 and 1000 independent realizations.

Furthermore, our theoretical results show that the fluctuations in the critical point
depend non-linearly on the moments of the degree distribution and the noise param-
eters. We were able to find which are the structures that maximize or minimize the
critical fluctuations, for a given amount of noise. This result finds implications also in
the context of adaptation and evolution of many biological systems [8]: some structures
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are able to increase their critical range (and therefore the variety of macrostates) only
by small fluctuations of the weights, without altering the underlying structure of links.

We propose an error propagation method to analytically quantify the macroscopic un-
certainty on the critical threshold of a dynamical process when induced by white noise
on the coupling weights of a network. The method is tested with good accuracy in syn-
thetic and empirical data. The results unveil several interesting noise-amplifying prop-
erties of the networks and the method can be used in practical situations, to quantify
the error made by theoretical predictions due to uncertain measurements.
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Complex networks are known to profoundly affect the processes they support. Some
of the most complex processes investigated to date on networks are related with be-
havioural dynamics and decision-making. These are often abstracted by means of social
dilemmas of cooperation, such as the Prisoners Dilemma (PD). In that context, despite
the higher returns of mutual cooperation, rational agents are paradoxically expected to
mutually defect, thus the dilemma. An evolutionary population dynamics approach to
game theory, where agents revise their behaviour based on the perceived success of oth-
ers, provides one of the most sophisticated examples of complex dynamics in which the
role of the underlying network topology proves key to determine the evolutionary out-
come of a population. For instance, when cooperation is modeled as a PD, cooperation
may emerge (or not) depending on how the population structure [9].

However, the precise link between the local self-regarding actions and the population-
wide dynamics that might lead to a collective cooperative scenario on structured pop-
ulations has been hard to establish. Indeed, past studies have mostly focused on the
analysis of the evolutionary outcome of cooperation — either by means of the numerical
analysis of steady states or by the analytical determination of the conditions that lead to
fixation — thus lacking a characterization of the self-organization process by which one
of the strategies out competes the other. Here we report on a numerical approach [5,9,
10, 4, 7] that unveils the link between individual and collective behavior in evolutionary
games on structured populations.

To that end we define a time-dependent variable — the Average Gradient of Se-
lection (AGoS) — and use it to track the self-organization of cooperators when co-
evolving with defectors. In finite well-mixed populations the gradient of selection,
G(k) = T*(k) — T~ (k), can be computed analytically as the difference between the
probabilities of increasing (T (k)) and decreasing (T~ (k)) the number of cooperators
by one, for a population with k cooperators. It is impossible to compute G(k) analyti-
cally for arbitrary network structures [2], in that sense, the AGoS provides a numerical
account of the same variables, offering the change in time of the frequency of coop-
erative traits under selection. The AGoS can be computed for arbitrary intensity of
selection, arbitrary population structure, and arbitrary game parameterization.

Overall, we show how behavioral dynamics of individuals facing a cooperation
dilemma in structured populations can be understood as though individuals face a dif-
ferent dilemma in a well-mixed (i.e.structured-less) population. As illustrated in Fig. 1,
homogeneous networks promote a coexistence dynamics between cooperators and de-
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Fig. 1. The Average Gradient of Selection (AGoS) provides a characterization of the change in
time of the fraction of cooperators under natural selection, being positive (negative) when the
fraction of cooperators tends to increase (decrease). While in well-mixed populations, the tragedy
of the commons (x¢c = 0) emerges as the only stable fixed point, homogeneous networks favor
the co-existence of cooperators and defectors, whereas degree heterogeneous networks creates
two basins of attraction, as if agents would be locally facing a coordination dilemma. Adaptive
network structures lead to the emergence of a two interior fixed points, a dynamical fingerprint
of N-Person games that involve group social dilemmas.

fectors — akin to a Snowdrift game — whereas strongly heterogeneous networks prompt a
coordination between them, similar to the Stag-hunt game. In other words, while agents
locally perceive and play a PD, globally the dynamics of the population resembles the
one obtained from a completely different game, as if, individuals would be locally fac-
ing a different dilemma.

In [6] use the AGoS to show that contrary to what happens in heterogeneous pop-
ulations that generate a coordination dynamics for a broad range of selection pressure
values, on homogeneous networks the population-wide dynamics depends on the in-
tensity of selection: under strong selection they favour a co-existence like dynamics
while under weak selection we recover the well-mixed scenario of a PD-like dynam-
ics which leads to the demise of cooperation (Fig. 1). [4] have shown the existence of
an optimal range of network heterogeneity that optimizes the evolutionary cooperative
outcome of a population, reinforcing the idea of the sensitivity of evolutionary games to
the underlying features of population structure. Moreover, we were able to identify the
existence (on several types of networks) of an optimum level of selection pressure for
which cooperation is maximised. The underlying process that leads to this result differs
from homogeneous to heterogenous networks. In the first class of networks the opti-
mal selection pressure is associated with the ability of cooperators to form and sustain
clusters, while on the second class it is the result of a decoupling in the distribution of
intensities of selection between pairs of agents that is present from the natural diversity
of fitness values [10] in the population.

When the co-evolution of both strategies and network structure is considered, the
range of social dilemmas where cooperation can thrive expands. In [7] we show that,
when individuals engage locally in PD games, we observe that adaptive networks give
rise to the emergence of population-wide dynamics that is akin to what we find in lo-
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cal games that involve group interactions (N-Person Games) with non-linear returns
[3]. Interestingly, such results means that adaptive social structures entwine individuals
decisions in scenarios that extend their dyadic relationships.

Underlying these emergent phenomena are the natural build up of peer-influenced
correlations between individuals behaviors along nodes of the network. We have shown
that such correlations emerge from the pairwise learning dynamics in populations with
network mediated interactions [8]. These patterns are characterized by positive corre-
lations among the strategies of individuals up to two or three links of separation. Our
results nicely match and extend our understanding of previous empirical studies that
found similar peer-influence patterns in social networks [1].

The application of the AGoS is not limited to 2-person games. In fact, as discussed
in [10], heterogeneous network structures create multiple internal equilibria when indi-
viduals face public goods dilemmas, departing significantly from the reference scenario
of a well-mixed populations. Finally, we would like to stress that the scope and impor-
tance of this methodology goes beyond the present application to evolutionary games
on graphs. The principles can be used to extract any dynamical quantity that describes
a process (as long as it is a Markov process) taking place on a network such as the
outbreak of epidemics or the opinion diffusion.
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1 Introduction

Network theory has played a crucial role in enhancing our understanding of polariza-
tion, segregation, fragmentation, hierarchical stratification, and other phenomena re-
lated to opinion formation and propagation[1]. The underlying paradigm is the formal
represention of social systems by networks in which the nodes correspond to agents
and the links to binary relations amongst them. Recently, higher-order relations have
started to appear as a new focus in the analysis of complex network data sets [2]. Such
inherently social phenomena as peer groups, contracts, institutionalisation and state for-
mation demand for an inclusion of these higher-order interactions into models and theo-
retical descriptions. One may even argue that their omission fails to capture the essence
of social systems in the same way the linear models fail to capture the essence of natural
processes.

Here we consider one of the classical models of opinion formation which exhibits
fragmentation, the co-evolving voter model[3], and propose an extension to higher-
order interactions[4]. We recall the classical co-evolving voter model in which agents
are endowed with one of two possible opinions, say +1 or -1. They are connected via
links, forming a network. Both the opinion states and the network itself evolve, account-
ing for an adaptation and thus giving rise to the co-evolutionary nature of the model.
Two connected nodes with opposing opinions either homogenize their opinion with
probability 1 — p or they rewire their connection with probability p. The persuading or
rewiring node is chosen at random. One observes that either one of the opinions wins in
the long run or the network fragments into two disjoint communities of opposing opin-
ions. There is a critical rewiring probability p. above which the network fragments.

We propose to model peer groups by simplices and extend the classical co-evolving
voter model by a majority rule that models peer pressure [4]. Here we describe a min-
imal version in which peer groups are 2-simplices, but extensions to n-simplices are
straightforward. A 2-simplex is a triadic relation of three nodes that requires binary re-
lations amongst each of its vertices. One may think of it as a filled out triangle. Typically
in a peer group all members are also friends with each other, justifying our modeling
assumption. A system consisting of nodes, edges and 2-simplices is called a simplicial
2-complex.
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Fig. 1. We show a) the order parameter &, of the co-evolving voter model on simplicial complexes
and b) the average inverse depletion time of triangles (1/7), respectively for various rewiring
probabilities and peer pressures. The simplicial complex are randomly generated for N = 500
nodes, a mean degree i = 8 and 2-simplex-per-edge degree s = 0.2.

The majority rule states that the majority opinion convinces the minority opinion
when an active edge inside a simplex is chosen. The majority rule is applied with prob-
ability ¢, thus g = 0 corresponds to the classical co-evolving case. In summary the
model is described by the following update rule: At each time step an edge e is chosen.
If this edge connects the same opinions nothing happens. If it connects opposing opin-
ions, either the classical rules apply with probability 1 — g or the majority rule applies
with probability g. If the majority rule applies, then one of the simplices attached to
that edge is chosen for the persuasion and if none is present, i.e. in the absense of a peer
group, the classical update rule applies. Whenever a simplex is destroyed by a rewiring
event a randomly chosen triangle is converted into a simplex.

This minimal extension allows us to study the effect of peer pressure in voter pro-
cesses. It also serves the purpose of studying evolving simplical complexes as such by
means of a simple model.

2 Results

We conduct numerical simulations supported by calculations. First we find that higher
peer pressures accelerate the fragmentation process and the fragmentation itself already
occurs at lower rewiring probabilities. In Figure 1a) we show the order parameter &, for
various peer pressures g € {0,1/4,2/4,3/4}, where §,, is the maximal quasi-stationary
density of inhomogeneous (sometimes called active) links [3]. The simulations are ini-
tialized by random simplicial complexes with N = 500 nodes, a mean degree of 4 = 8
and a low simplex-per-edge density of s = 0.2. Simplices are distributed uniformly at
random over the set of vertex-triplets. Despite the low simplex density one may see
clearly the effect of an earlier fragmentation for higher peer pressures. Apart from the
early fragmentation transition one may look at the depletion rate of active edges and
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also — for values of p below p. — at the drift velocity towards one of the single-opinion
states. In both cases we find that the peer pressure increases the respective velocities.
Secondly, we find that there is a multiscale hierarchy of time scales that corre-
spond to the order of the simplex. The evolution and depletion rates of triangles and
2-simplices is the highest due their destruction by rewirings and their enhanced conver-
sion rate via the peer pressure. They evolve faster than the edges, i.e. 1-simplices, also
because any event on the edge has an effect on all the simplices that are attached to it.
The node states evolve slowly to one of the single-opinion states at a quasi-stationary
rate. The fast dynamics of triangles in the system is particularly important. In some
parameter regimes rewiring events destroy triangles at a higher rate than it produces
them. It then happens that all triangles deplete and a rewiring event can start to destroy
simplices without converting triangles into simplices for simplex-conservation. We are
interested in the depletion time of triangles 7. In Figure 1b) we show the average in-
verse depletion time (1/7). It can be seen rather unsurprisingly that triangles don’t
deplete in the absense of rewirings. Further it can be seen that depletion rates increase
as the rewiring probability increases, but less so for higher peer pressures. One may
also see that 7 diverges as the fragmentation transition is approached. We can explain
these curves heuristically: The stronger the fragmentation, i.e. the lower the density of
active links p, the larger become the mean degrees [i of the respective communities

p~u(l—p).

Thus, rewired active links are more likely to create new triangles in any of the commu-
nities and more unlikely to destroy them due to the few inhomogeneous triangles.

Summary. We have shown, how to naturally (from the viewpoint of applications) and
minimally (from the mathematical perspective) extend the co-evolving voter model to
a model on simplicial complexes. It seems now plausible as further steps to also extend
other adaptive contact processes to simplicial complexes, e.g., epidemic spreading mod-
els. We demonstrated that the model still yields a fragmentation transition upon varying
the re-wiring rate. Yet, the quantitative properties are changed and we observe faster
transitions to a single-opinion absorbing state or towards a fragmented two-opinion
state. Furthermore, we found that the simplicial adaptive voter model often displays
multiple time scales.
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1 Introduction

Social micro-blogging networks, like Twitter, are designed to allow their users to dis-
seminate information and opinions with their digital peers. The information dissemi-
nated over the network characterizes the initiator but also influences it’s peers perspec-
tive over them, resulting in changes in the ego network of both the initiator and the
receiver. In this study, we explore how the user’s activity, occupation and interests in-
fluence the evolution of her ego network. We continuously monitor individual Twitter
users for a period of one month and observe how their online activity and their general
characteristics, affect their ego-network in a day-to-day basis.

Over the years, significant research has shown that the total interactions between
individuals in society lead to the development of complex community structures in a
social network [3,5,7,17, 18], composed of well-connected circles of friends, fami-
lies or professional cliques [11, 13, 15] Additionally, because of the frequent changes
in the patterns of activity and communication of individuals, the relevant social and
communication networks are constantly under development [4, 6, 8, 16]

In recent decades, interdisciplinary network research has explored the structural
and evolutionary qualities of online social graphs and the communities they include,
revealing universal patterns of their dynamics. [2,9, 12, 14, 19]

Research into the development of the ego network proves a person’s connectivity,
and activity is widely distributed [12], The number of edges in a social network grows
as the number of nodes increases, and the average path length is shrunk by the addition
of new nodes [10] after an initial extension phase [1].

In this study we examine how the characteristics and activity of the ego affect her
ego network evolution. To investigate the ego network evolution in social networks, we
followed 1,000 Twitter users for a period of 30 days, collecting a snapshot of their ego
network every day. We categorized the users in nine professional classes 3, according to
the users stated profession, as well as a random sample class. For each class we selected

TThis project has received funding for the European Unions Horizon 2020 research and in-
novation programme under grant agreement No 739578 and the Government of the Republic of
Cyprus through the Directorate General for European Programmes, Coordination and Develop-
ment.

3The classes we studied were: Athletes, Politicians, Doctors, Journalists, Lawyers, Business
Owners, Actors, Models and Singers
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Fig. 1. Ego exhibited Sentiment, Affect and Discussion Topic effect on ego-network evolution

10 users with pre-specified initial network sizes (from 100 to 10,000 followers/friends
each class). For the whole dataset, each professional class but also each initial network
size we then examine the critical factors that affect the user’s ego network evolution.

Our research examines how the user’s ego-network changes over time but also how
the characteristics of that ego-network (i.e. clustering coefficient and number of com-
munities) evolve over the observation time period. Additionally, for each of these char-
acteristic we examine how the activity of the user (i.e. the sentiment, opinion topics and
affective tone observed in her tweets) but also the profession and initial network size
affect the evolution of the ego network.

2 Results

Our initial results support our hypothesis for the role of ego characteristics, online be-
havior and interests in the evolution of the ego-network. Our temporal study shows daily
fluctuations in the users ego-network in the range of £2%, equally split in increases and
decreases. More than 60% of the users experience an increase in their ego-network over
the period of one month, with increase rates going up to 4%. Doctors exhibit the most
growth, with 90% of the category members to show increase in their network during
the observation period. Additionally, we also observe a rich-get-richer phenomenon,
where users with the biggest initial network (i.e. 9000-10000 followers) are the ones
that observe the highest and more constant increase in their ego-network over time.
Furthermore, as depicted in 1 Twitter user’s tone and subject of information dissem-
inated plays an important role in her ego network evolution. In the upper left figure we
can observe that positive sentiment (averaged over all tweets of the user in the observa-
tion period) results in an increase of the ego-network in 90% of the times, while negative
sentiment results in the network decreasing 87% of the time. The upper right figure sim-
ilarly shows that positive affect (i.e. Joy) can result in a ego network increase in 67% of
the time. Negative affects, such as disgust, fear and sadness result in a decrease of the
ego-network. Finally, the low figure shows how different topics of discussion affect the
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evolution of the social network. It shows that Twitter users that mostly discuss family,
hobbies and entertainment issues experience the most increase in their ego network.

Summary. Our initial analysis depicts the degree in which ego characteristics, such as
sentiment, affective tone, profession, as well as the topic mostly exhibited by the user
during her social networking activity, affects the evolution of her ego network topology.
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1 Introduction

The main approaches to cluster temporal networks include two steps: they first slice the
temporal network into a sequence of static networks, then apply a clustering algorithm
for multi-slice networks. However, while several methods to cluster multi-slice net-
works exist, assuming that the number of slices leading to a good clustering is known
is typically an unrealistic assumption.

In this paper we focus on one of the best-known methods to cluster multi-slice
networks: generalized Louvain [3]. Being this method based on an objective function of
cluster quality (modularity), to find an optimal number of slices we might be tempted to
run the generalized Louvain optimization algorithm for different numbers of slices and
pick the result with the highest modularity. Unfortunately, we cannot use modularity to
compare the clusterings of different slicings.

Figure la shows the modularity of the clusterings discovered by the generalized
Louvain algorithm on four real temporal networks varying the number of slices. We can
see that the more slices we have, the higher the modularity we get from the algorithm.
This suggests that raising values of modularity for different numbers of slices are not
necessarily an indication of better clusterings, but just a by-product of the increased
size of the input networks. This is confirmed by executing the method against synthetic
data where the same edges* are replicated on all slices. Despite introducing no new
information, the modularity increases because of the addition of new edges, following
a pattern that can be expressed analytically as shown in Figure 1b.

2 Method

This work is based on the assumption that multi-slice modularity has two components:
one that increases with better clusterings, and one that increases just because the data

4Zachary’s karate network
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(a) Modularity of four real networks: (b) Modularity of synthetic network:
empirical empirical and predicted

Fig. 1: Modularity of the partitions returned by the generalized Louvain algorithm vary-
ing the number of slices for different temporal networks; the value increases with the
number of slices, following a predictable pattern.

size increases, e.g., if we duplicate a slice, the same cluster extended across two slices
will contain additional inter-slice edges. Therefore, to identify an optimal number of
slices we can try to isolate the first component in the modularity and use it to compare
clusterings computed using different numbers of slices.

To remove the effect of data size we use an edge reshuffling process that destroys the
clusters in the network without affecting the degree distribution [2, 1]. For each number
of slices, the Louvain algorithm is run both on the original data and on the reshuffled
data where the clusters have been destroyed. The modularity on the dataset without
clusters indicates the effect of the number of slices on modularity, and the difference
between the two indicates the part of modularity due to the presence of clusters. We call
this difference normalized multi-slice modularity.

3 Results

To test our approach we built different synthetic networks where the optimal number of
slices is known in advance. Here we only show one of these cases, for space reasons.
This example consists of two cliques separated by random noise (20% density), with
this pattern repeated five times. The network is shown in Figures 2a-Figure 2c, split
into different numbers of slices. When we only have one slice, the combination of the
noise present throughout the existence of the network hides the clusters. When we use
five slices (Figure 2b), the cliques are easily visible in all slices. In time, the cliques
disappear from some of the slices, and ultimately from all of them, because their edges
get spread across several sparser and sparser slices.

With this dataset, we know that the clusters are the most visible when we have five
slices. Figure 2d shows the original modularity, the randomized modularity and our
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normalized multi-slice modularity. While the first two increase when the number of
slices increases, the normalized multi-slice modularity has a peak at five slices.

Figure 2d also shows the normalized mutual information (NMI) between the ground
truth clusters and the clusters found by the algorithm, for different numbers of slices.
A higher value of NMI corresponds to more similar clusterings. We notice how the
number of slices identified by our approach corresponds to the highest NMI, but the
generalized Louvain algorithm would still be able to reach the same NMI with other
numbers of slices (up to fifteen with this data).

number of slices

(a) one slice (b) five slices (c) eight slices (d) modularity

Fig. 2: Best number of slices: controlled experiment

Summary. We propose and evaluate a method to identify an optimal number of slices
based on modularity. Our work includes additional results and discussions not presented
here for space reasons: Practical details on how to correctly perform edge shuffling. The
application of the method to several real datasets for which no ground truth is available.
A critical analysis of the method, identifying aspects that require further validation.
A critical analysis of modularity-based approaches in the context of temporal network
clustering, identifying scenarios such as recurrent temporal clusters that are not cap-
tured by this objective function.

Acknowledgments This work was partly funded by STINT project IB2017-6990.
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1 Introduction

Networks constitute a paradigm of complexity in real life systems by assembling
the structure of the interactions of their elementary constituents [1,2]. They are found
at every level of biological organisation, from genes inside the cells [3] to the trophic
relations between species in large ecosystems [4]. Nowadays, with the enormous de-
velopment of data science, there is a huge interest related to the network inference,
namely detecting the interacting structure from external measurements or observations.
For example, reconstructing the structure of brain networks from the activity of neu-
ronal patches has been a major goal in computational neuroscience [5]. The dynamics
that takes place on networked systems can, in some cases, strongly influence the percep-
tion that we have regarding local topological features such as the degree [6] or global
ones such as network non-normality [7].

In this work, we focus specifically on the problem of measuring network centralities
from the dynamical point of view. We show that the inference of networks’ structural
properties depends heavily on the competition between the node-based dynamics on
one hand and the interactions between the nodes on the other. In particular, we illus-
trate such a phenomenon based on the communicability centrality [8], considered as a
reliable measure for dynamical inference [9]. We show that when the local intra-nodes
dynamics is slower than the inter-nodes one then the ranking of the nodes according
to the standard definition of the communicability, becomes inadequate. Such ranking
can be enhanced if further information regarding the nature of the dynamics occurring
on the network is available. As an example, we show that for networks with different
time-scale structures such as strong modularity, the existence of fast global dynamics
can imply that precise inference of the community structure is impossible.
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2 Results

To illustrate our analysis we will consider the SI model for epidemic spreading in a
metapopulation network [10, 11]. Such a formulation of the spreading processes has
been employed to model, for example, the propagation of misfolded proteins in neu-
rodegenerative diseases [12]. The mean-field dynamics reads:

S,‘ = *(XS,‘Il‘Jr(l - OC)ZZ]'S]'
J
Ii=aSili+(1-a)) %1, )
J

where S, I are the concentrations, respectively, of the susceptible and the infected in-
dividuals, « is the infection rate, 1 —  the diffusion constant and .Z is the Laplacian
matrix defined as .%; = /; — k; where k; is the degree of node i [2]. Starting from
this model, we will compare the effectiveness of measuring the nodes’ centrality from
the dynamical observables and compare it to different structural definitions (commu-
nicability, modularity etc). To do so we first select the most central node of the graph
(e.g., the one with the highest betweenness) as the observation node and then take the
time needed for the infection to reach such node as the dynamical observable. We will
indicate the observable as RT; and will refer to it as the corresponding reaching time
for the starting node i. We prove that if the dynamics of the network outcompetes that
of the nodes, o < 1/2 then the range of values taken by the reaching time R7; over all
nodes i is small. This means in the presence of noise in the experimental data (due to the
stochastic nature of the process and measurements) it is not possible to distinguish the
nodes anymore. To emphasize this point, we consider a strongly modular topology [2],
a feature of crucial importance in modern computational neuroscience [5]. In Fig. 1 we
show that in a general system which dynamics depends on both the network connections
and the node dynamics as in eqgs. (1) is not possible to infer the structural properties as
e.g. the modularity in a correct way. Moreover, the accuracy of the resolution depends
on the competition between these two dynamical components of the system.

Summary: In order to determine the role that each node has inside a complex network,
several centrality measures have been developed so far in the literature. In this paper,
we show that when the dynamics taking place at the local level of the node is slower
than the global one between the nodes, then the system may lose track of the structural
features. On the contrary, when that ratio is reversed only global properties such as
the shortest distances can be recovered. In this sense, our results constitute an uncer-
tainty principle where inferring the structural properties of a network at a global level
(e.g. modularity) means sacrificing resolution of the local dynamics of the nodes, and
vice-versa. For illustration purposes, we show that for strong modular networks, the
existence of fast global dynamics can imply that precise inference of the community
structure is impossible, particularly in the presence of noise.
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Fig. 1. a) We plot the normalised reaching time R7T; variable of the four modules (indicated by
roman numbers) showing that for decreasing values of the o parameter (as in the legend) the
ranges of the dynamical variables for different modules overlap. b) The correlation variable for
each couple of modules (with the exception of the first) as a function of a. ¢) We show how the
resolution of a given reconstruction method can be affected by different choices of the tuning
parameter (for the same values as in panel a)). ¢) A representative visualisation of the networks
reconstruction where it is shown the gradual deformation perceived in the network modularity
from: ¢q) (o = 0.65) the original 4 modules topology, ¢» (& = 0.2) modules I/ and /11 have
merged and c¢3 (o = 0.05) where module IV is now merging with the union of the modules
11 —111. The modular network has 100 nodes and has been generated through a Stochastic Block
Model with total link density p = 0.2 and probability 0.01 for an inter-module link.
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1 Introduction

The understanding of the variability and susceptibility of individuals’ attitudes and
opinions, when exposed to random influences from their milieu, is a central question
in the social sciences. We here address this question by a spin-model of agent opin-
ions that are coevolving with their social network. We show how groups of agents with
opposing opinions form in the low exposure regime, while groups disappear above a
critical level of exposure. Within the presented approach, the effect of “’social balance”
— a concept first introduced by Heider [1], is explicitly taken into account with a new
term in the model Hamiltonian. The dynamics can be understood by the phase diagrams
of the model.

2 Results

In Heider’s social balance theory, a group of three individuals forms a balanced triangle,
if either all the three are mutual friends or two of them are friends who both have the
same enemy as the third. They form an unbalanced triad, if either all three are mutually
hostile, or one of them has two friends who detest each other (see Figure. 1). If such
a situation occurs, agents strive to reduce the tension in their unbalanced triangles by
flipping one of the three links, so that balanced triangles tend to remain in the network.
Assuming that this fact, as well as the tendency of agents to avoid contention with their
neighbours, are key driving forces in social dynamics, we arrive at the Hamiltonian:

H:—ZJijS[Sj_g Z Jijl ki (M
(i.)) (i,J,k)

where both the opinion s; of individual i and the links J;; between individuals i and j can
take values {—1,1}. That is, opinions s; can be yes/no answers to a political question,
while links J;; represent friendship and enmity relationships, respectively. In Eq. (1),
the first term biases friends to be of the same opinion and enemies to be of opposing
opinions, while the second term, which takes into account the effect of triangles on
the system dynamics, biases triads towards ”social balance”. The parameter g € (0, 1),
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allows us to continuously control the relative weight of the topological effect. Based
on this Hamiltonian, the coevolution of opinions and network links is implemented by
using the Metropolis algorithm [2]. Here, at every time step, both an opinion and a tie,
are chosen at random to be independently and subsequently flipped if this decreases the
Hamiltonian energy H or with a probability e~ /T if this is not the case, where 7 is
the social temperature which represents random influences from the individual milieu.
For simplicity, we consider only fully-connected undirected networks, where every one
knows everyone else.

Fig. 1. Balanced and unbalanced triangles.

The network structure that is relevant to our purpose can be characterised by a topo-
logical variable f, which measures the difference of the fractions of balanced and un-
balance triangles in the network:

na, —NA_
— 4y A 2
f= @)
where M = ny, +ns_ and na, (ny_) are the total number of triangles and the number
of balanced (unbalanced) triangles in the network of social ties. For fully-connected
networks of size N, M = (1;/ ) Thus, f = 1, if all the triangles are balanced and f < 1 if

on or more unbalanced triangle are present. We call f the “net balance”.

When there is no unbalanced triangle in the network, it has a special structural prop-
erty. According to Harary’s theorem [3], the set of nodes is partitioned into two disjoint
subsets % and %,, one of which may be empty, such that all links between nodes
of the same subset are positive and all links between nodes of the two different sub-
sets are negative. The existence of these two clusters suggests the definition of another
measure, that we call the group difference, which characterizes the final distribution of
agent opinions between them,

1
mg:N<Zsi—ZSi>. A3)
€A €%,

By definition, m, € [0,1]. m, takes its maximum value 1 if and only if each of the two
clusters %) and A, consist of like-minded agents but the opinions are contradictory
between agents belonging to different groups. This picture is analogous to what happens
if two clusters of classical Ising-spins are coupled to each other by anti-ferromagnetic
interactions. At low temperature, due to the ferromagnetic interactions between spins
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inside a cluster, they are aligned in the same direction, but spins in different clusters
must have opposite directions as their interactions are anti-ferromagnetic.

In figure 2, we show that by Heider’s structural balance, the society can eventually
reach a balanced state in which opinions are split into two disjoint groups respecting
this principle (yellow region in the figure). The stronger the effect of triangles is (i.e.,
the larger g), the more stable this bi-partition is against the destructive effect of the
social temperature T. However, for fixed g, as long as the temperature increases, these
clusters disappear and opinions become randomly distributed amongst agents (the dark
blue region in the figure), marking a continuous phase transition in both the net balance,
f, and the group difference, m,.

f m
1 9 —1
0.8
0.6
o 0.5
0.4
0.2
0 =0
0 1 2 3 4 5 0 1 2 3 4 5
T T

Fig. 2. The net balance f (left) and the group difference m, (right), as a function of the social
temperature 7 and the relative strength of the triangle effect compared to the agent pair-wise
interaction g. Results averaged over 103 realizations of the model (1) by the Metropolis algorithm
with 10* time steps for fully-connected networks with N = 10 nodes.

3  Summary.

We investigated the role of social balance in the coevolution of individual opinions and
their social network. In particular, we have shown how this effect can lead to a sim-
ple understanding of the polarization of society that is observed today. Within the new
framework, the question about the stability of this polarization under social perturba-
tions can also be fully addressed.
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1 Introduction

Understanding the dynamics of face-to-face interaction networks is essential for ex-
panding our knowledge of how diseases spread, how information is exchanged or how
communities form and evolve [1]. However, it has been difficult to find simple processes
that reproduce the structural and dynamical properties of these networks including the
recurrent formation of groups of the same people, which originate from human motion
patterns that are far from random [2]. For this reason, models like the attractiveness
model [3] that are based on mobile interacting agents that perform random walks are
unable to reproduce the abundance of recurrent components found in real systems, even
thought they can reproduce a variety of other important properties.

In this extended abstract we present the Force-directed Motion model (FDM), which
has been recently published in PRL [4]. The model suggests that hidden similarity dis-
tances between the agents act as forces that direct their motion towards each other in the
physical space where they move, and determine the duration of their interactions. The
FDM reproduces a wide range of properties of real systems, including the formation of
recurrent components.

2 Model description

The FDM assumes that the agents move and interact in a closed two-dimensional Eu-
clidean space (an L x L square), and that they also reside in a hidden similarity space.
Our choice for the similarity space is the simplest metric space, a circle of radius
R = N /27 where each agent i = 1,2,...,N is assigned a random angular coordinate
6; € [0,2x]. Thus, the similarity distance between two agents i, j is s;; = RA6;;, where
AQ;j = m—|m—|6; — 6;|| is the angular distance between them.

Time in the model is slotted and at the beginning of each slot r = 1,2,...,T the
agents can be either inactive or interacting. Then:

1. Each inactive agent i is activated with a preassigned probability r;.
2. Each interacting agent i escapes (i.e., quits) its interactions with probability:

Z e*si/‘/ﬂll7 6}

A1 5
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where .4(¢) is the set of agents that are interacting with i in slot #, while parameter
U1 is the decay constant allowing us to control the average contact duration.

3. Each agent i that becomes active or escapes its interactions updates its position
q; = (x},)}) according to the following motion equation:

—q})
@ =g+ ¥ 5 ,H, T —qn @
JjeL(t)

where .7 (1) is the set of all moving and interacting agents in the slot, v; = (vcos ¢;,
vsin ¢;) is the random motion component, where ¢; is sampled uniformly at random
from [0,27] and v > 0 is the random displacement magnitude. F;; = Foe i/t is
the magnitude of the attractive force between agents i and j. Parameters Fy and
Up control the rate at which recurrent components form as well as the size of the
largest component.

4. All agents that updated their positions transition to the interacting state if they are
within interaction range d from other non-inactive agents. Otherwise, they transi-
tion to the inactive state.

3 Results and discussion

As an illustrative example here, we use the FDM to model the face-to-face interaction
network of a Primary School in Lyon, France [5]. This temporal network consists of
the interactions between 242 individuals over 2 days for approximately 8.5 hours in
each day. Interactions were registered every 20 seconds if the individuals were facing
each other within a range of 1-1.5 meters. The total number of non-empty snapshots
of 20 seconds in the data is 3100. However, we remove the snapshots corresponding to
the lunch break period in each day when some students go home to eat and the others
interact in the common grounds of the school. This leaves us with 2378 snapshots.

We generate an FDM temporal network with parameters: N = 242, T = 2378,
L=098, u; =0.35,F=0.2, uy =0.78,v=d =1 and r; = 0.5 for each agent i (details
of how to tune the model parameters in the modeled counterparts of real systems can be
found in [4]). For comparison we also generate a temporal network with the attractive-
ness model [3], with parameters N =242, T = 2378, L =50,v=d =1 and r; = 0.5 for
each agent i.

Fig. 1a shows the recurrent components observed during the first day in the Pri-
mary School with the observation period (x-axis) binned into intervals of 30 minutes.
Figs. 1b,c correspond to the recurrent components observed in simulated networks with
the attractiveness model and the FDM. To generate these plots, we have extracted the
unique components found in the respective network and assigned them IDs in order of
appearance. In the plots, the recurrent components, i.e., the components that appeared
at least once in a previous time interval are marked with blue lines. The recurrent com-
ponents in the FDM are as abundant as in the real network. In stark contrast, they are
scarce in the attractiveness model. In Figs. 1d,e we also see that the FDM reproduces
other important properties of the real network, like the distributions of the contact and
intercontact durations. Finally, Fig. 1f shows the probability that two agents are con-
nected in a slot as a function of their similarity distance s;; in the FDM. Remarkably,
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without enforcing it into the model, this probability resembles the Fermi-Dirac connec-
tion probability in the S' model of non-mobile complex networks [6]. We explore this
connection in [7].

3 Attractiveness Model

Primary School
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Fig. 1. Top row: Unique and recurrent components in the Primary School (a), a simulated net-
work with the attractiveness model (b), and a simulated network with the FDM (c). Bottom row:
distributions of contact (d) and intercontact (e) durations in the Primary School and the FDM.
(f) Probability that two agents are connected in a slot as a function of their similarity distance s;;
in the FDM.

We report similar results for other face-to-face interaction networks and illustrate
a similar behavior of spreading processes in real and FDM-simulated networks in [4].
Our results pave the way towards simple yet realistic models of face-to-face interaction
networks.
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1 Introduction

Social media platforms record a multitude of information pertaining to the behavior and
language of billions of individuals. Emotions play a crucial role in these phenomena but
are rarely explicitly expressed [2]. They must therefore be assessed from text content
by sentiment analysis algorithms. However, the high frequencies of common terms in
a language can obscure actual expressions of sentiment. For example, the positive sen-
timent values of holiday greetings (e.g. “happy holidays”) will bias many sentiment
analysis tools towards positive assessment regardless of actual sentiment fluctuations.
This same effect may obscure the diverging emotional responses of sub-populations,
e.g. in the case of significant sports events or elections (e.g. "win” vs ”lose”). A sim-
ilar issue may occur in the case where individual sentiment fluctuates simultaneously
along different dimensions or instances of mood, such as Valence and Arousal, or Acti-
vation [3, 6, 1].

2 Results

Following [8], we leverage the Singular Value Decomposition (SVD) [4] of a sentiment-
time matrix to separate actual changes in user sentiment from sentiment observations
resulting from default term frequencies in a language. In effect, we show that the SVD
reveals “eigenmood” from sentiment analysis data by their decomposition into singular
value approximations.

We demonstrate this approach using a sample of 3,624 Twitter users that mentioned
a mental health issue such as depression in at least 1 tweet. We obtained their individ-
ual timelines, i.e. a longitudinal record of their most recent 3,200 messages, from the
Twitter API. We estimate a tweet’s Valence, Arousal, and Dominance sentiment from
the average CRR ANEW lexicon [5] ratings of its terms. From these scores, we create
a time-series of weekly averaged sentiment scores for each individual user.

Aggregating these time-series for all users we obtain a probability distribution of
mean sentiment values for each week in our data. This results in a matrix of weekly
sentiment distributions which we use as the basis of our analysis. For all users we con-
sider sentiment values for a time span of 80 weeks, i.e. January 2" 2017 through July
15" 2018. The resulting matrices are visualized in Fig. 1 A and E as heat maps in which
the color intensity of each cell indicates the number of tweets whose sentiment value
falls in a given sentiment bin.
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The SVD factorizes a matrix M in three matrices U - X - V where the matrix X con-
tains the singular values of the matrix M. Our approach isolates distinct eigenmoods
from these singular values, the distribution of which is shown in Fig. 1 D. The largest
singular value has a disproportionate magnitude earlier shown to correspond to the base
sentiment distribution of the English language [8, 7].

We can construct different approximations of M or remove noise by retaining sin-
gular vectors of interest. For instance, if we only retain the first singular value in the
top-left spot of a matrix X (by setting every other entry in the diagonal matrix to 0) and
compute U - £ -V, we obtain an approximation M' of M shown in Fig. 1 B and F. These
reconstructed matrices capture the expected stable sentiment distribution of the English
language. In contrast, if we remove the first singular vector, by calculating M — M, we
obtain the matrices shown in Fig. 1 C and G. In Fig. 1 we observe a bi-modal sentiment
distribution in our sample group (two yellow bands in Fig. 1 C), ending approximately
at week 50, which was previously hidden in the overall sentiment distribution captured
by M'. We obtain similar but visually less pronounced effects when applying this tech-
nique to the longitudinal sentiment of single individuals (an example shown in Fig. 1 E,
F and G).

The detection of eigenmoods in aggregate or individual social media sentiment may
enable the characterization of change points by projecting the sentiment distribution of
individual weeks along different singular vectors of our decomposition as previously
demonstrated by [8]. This approach may have applications to the detection of changes
in individual sentiment related to the dynamics of mood disorders.
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Fig.1: Eigenmood analysis of Twitter sentiment distributions. A and E: mood matrix (M) for
a group of users and a randomly chosen individual respectively. B and F: first singular value
approximation (M'). C and G: remaining sentiment signal after removal of first singular value
approximation from original M — M"). D: spectrum of singular values for group sentiment-time
matrix.
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Fig. 1. Left: Classifier performance with different feature sets: word count, sentiment, syntactic
features (in blue), vocabulary-based features (in orange), and combinations of them (in green).
Vocabulary plus POS Tags is the best performing approach. The red line shows the random baseline.
Right: Average IC of texts in the three subreddits considered, binned by text length (log of the
number of words). Depression-related posts and comments have higher IC compared to texts of
comparable length from the other two subreddits.

Social networks are heavily polarized [5,3], which calls for technological solutions
that can effectively bridge conflicting communities. In the past, researchers have studied
conflict on social media and its effect on the network structure as well as on the use of
language [4,9]; however, it is still unclear what are the best strategies to resolve conflict.
We propose a computational social science solution to the problem of conflict resolution
by operationalizing the concept of Integrative Complexity.

Integrative Complexity (IC) is a psychometric that measures the ability of a person to
recognize multiple perspectives on a particular issue and connect them, thus identifying
paths for conflict resolution [13]. The lowest end of the IC spectrum is associated with
inflexible, fixed perspective thinking and the highest end with integrating groups of
perspectives in an elaborate, hierarchical fashion [2]. IC has been applied to a wide
range of source materials, including diplomatic communications, political speeches,
personal correspondence and legal judgments [13]. As a result, it has been presented
as a powerful predictor for a variety of outcomes, such as international conflict [12],
aggression [14] and political preferences [7]. However, scoring the IC of a text is a
manual, time-consuming task to be carried out by trained experts. Previous efforts have
attempted to automatizing IC scoring with simple vocabulary-based classifiers [6,1].
However, in its original definition, IC is concerned not with what we say, but how we
say it. In this work [10], we show that syntactic information is crucial to generalize
automated IC scoring.
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From an extensive corpus of text manually labeled with IC scores [6], we extract
several families of textual features (text length, POS Tags, Dependency subtrees, LIWC,
sentiment) and use them to classify the level of IC in documents. The combination
between vocabulary features and syntax features (POS Tags) outperforms all previous
approaches and other feature combinations (Figure 1 left).

We run for the first time a large-scale analysis of Integrative Complexity expressed
in social media by applying our model to 400k+ Reddit posts, with the goal of build-
ing evidence about our method’s external validity. We based our analysis on previous
literature [11] that showed that the level of IC tends to increase during periods of
severe personal distress (e.g., following the death of a loved one or a betrayal). We
therefore compare texts from /r/depression, a forum intended for sharing negative expe-
riences and providing social support, with other two communities, /r/AskScience and
/r/AskHistorians, which are focused on knowledge exchange. In agreement with the
theory, we find that posts in the /r/depression subreddit, where users write about their
experience of depression often triggered by difficult personal circumstances, grief, and
other traumas [8], exhibit higher IC than what is measured in the discussions about
non-dysphoric experiences of the other two fora (Figure 1 right). We provide extensive
quantitative and qualitative analysis of the posts to support our findings.

From the theoretical standpoint, this work reinforces the evidence that IC can be
effectively operationalized and that it can be done most effectively when language syntax
is brought into the equation. By opening our method to the research community, we
hope to encourage its application to a wider range of domains; in particular, we believe
it can enable important practical applications in social media analytics. Since previous
research has shown that Integrative Complexity is a good predictor of the richness of
dialogue [7], we believe that automatic measurement of IC will have an important role
in tackling the resolution of conflicts in an increasingly polarized social media space.
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Assortative mixing in networks is the tendency for nodes with the same attributes,
or metadata, to link to each other. It is a property often found in social networks man-
ifesting as a higher tendency of links occurring between people with the same age,
race, or political belief. Assortativity by gender has often found to be weak or non-
existent (e.g. [7]) when measuring it as a global average across a population. However,
recent work has demonstrated that more specific gender mixing preferences may be
more prevalent at more localised scales [1, 6]. It is reasonable to suggest then that the
gender mixing preferences may vary between groups or organisations, each of which
may be represented as a distinct social network. However, making comparisons across
networks can be non-trivial and is a problem that has thus far received little attention [3].
Here we address this issue by developing a method for making meaningful comparisons
of mixing preferences across networks.

Quantifying the level of assortativity or disassortativity (the preference of linking to
nodes with different attributes) can shed light on the organisation of complex networks.
It is common practice to measure the level of assortativity according to the Newman’s
assortativity coefficient [5], the network analogy of Pearson’s correlations for attributes
across edges. Accordingly, the assortativity coefficient is normalised to lie in the range
r € [—1,1], where r = 1 indicates perfect assortativity with only links between nodes
of the same type and » = —1 indicates perfect disassortativity in which links only con-
nect nodes of different types. However, when applied to categorical attributes, such as
gender, we find that properties of the network imposes more restrictive bounds on the
possible range of assortativity values such that the extremal values of 1 or —1 are no
longer attainable [2]. Differences in the relative group size are an important factor in
this effect. This presents a problem when comparing assortativity across networks as
changes in assortativity are confounded with differences in the network structure.

The difficulty associated with comparing gender assortativity across networks is
exacerbated when the group sizes are imbalanced. This is of particular concern because
the level of assortativity has recently been shown to have an effect on the visibility of
a minority group in a network [4]. In science, where women are under-represented, it
becomes difficult to compare different organisations (represented by different networks)
or to evaluate the impact of policy changes when the groups sizes and connectivity are
changing.

Here we propose a solution (details omitted for space reasons) based on normal-
ising the marginal link distribution incident on each gender group. Figure 1 displays
a comparison between Newman’s assortativity and our proposed normalised variant.
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ap=0.5 ap=0.1

Fig. 1. (A) Two examples of normalized assortativity. When the proportion of edges incident on
each group is balanced (ay = a; = 0.5) the original Newman’s assortativity and normalised as-
sortativity coincide. When they are imbalanced (e.g. ag = 0.1), the normalised assortativity is no
longer linear, but instead a smooth function that permits the full range of assortativity (7 € [—1, 1])
and preserves the same definition of random mixing (» = 0). (B) The normalized assortativity as
a function of the ratio of within group edges to across group edges. We see a consistent definition
of assortativity as a function of the ratio, irrespective of the group sizes.
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Consequently we are able to capture and qualitatively evaluate the distribution of mix-
ing patterns across different networks in a population (see Fig. 2).
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Fig. 2. The gender assortativity of the APS collaboration network over time.
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Introduction

Social relationships are among the most important things in our life. They determine
and relate to who we marry, where we work, and what we make. They take center
stage in our digital lives too. Social-networking sites are made of relationships, and the
act of maintaining them results into bridging and bonding forms of social capital and,
ultimately, into well-being. Researchers have tried to capture the nuances of relationships
by measuring them in terms of tie strength. Yet not all ties of the same strength are
created equal. Many social factors are too intertwined to consider tie strength a complete
or even a distinctive characterization of a relationship. In this study, we set out to 1)
study how people perceive the richness of their relationships beyond tie strength by
identifying the main dimensions that define social interactions and 2) develop machine
learning tools that are able to infer those interaction types from conversational text.

The 10 dimensions of social exchange

We reviewed the relevant literature in sociology and social psychology and obtained eight
tentative dimensions along which relationships could be classified. Independently, we
asked 100 crowd-sourcing users to describe their relationships with words and obtained
1,352 terms, 220 of which were unique. We then asked another set of 100 crowd-sourcing
users to validate each of these 220 terms through a structured survey. As a result of the
crowdsourcing, each word has been characterized by a 100-dimensional rating vector
that allowed us to compute the relatedness of words and extract cohesive groups of terms.
The groups we found overlap to a large extent with the eight dimensions we found in the
social pyschology literature and add two new dimensions. The final list [5] consists of
10 dimensions: similarity [10], social support [8], trust [14], romance [3], identity [12],
respect [7], knowledge [8], power [2], fun [11], and conflict.

Descriptive and predictive power of social dimensions

To show how this nuanced classification can be used to enchance network science
applications, we run a study using a dataset [1] of textual conversations between linked
individuals in an online social network. Each dimension is associated to a set of terms
from the crowdsourcing; therefore, for each social tie, we were able to match the terms
that reflect each of the 10 dimensions, with the words occurring in the conversation. We
label each edge with the dimension having the highest number of matching words. We

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



176

selected 100k connected pairs (positives) and 100k disconnected ones at 2 hops away
(negatives) to run a link prediction experiment in two scenarios. In the first, we predict
the presence of a link from A to B based on their common neighbors count CN. In the
latter, we use a feature vector whose entries count the number of common neighbors
who are connected to A with a link of a given type (e.g., “support”). In a supervised
learning setting with 10-fold cross validation, the latter scenario brings an improvement
of 9% in AUC compared to pure CN. Decomposing the tie strength (number of common
friends) into its components improves our ability to predict the network structure. The
improvement is significant; in link recommendation a +1% in AUC, on a large scale,
leads to a large increase in the number of links created.

In addition, when analyzing the sub-graph induced by links of a given type, we
find that network properties vary as one would expect from social psychology theories.
For example, the network of knowledge exchange tends to be assortative whereas the
network of respect is disassortative (people who have high “reputation” are given status
mostly by less-respected members of the same community).

Learning the 10 dimensions from text

Finally, to go beyond simple word-matching strategies, we trained a classifier that is able
to label conversational text according to the 10 sociological dimensions we identified.
To perform the training in a supervised fashion, we collected labeled data using two
approaches.

First, we collected 10k comments from reddit.com extracted at random from all the
reddit comments posted in 2017 and trained Mechanichal Turk workers to label these
comments with any of the 10 dimensions. Each comment was labeled by at least three
workers and we considered positive examples those labeled with the same dimension by
at least two workers.

In the second approach, we have developed an online platform (www.tinghy.org)
where users login to play through Twitter, their timeline data is accessed and they are
sequentially presented with 10 of their actual friends. For each friend, they rate the
extent to which that relationship is described by our 10 blocks. The user interface is
“gamified” so that the experience is fun and rewarding. This platform allowed us to collect
conversational data (i.e., mentions) that are implicitly labeled with the 10 fundamental
dimensions. So far, we collected data from 500+ users.

Using the data collected and a variety of classifiers (XGBoost [4] trained on a number
of NLP features; LSTM [9] and BERT [6] trained of word and sentence embeddings [13]),
we achieved very encouraging prediction results in terms of AUC (up to 0.85) when
training independent binary classifiers for each individual dimension . In the future,
we plan to make the crowdsourcing data and the prediction model available to the
community to enable network scientists to study the nuances of social exchange in
conversation networks.
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Summary. In online platforms, recommender systems are responsible for directing
users to relevant contents. In order to enhance the users’ engagement, recommenders
adapt their output to the reactions of the users, who are in turn affected by the recom-
mended contents. The aim of this work is to make explicit the feedback loop between
the evolution of the user’s opinion and the personalised recommendation of contents.
While our work — described fully in [8] — does not consider a social network for the
sake of analytical tractability, similar ideas can be applied to more complex situations
where recommender systems mediate social interactions.

1 Introduction

Recommendation systems are ubiquitous in all kinds of web services, such as search
engines, social networking service, e-commerce platforms. Their purpose is sieving the
information available to them and provide the user with the most relevant items. As
online activities become more prominent in the lives of the people, questions are asked
about the effects (if any) of recommendation systems on the online and offline behaviors
of the users. Our investigation specifically questions the role of personalization.

The issue of personalization is specially perceived as relevant when it comes to the
access to news. While on one side personalization enhances user experience, on the
other side political activists and scholars have raised concerns that excessive personal-
isation narrows down the positions available to users about specific issues, effectively
enclosing users into so-called “filter bubbles” that favour the emergence of opinion
polarisation and radicalisation [5, 6]. Even though this concern has been downplayed
by subsequent research [1], it is clear that personalization has at least the potential to
reinforce the user’s idiosyncrasies and biases, like the confirmation bias.

We propose a tractable mathematical model of the interplay between a user and a
learning system that provides her with personalized recommendations, and quantify the
reciprocal reinforcement of confirmation bias and personalized curation. Our work —
described fully in [8] — is related to several recent papers that have tried to incorporate
some models of online platforms in models of opinion dynamics [2, 3, 7]. For the sake of
analytical tractability, our model neglects the network effects induced by the interaction
of multiple users connected via social ties: we indeed believe that our model is a step
toward the investigation of such more complex scenario.
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2 Model

We model the opinion formation process of a user that reads news from a news ag-
gregator that provides personalized recommendations, see Figure 1. We restrict our-
selves to news that bear implications for one specific issue, say, highlighting the ben-
efits/drawbacks of immigration. News articles are characterized by a (binary) attribute
that defines their positive or negative position p,(t) on the given issue. The opinion
of the user oy (f) evolves as an affine system that integrates the received news (actu-
ally, their positions) along time. Owing to the confirmation bias, i.e. the unintentional
tendency to acquire and process evidence that confirms one’s beliefs, news items are
clicked upon clk(z) with a probability that is larger when their position is closer to
the current user opinion. The recommender system has the objective of improving the
engagement of the users, measured as the number of clicks. In order to achieve this
purpose, the recommender tracks the number of times that a specific position has been
recommended (r, (¢), r_(¢)) and clicked upon (a, (), a_(¢)). The recommender follows
arandomized strategy that, based on these counts, balances “exploration”, that is, iden-
tifying which position is more appreciated by the user, with “exploitation”, that is, pro-
viding the user with news that are most likely to be clicked on. Hence, the recommender
systems responds to user behavior.

> User opini I
»| Us pinion oy (7
| wr(8) | clk(7)

Part(?)

Recommender System counters r, (¢), a, (t),r_(t),a_(r) |+—

Fig. 1. The closed loop between the user and the news aggregator. The diagram includes the
variables exchanged by the two interacting dynamical systems, and their internal state variables.

3 Results and Conclusion

We observe that typical trajectories of the dynamical model are characterized by a def-
inite majority of either positive or negative recommendations, see e.g. Figure 2. Such
observation supports the analysis of the expected dynamics conditioned upon a given
majority: these conditional expectations can be derived in closed-form and turn out to
describe the stochastic dynamics very accurately. Statistically, we observe that recom-
mendations produce a significant polarizing effect on the opinions and that this effect is
closely entangled with their effectiveness in terms of increasing the click-through rate.
Hence, our analysis suggests that mitigating the impact of the recommender system on
the opinions has a price in terms of the achievable click-through rate.

While we believe that our model is relevant to the heating debate on the impact
of machine learning on our societies, we are well aware of its limitations. Indeed, our
model describes the behavior of a single user, but real recommender systems deal with
large numbers of users that can have social ties and shared interests. Our recommender
system is not allowed to exploit neither of them while real recommender do [4]. More-
over, recommendations are the only drive to the opinion dynamics in our model. Instead,
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Fig. 2. A simulation of our model where the majority of recommended articles has negative posi-
tion (top plot). Consequently, the user opinion becomes negative regardless of its initial positive
prejudice (middle plot). Subject to the confirmation bias, this user favours articles with negative
position. The recommender recognizes that by computing the acceptance rates of the different po-
sitions (lower plot) and in this case continues to recommend mostly article with negative position,
to exploit the user preference and maximize the clickthrough rate ctr(z) := (a, (¢) +a_(¢))/z.

opinion dynamics are also driven by a network of social interactions (both directly and
through the recommender system), creating a complex entanglement of effects.

On this matter, experimental studies on Facebook have reported that ideological
contents are primarily filtered by user’s social connections rather than by the curation
algorithms, suggesting that user preferences may have stronger impact than algorith-
mic personalisation [1]. A future model that includes both social and recommendation
effects, like in the recent paper [7], could shed more light on this issue.
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1 Introduction

Several complex tasks require some form of coordinated collective action to produce
non-rival goods such as music, cinema, national defense etc. The relationships rooted
in collective action for production of these non-rival goods are based on emotional and
cognitive ties [13]. One such example is making of films wherein film performance is
not only dependent on individual creative talent but also on direct or indirect
relationships among the film professionals (i.e. their network structure). This network
structure of professionals working on a film is revealed through their prior film
collaborations. Surprisingly, India produces more films and accounts for the largest
number of cinema goers compared to any other country in the world. However, in terms
of performance which can be assessed either on the basis of the quality of content as
assessed by legitimate users or on the basis of its box-office earnings, American
(US/Canada) and Chinese film industries are far ahead of India [5]. Intrigued by this
observation and in our quest to understand the relational configurations that effect
performance of movies released in India, we curate the year-wise network data of
professional collaborations in movies during two decades (2000 — 2019) from Internet
Movie Database (IMDDb) and study the properties and mesoscopic structures within
these networks.

We pose following research questions so as to emphasize the focus of our work.

1) What are the temporal network characteristics of collaboration network of
movies released in India?

2) On what basis are communities organized in film collaboration network and
is there any correspondence between community structure and film perfor-
mance? To this end, we propose a new fuzzy-rough set based community de-
tection algorithm for weighted networks.

3) What is the relative performance of proposed approach as compared to state-
of-the-art methods for community detected in weighted networks?

Addressing these questions, we expand the past research which has mainly focused on
box office performance as a function of variables related to value chain of movie such
as genre, screen count, advertising etc. [2,3,5].

2 Proposed Methodology

First we form weighted networks for each year starting from 2000 to 2019 as there was
a marked improvement in the quality of production of Indian cinema in 2000 due to
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2
Table 1: Summary of Twenty Collaboration Networks
Movie Released Movies in # of Movie # of # of
(Year Window) Network Professionals Links Communities Detected

1997-2000 1694 5193 44648 721

1998-2001 1828 5640 46467 814
1999-2002 1957 6135 49313 784
2000-2003 2062 6600 52735 939
2001-2004 2156 7118 57482 1080
2002-2005 2213 7592 62118 982
2003-2006 2171 7980 65247 1131
2004-2007 2142 8371 67204 1186
2005-2008 2145 8937 69947 1291
2006-2009 2148 9564 72947 1245
2007-2010 2367 10768 80222 1608
2008-2011 2569 11845 86253 1792
2009-2012 2765 12960 92491 1937
2010-2013 3092 14537 102119 2197
2011-2014 3367 15853 108780 2083
2012-2015 3730 17597 119384 2641
2013-2016 4117 19547 131135 2957
2014-2017 4292 20753 136119 3080
2015-2018 3852 19429 125740 2876
2016-2019 3099 16766 104185 2467

technological advancements in cinematography, story line, special effects and anima-
tion. Given that collaboration in film industry is characterised by rapid construction and
disintegration on project by project basis [10], we control for relationship decay using
a three year moving window [1]. As shown in Table 1, for a given year (say 2004), its
collaboration network consists of all the film collaborations that took place during last
three years and that year (2001-2004). We use the resulting twenty time-varying
weighted networks to compute network properties and reveal community structure.
To account for bias in edge weights due to popularity of film professionals, we follow
a two-step normalization process [15]. First, we normalize an edge weight between two
professionals Vi and vj by setting the weight as
/ Wij
Wij = m; x m; (1)
where w;; is the total number of movies in which vi and vj have collaborated, m; and
m; are the total number of movies on which vj and vj have worked. In the second step,
we normalize all Wl-’j by dividing each edge weight with the maximum edge weight
obtained from first step. Thus normalized adjacency matrix of a network is given as:

!

Wij

Ay = { /maxv(u) {wi’j} if node v; connects to node v; (2)
0 otherwise

An example of edge normalization using our two-step normalization process is shown
in Figure 1. Once, normalized network is obtained, weighted neighborhood subset
(WNS) of each node in the network is formed. Subsequently, constrained connected-
ness upper approximation subsets based on a concept related to rough set theory [11]
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Figure 1. (a) Weighted Toy Network (b) Toy Network with Normalized Weights

are computed by iterating until convergence. The concept of weighted relative connect-
edness (WRC) (as shown in Eq. 3) is used to constrain and merge the sets during each
iteration. This notion of WRC is used to compute similarity between every pair of nodes
and filter out the nodes for which WRC < § in each iteration (where § is a user-defined
threshold and § = 1 for toy network).

|[WNS(v;) n WNS(v))|
min(|WNS(v;) — WNS(v;)|, [WNS(v;) — WNS(v))|)

WRC(v;,v;) = 3)
For better understanding, we illustrate the computation of weighted relative connected-
ness between nodes V7 and Vg of a toy network shown in Figure 1. The weighted neigh-
borhood subsets of v; and V9 can be denoted as WNS(v,) =
{(5,0.70), (8,0.25), (9,0.76), (10,0.69)} and WNS(vo) =
{(6,0.97),(7,0.76), (8,0.45), (10,1) } respectively. Now, using the concepts of fuzzy
set theory [14], weighted relative connectedness between vz and Vg can be calculated as
follows:

IWNS(v7) 0 WNS(v5)] = [{(8,0.25), (10,0.69)} | = 0.94

[WNS(v,) — WNS (v)| [WNS(v,) N WNS(vy)|=
|(5,0.70)(8,0.25)(9,0.76)| =171
[WNS(vo) — WNS(v,)| = [WNS(ve) N WNS(v,)¢| =

1(6,0.97)(7,0.76)(8,0.45), (10,0.31)| = 2.49
WRC (v,,v5) = 0.94/(min(1.71,2.49)) = 0.94/1.71 = 0.549

The synergistic use of WRC and upper approximation identifies meaningful communi-
ties in a weighted network. As expected, two overlapping communities viz.
(1,2,3,4,5,6) and (6,7,8,9,10) were identified in toy network by the proposed method.
To further evaluate the proposed method, we conducted experiments on benchmark
weighted networks viz. Karate club network, SFI collaboration network, Les Misera-
bles, C. elegans neural network and US Air Transportation network [4,6,12]. The de-
tected community structure in these networks is consistent and coherent with the re-
spective ground truth structure.

We also study structural properties of these weighted networks such as power law de-
gree distribution, local and global clustering coefficients, betweenness and eigenvector
centralities, average path length, structural holes, embeddedness, community structure
and rich club effect [8]. For studying these weighted network properties, we use more
sophisticated measures as compared to traditional measures for unweighted networks
[7,9]. The examination of year-wise distribution of movies in terms of genre, average
and variance of year-wise movie ratings also reveals interesting observations.
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3 Research Findings and Implications

This research has several findings that can aid producers and movie studios in produc-
ing commercially and/or artistically viable content at the box-office. The findings sug-
gest that group performance surfaces across structural holes and network closure. Cen-
trality analysis reveals that lesser popular actors who appear quite frequently for nega-
tive or comic roles in Indian movies have higher eigenvector centrality. Since, the ei-
genvector centrality connects focal individual to many others (directly and indirectly),
without being resource intensive in managing focal individual’s network, this finding
implies that if one is a good character actor, then that person can work with stars, who
themselves may not work with each other. Further investigation reveals that collabora-
tion networks of movies released in India do not follow weighted rich club effect (Fig-
ure 2). This finding indicates that prominent movie professionals in India do not share
their strongest ties with other prominent professionals rather with less prominent pro-
fessionals. The proposed community detection approach identifies low-budget, high
budget, low performing and high performing movie collaborations in the Indian film
industry. Experiments and comparative analysis with state-of-the-art algorithms con-
ducted on real weighted networks show that proposed approach provides significant
improvements in identifying communities within weighted networks. This research has
several managerial implications such as providing guidance to film makers in maxim-
izing revenues through strategic assembly of movie team, predicting the future collab-
oration patterns of film professionals and deriving meaningful insights about the con-
troversial issues such as nepotism in Indian film industry. Further, this research work
driven by real-world data has instructional value to similar research areas such as fi-
nancial contagion in banking system and brand advertising on social media platforms
where business networks may be studied.

Weighted Rich Club Effect

Prominence (degree greater than)

Figure 2. Absence of weighted rich club effect for the collaboration network of movies during
2014-2017 (Similar effects were observed in collaboration networks of all other year windows)
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The social brain hypothesis approximates the total number of social relationships
we are able to maintain at 150 [1]. Such a theoretical cognitive limitation emerges in
several other contexts from the patterns of human mobility to the way we communi-
cate. Furthermore, the uptake of social media has radically changed the way we con-
sume content online. Indeed, the way we consume information and the cognitive limits
and algorithmic mechanisms underpinning them have a bearing on foundational issues
concerning our news consumption patterns. Recent studies targeting Facebook [2] have
shown that content consumption is dominated by selective exposure — i.e. the tendency
of users to ignore dissenting information and to interact with information adhering to
their preferred narrative —

and that individual choices more than algorithms [3] also characterise the consump-
tion patterns of users and their friends [4].

In such a vein, we perform a thorough quantitative analysis to characterise users’
attention dynamics on news outlets on Facebook. In particular, we study how 14 mil-
lion Facebook users distribute their activity among 50000 posts, clustered by topics,
produced by 583 pages listed by the Europe Media Monitor over a six-year time span.

We find that users, independently of their activity and of the time they spend on-
line, show a tendency to interact with a very limited number of news outlets. To test
the presence of selective exposure, for which evidence emerges from users focusing
their attention on a set of preferred news sources (as shown in the top panels of Fig-
ure 1), we analyse how homogeneously users distribute their activity across pages and
topics. More precisely, the concentration of the distribution of likes towards a certain
page or topic signals the presence of selective exposure, while the heterogeneity of such
a distribution determines the strength of selective exposure. Such heterogeneity in the
distribution of users’ likes is quantified by means of the Gini index [5], a classic ex-
ample of a synthetic indicator used for measuring inequality of social and economic
conditions, that we renormalise for being applied to sparse data [6].

We find that highly engaged users tend to concentrate their activity on few pages
while being less selective of the topics presented by the pages. In general, we observe
that selective exposure increases in strength when the activity of users (i.e. the number
of likes) grows but is not affected by users’ lifetime (i.e. the time span between the first
and the last like).

Our results suggest that the tendency of users to limit their attention to a smaller
number of news sources might be one of the factors behind the emergence of echo
chambers online. Such an outcome still underlines the tendency of users towards seg-
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regation, partly because of their attitude and cognitive limits, and partly because of the
features of the social media in which they operate.

Fig. 1. Top-left panel: relationship between the average number of pages that received likes by
users with respect to their activity (quantified by the number of likes). We observe that the average
number of pages reaches a plateau of ~ 10 pages for users with an activity of more than ~ 300
likes. Top-right panel: relationship between the average number of pages that received likes by
users with respect to their lifetime (quantified by the time between the first and the last like). We
observe that the average number of pages grows slowly and reaches a value of ~ 3 pages for most
lifelong users. Bottom-right panel: the distribution of selective exposure to pages with respect to
users’ activity shows that increasing activity levels correspond to higher selective exposure, i.e.
users concentrate on fewer pages. Bottom-right panel: the distribution of selective exposure to
topics with respect to users activity shows that increasing activity levels correspond to lower
selective exposure, i.e. users concentrate on a higher number of topics. Topics are obtained by
processing posts using a state-of-the-art topic modeling algorithm.
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1 Introduction

As noted by Kardar and Kaufman: “The study of competing short-range and long-range
interactions is relevant to a variety of problems in statistical mechanics”. Indeed, one
can easily indicate a number of natural processes in which elements interact both lo-
cally and globally [1]. Such competing interactions are frequently responsible for the
universality of many self-organized patterns observed in condensed matter physics [2,
3]. However, the mutual existence of forces with different length-scales is not only lim-
ited to physical or biological systems. In fact, more and more empirical studies are
pointing out that the overall social influence results from such a composition of local
and global interactions [4—6]. In the era of omnipresent mass media and online social
networking, people’s interactions are certainly no longer restricted to physical contacts.
Their range, in fact, extends easily even beyond geographical borders. This rises a justi-
fied question about the significance of these interactions in shaping trends and opinions.
Do such forces lead to characteristic macroscopic patterns as their counterparts in con-
densed matter physics? Can we observe some universal features of social systems with
competing social influences? Finally, what is the impact of a social structure in all of
this?

Our research builds upon a recent correlation study on social influence in online
movie ratings [5]. Having analyzed tendencies among reviewers to conform to already
existing comments, the authors reached a conclusion that opinions expressed by friends
and strangers cause different social responses. It turned out that those shared by the
friends only led to conformity in issued reviews, whereas those of strangers might
also excite anticonformity depending on the movie popularity. These findings suggest
that some types of social responses may be associated with specific interaction lengths.
Concerning a friendship network in this particular study, local interactions with nearest
neighbors manifested only conforming nature, whereas those global ones with strangers
also displayed anticonforming properties.

Our work is directly inspired by this observation. We have picked one of the prime
models in the field that already incorporates these two types of social responses, and we
have checked how different constraints on the interaction ranges impact its behavior in a
stationary state. We have examined the model on different complex networks generated
by Watts and Strogatz’s algorithm [7], hoping to also determine the role of the social
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structure in such systems. Monte Carlo simulations are backed up with mean-field and
pair approximations.

2 Model description

This study focuses entirely on the g-voter model with anticonformity and conformity
introduced in Ref. [8]. In the original model, interactions occur exclusively between
voters that are direct neighbors. In the friendship network, it translates to forces be-
tween friends. We call such interactions local. In the current study, we also consider
global interactions. These are not limited by the network structure, and they can extend
throughout the system, reaching also strangers. Although the empirical study suggests
which of the social interactions is long-range, we can imagine that it is the social con-
text that dictates the range of forces. Therefore, we compare four g-voter models with
different combinations of local and global sources of conformity and anticonformity.
In all cases, social influence originates from a unanimous group of ¢ distinctive vot-
ers. However, depending on a considered interaction range, members of this group are
randomly selected at the local or global level.

3 Results

The parameters of studied systems have been chosen to accord with psychological the-
ories of social responses, and they reflect properties of real structures. In systems with
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Fig. 1. Phase diagrams for dynamics with (a) global anticonformity and local conformity and (b)
local anticonformity and global conformity on Watts-Strogatz networks with N = 28160 nodes,
the average node degree (k) = 50, and different values of rewiring probability 8. The group of
influence consists of ¢ = 4 members for all cases. The concentration of voters with one of two
possible opinions is denoted by ¢, whereas the control parameter, which represents the level of
anticonformity in the system, by p. Solid thick and thin lines illustrate mean-field (MA) and pair
(PA) approximations, respectively. Marks correspond to Monte Carlo simulations.
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global anticonformity and local conformity, the majority opinion is the most sensitive to
structural changes in the friendship network (see Fig. 1a), and its formation is possible
on the smallest interval in the parameter space. A system that exhibits such interactions
is reported in the cited study on movie ratings. In contrast, combining local anticon-
formity with global conformity makes the majority opinion more resistant to structural
changes (see Fig. 1b). In fact, the influence of the network structure on the final opin-
ion is negligible for the parameters that characterize many real social systems. In these
cases, only the average number of friends in the population impacts the outcome. Al-
though the limiting behavior of all the dynamics is the same, the differences between
them are noticeable for the typical values of the average node degree found in real-
world structures. Thus, if the models of opinion dynamics intend to properly capture
the collective human behavior, it is important to accurately determine the ranges of
social interactions since they can completely change the system properties.
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1 Introduction

Homophily plays a significant role in shaping social structure and in influenc-
ing dynamics on social networks. Recently, researchers have traced a link be-
tween homophily and minorities, revealing that homophily accentuates under-
representation in rankings of social networks with minority groups. In this paper,
we study the impact of such dynamics on face-to-face interactions. Precisely, we
characterize discrepancies in the interactions of minorities and majorities, and
subsequently develop a model to explain them. First, we expose some charac-
teristics of the networks that emerge from face-to-face interactions: degree dis-
tribution, strength distribution, and contact duration distribution. In line with
previous studies, we find degree inequality emerging as a consequence of social
interactions. We argue that besides attractiveness, homophily plays a significant
role in these differences. We evaluate attribute assortativity and the connectivity
between classes. Finally, we propose a network model of face-to-face interactions
based on attractiveness and homophily. We show that the discrepancies in the
data can be explained by the addition of homophily in the model.

2 Results

We studied the social networks of schools and conferences that used sociopattern
proximity sensors to collect face-to-face interactions[1,2]. With these data sets,
we built the social networks in which a node is a person, and an edge indicates
interaction between two people. In these networks, the degree distributions are
well behaved around a center tendency. The data also contains the gender in-
formation. In all considered cases, there exist less female students than male
students.

Degree inequality and mixing in social networks

We first characterized the group connectivity patterns in the social networks. For
this, we measured the average degree of each group in the networks (Fig. 2A).

-
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Fig. 1. Schematic description of the attractiveness—mixing model.
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Fig. 2. Degree inequality and mixing in face-to-face social networks. The
empirical average degree of the minority and majority is compared with the model

We found a systematic degree inequality among groups. The minorities exhibit
lower average degree than the majorities in all classes but School 5, in which the
opposite occurs. The previous model of face-to-face interactions in space with
intrinsic attractiveness of the individuals fails to explain this observation[3] as
it neglects relational attributes in social dynamics.

Here, we present a social network model of physical proximity that incorpo-
rates (i) intrinsic attributes of individuals and (ii) relational attributes between
groups. We show that these ingredients are sufficient to explain degree inequal-
ity observed in social dynamics with minorities. In this model, each individual
has an intrinsic attractiveness that is drawn from a uniform distribution. The
members of a group share the same mixing pattern, which tunes how individuals
interact with others. In general, individuals move across the space depending on
their label and the composition of their surroundings (see Fig. 1). While the
previous intrinsic-attractiveness model proposes that individuals are more likely
to interact with high intrinsically attractive individuals, here we argue that this
likelihood also depends on the mixing dynamics between the groups.

In the attractiveness—mixing model, each individual has three attributes: a
label b; € [0, B—1], where B is the number of groups; an intrinsic attractiveness
n; € [0,1]; and an activation probability r; € [0,1]. The mixing patterns in this
system are encoded in the B x B mixing matrix h. Each row of h can be seen
as a probability mass function that weighs the likelihood of group interaction.
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In the model, N individuals perform random walks in a two-dimensional L x L
periodic space and move based on the composition of their vicinity. For this, we
define N;(t) as the set of individuals who are within radius d from the individual
i at time ¢. The individuals move only probabilistically. At each time step ¢, each
individual ¢ moves with probability

() =1— By ), 1
pi(t) jglN%{m biby (1)

In this model, an individual interacts with others depending on their perceived
attractiveness—as perceived by the group of this individual. Each individual
moves with a step of length v along a random direction of angle ¢ € [0, 27).
Finally, individuals can be active or inactive; they only move and interact with
others if they are active. An inactive individual ¢ becomes active with probability
r;, whereas an active but isolated individual ¢ becomes inactive with probability
1 — r;. In this study, we assume that the intrinsic attractiveness 7; and the
activation probability r; come from a continuous uniform distribution in [0, 1].

Our results suggest that in order to have more accurate models of social
interactions in physical proximity it is crucial to account for mixing patterns
between the groups. In addition, we show how these mixing patterns result in
surprising degree ranking inequalities for minorities and majorities.
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1 Introduction

Climate change awareness plays an important role in behavior change towards a more
sustainable future [3]. Social media such as Twitter reflects public awareness as more
people are taking on to social platforms to express their opinion [4]. Several efforts
have been made to analyze public sentiment based on crowd sourced information. Most
of these efforts are in the health care sector and focus on disease awareness and epi-
demiological spread [1]. There has, however, been less research combining sentiment
analysis and social media on the ways information on climate change or sustainabil-
ity issues spreads. In this paper, we address this gap by relating the awareness about
sustainability issues to socially created norms, thereby discussing the roles of hubs and
peripherals.

2 Methodology

In order to understand what factors influence consumer sentiment on sustainable coffee,
we scraped Twitter as the crowd source for ‘psychological wisdom’[6]. We used SM
tweets in the last 10 years from 4,000 users who recently tweeted about coffee in the
Netherlands (1M tweets in English).

Each tweet is analyzed for its content and sentiment. First, the tweets are tagged
by their content. Tweets containing ‘sustainability’, ‘climate change’, etc. are tagged as
sustainable tweets; tweets containing ‘coffee’ are tagged as coffee tweets; within this
set of coffee tweets, any mention of ‘sustainable’, ‘organic’, ‘certified’ is tagged as a
sustainable coffee tweet. Secondly, we applied sentiment analysis to the tweets based
on Syuzhet’s sentiment algorithm [7]. Each resulting sentiment score is in the inter-
val [—1,1], with negative sentiment receiving the score of —1 and positive sentiment
having a score of 1. The sustainability or sustainable coffee sentiment is then normal-
ized to the user’s average sentiment score. Thirdly, a network is created with users as
nodes and mentions, including retweets and replies, as edges. Such edges are preferred
over a friendship network as they are dynamic and potentially change every month.
Fourthly, we run a regression on the sentiment score to understand which factors influ-
ence consumer sentiments on sustainable coffee. Then, we divide the data into two sets,
hub and peripheral. This discrimination is made based on both network topology and
the users’ tweeting patterns. The latter of these two factors is important in the context of
this paper because it incorporates information about the way Twitter users interact. The
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same regression as before is run again on both sets in order to compare the behavior
between the hubs and peripherals.

According to the Theory of Reasoned Action [2], intention is influenced by attitude
and social norms. Here, intention is understood as sentiment/awareness about sustain-
able coffee, while attitude is sentiment about sustainability issues in general. As neigh-
boring users can have influence on one’s sentiment, their sentiment is considered here
to be a ‘social norm’. To understand the contribution of each of these factors, we ran
several regressions: ordinary least square (OLS), random effect and fixed effect. OLS
and random effect both perform worse than fixed effect, based on the Hausman test.

We are looking for ways to explain the monthly sentiment score sc,; about sustain-
able coffee (with respect to a user u at time #) in terms of the sentiment score s,,; about
sustainability (independent of the coffee), as well as both sentiment scores aggregated
over the neighborhood N(u,t). Here Twitter is treated as e-word of mouth [5], which is
why the neighborhood has a social influence to the user # and thus potentially opposes
Social Norms to u. The final regression thus takes the following format:

| = 1 = 1
= . B e ——— / B e ——— K / E =: % 1
SCut ﬁs Sut + ﬁs \N(u,t)| MIENE(M’[*)Su it + IBSC |N(u,t)| MIENE(MJ;‘CM it + SCy. ¢t (1)

In addition, we explored whether the current sentiment towards sustainable coffee sc,, ;
can be explained by the corresponding past sentiment sc, ;1. Equation 1 thus trans-
forms to \

SCy.t = g‘eu,t + Olsc - SCyt—1 (2)

In both cases, we divide the Twitter users into hubs and peripherals, based on the
count of followers, status and favorites. The former is defined as Twitter users who
have a high number of followers tweeting frequently and highly-liked content. Hubs
have thus the potential to steer the direction of the discussion based on the ability to
spread large information over the network. It can be expected to see a difference in
information diffusion behavior based on the different network topology.

Similar to the case of the sentiment score, a corresponding regression can be made
for the awareness about sustainability. Awareness about sustainability is simply a value
of 0 or 1, with 1 mentioning the term and O otherwise.

3 Results and Discussion

The fixed effect regression shows that social norms, created by the neighborhoods, have
a more significant predictive power toward the sentiment of sustainable coffee than

Table 1. Fixed Effect Regression for Sustainable Coffee Sentiment

Coefficient ~ Whole network Hub Peripheral
@S 0.005£0.002 0.034+0.013* 0.002 £0.003
Bs 0.002 £0.002 —0.009 £0.000 0.004 +£0.002
Bse 0.762+£0.011*** 0.984+0.030***  0.729+£0.011***

p <001, p <005 p<0.1
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Table 2. Fixed Effect Regression for Sustainable Coffee Sentiment

Coefficient ~ Whole network Hub Peripheral
Bs 0.000 £ 0.002 0.002 £0.004 —0.002 £+ 0.003
Bs 0.014£0.001***  —0.001 £ 0.004 0.015 £0.003%**
Bse 0.554£0.011%%* 0.999 £0.010%** 0.532+£0.012%**
Ose 0.093 £0.013%** 0.000£0.022 0.096 +0.014%**

the user’s own sentiment of sustainability (Table 1). That is network influence is more
important than intrinsic attributes. Further, there is a difference in the behavior of hub
and peripherals. Based on the definition given above, we refer to 154 Twitter users as
hubs, making up 3.7% of the data set. The hubs correlate almost perfectly with the
sentiment of their neighbors, which reflects their role to spread information, whereas
for peripherals, this correlation is not as strong.

Based on our analysis incorporating the past sentiment (Table 2), only an insignifi-
cant relationship between the lagged term and the sentiment score of tweets containing
sustainable coffee could be observed. A possible explanation is the diversity of mes-
sages being tweeted or the temporal scale being too granular.

The study shows that the ways a user is able to influence other users’ sustainable
coffee sentiments depends on the topology of the social network. In fact, we were able
to demonstrate that the sentiments about sustainable coffee of users within the neigh-
borhood is far more important than the sentiment of sustainability alone. In case of
communication about sustainability issues, it could be traced that hubs are thus very
effective (and influential) in affecting other users’ sentiments.

We were not able to fully explore the ways past and present sentiments are linked
through time. Future research could explore different temporal aggregations, thus as-
suming another scale of analysis. Further, we would like to include different time lag
with respect to Equation 2. These considerations may lead to an improved understand-
ing of how sentiments are influenced through social networks.
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Models of opinion dynamics that show discontinuous phase transition are one of
the most desirable. One of the main reasons for this may be the existence of so-called
social hysteresis in many societies, animal as well as human. Thus we ask a question
about the possibility of discontinuous phase transition within threshold models. It was
checked for some type of majority vote model [1], but we want to check if discontinuous
phase transition is possible, when we introduce non-absolute majority type.

Hence, we analyze two variants of the modified Watts threshold model with a noise
[2]1[3]. Models are analyzed analytically using the Mean-Field Approximation, Pair Ap-
proximation method [4] and numerically by Monte Carlo simulations. All models are
considered on the complete graph, random regular graph and Watts-Strogatz graph.
Agents are affected by two forces, conformity and nonconformity (independence or
anticonformity), which can order or disorder the system. Here conformity acts as an
ordering force and anticonformity acts in the opposite way, i.e. disorders the system.
As an order parameter, we use magnetization which is defined as the mean across all
states of agents in the system.

We consider a system of N agents, which are described by the binary variables
S = +1. Agents are placed in the nodes of an arbitrary graph. At each elementary time
step, we pick one agent randomly and decide which of two types of behavior she/he will
perform in a given time step: with probability p an agent will nonconform (anticonforms
or acts independently) and with probability 1 — p conform to the major opinion. In
both cases, we check if the concentration of agents with opinion S = +1 across all
neighbors is bigger than a set threshold r > 0.5, i.e. we check which opinion is major
in the neighborhood. In case of conformity a voter will take the same state as the major
opinion and in the case of anticonformity the state opposite to the major one. In case of
independence, an agent acts independently, i.e. with probability % flips to the opposite
state.

We investigate the model via the mean-field approach, which gives the exact result
in the case of a complete graph, as well as via Monte Carlo simulations. General results
for the model with independence [3]:

CstBl—cS, - (1 - Cst)BC.vt

pP= ; ey
% —Cst — (1 - Cst)BcS, + CstBlfcst
whereas for the model with anticonformity:
p= Bcst — Cst (Bcst +Bl*0st) , (2)

Bcst - Bl_Cst
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where

B.=P(X; > [r(N-1))), 3)
>

Bl =P(X; > [r(N-1)]),

where X is a binomially distributed random variable with N — 1 number of trials and
success probability in each trial equal to ¢, and X is a binomially distributed random
variable with N — 1 number of trials and success probability in each trial 1 —c.

We show that indeed if the threshold r = 0.5, which corresponds to the majority-vote
model, an order-disorder transition is continuous. Moreover, results obtained for both
versions of the model (one with independence and the second one with anticonformity)
give the same results, only rescaled by the factor of 2. However, for r > 0.5 the jump
of the order parameter and the hysteresis is observed for the model with independence,
and both versions of the model give qualitatively different results, see Fig. 1

Moreover, similar tendencies were observed on a random regular graph and Watts-
Strogatz graph. We observe exactly the same behavior as before for parameter k=N — 1,
what corresponds to the complete graph (k describes degree for all nodes in the net-
work). But additionally we observe some interesting behavior for other values of k, for
example, parameter k seems to be responsible for discontinuity of the order parame-
ter in the independence case. In the Watts-Strogatz graph case, parameter 8 (rewiring
probability) seems to change position of tipping point. We check also if we can observe
the 1st order phase transition in the anticonformity case on the complete graph. For all
networks we derive an analytical solution using Mean-Field and Pair Approximation
approach. And as before we have validated them by Monte Carlo simulations.
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Fig. 1. Phase diagrams for the model with independence for different values of the threshold r.

Lines indicate the analytical prediction from MFA and dots represent results of MCS from the
initial fully ordered state (¢(0) = 1) for the system of size N =5- 10* [3].
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Semantic Networks and Belief Change
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Many people hold beliefs about scientific issues that are not in line with the sci-
entific consensus. Even though 86% of scientists who are members of AAAS think
that parents should be required to vaccinate their healthy children and 88% think ge-
netically modified (GM) food is safe to eat, only 68% of the U.S. public think that
all healthy children should be vaccinated and 37% think it is safe to eat GM food [8].
Erroneous beliefs about scientific issues can have important societal consequences, in-
cluding measles outbreaks [7] and precarious farming economies [6].

Beliefs about scientific issues are often related to various moral considerations in
complex semantic networks [1]. For instance, beliefs about vaccines and GM food can
be connected to the perceived unfairness of the practices of pharmaceutical and biotech
companies, which in turn might be related to environmental concerns. Using these indi-
rect moral arguments could be more effective at changing minds than solely providing
facts [9]. In other words, when there is a strong relationship between a scientific belief
and a moral consideration, it might be necessary to first change the moral consideration
in order to change the scientific belief. However, if this moral consideration is itself
tightly associated with other moral considerations in one’s semantic network, or struc-
turally embedded [3], it might be difficult to change it and, consequently, to change the
related scientific belief [5].

We explore how structural embeddedness of moral considerations related to beliefs
about vaccines and GM food affects the likelihood of belief change about the safety of
these technologies. We hypothesize that 1) beliefs about a moral consideration related
to vaccines and GM food will be less likely to change if that consideration is strongly
connected to other moral considerations within one’s semantic network, and 2) beliefs
about the safety of vaccines and GM food will change most after interventions targeting
considerations that are well connected to safety concerns but, at the same time, less
connected to other moral considerations.

1 Methods

We collected data within a longitudinal experimental survey with Mechanical Turk par-
ticipants whose beliefs were not aligned with the scientific consensus about the safety
of childhood vaccination (N = 409) or GM food (N = 406).

In three survey waves, we measured participants’ beliefs about safety of vaccines
and GM food (safety beliefs), as well as their related moral considerations belonging to

This work is supported by award no. 2018-67023-27677 from the USDA National Institute
of Food and Agriculture. The funder had no role in study design or interpretation of the results.
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six different moral domains [4]: whether they benefit children and environment (Care),
are part of one’s tradition and approved by appropriate agencies (Authority/Respect),
are natural and in line with God (Purity/Sanctity), positively affect one’s family and
country (Loyalty), are fair to different actors, such as big corporations, patients, and
farmers (Fairness), and whether one is free to choose these technologies and has access
to all important information (Freedom). For each consideration, we also measured how
important it is for one’s safety beliefs. In the second wave, participants received edu-
cational interventions including scientific facts about the safety of these technologies
combined with messages targeting one moral consideration, either harm to children,
naturalness, or fairness regarding the profit of big companies vs. patients (vaccines) or
large vs. small farmers (GM food). The study also included questions and interventions
regarding social norms, which will be reported elsewhere.

We constructed a network of moral considerations where edges represented partial
correlations of each consideration with others [2]. We calculated correlations between
each moral consideration and safety beliefs. We approximated structural embeddedness
with two measures: 1) closeness, reflecting the average of each consideration’s par-
tial correlations with all other considerations (the network is fully connected); and 2)
weighted closeness, where each partial correlation was weighted by the consideration’s
reported importance for beliefs about safety. The resulting coefficients for closeness
ranged from .7 to .9, and for weighted closeness from .38 to .64 for vaccines and GM
food, respectively. For each moral consideration, we also computed the ratio of its cor-
relation with the belief about safety over its structural embeddedness. For closeness
(weighted closeness), this ratio ranged from .68 to .88 (10 to 21) for vaccines, and from
.34 to .70 (7 to 11) for GM food. Finally, we calculated the change in beliefs about
safety after educational intervention, as the absolute proportional difference in beliefs
reported in Wave 1 and immediately after the intervention in Wave 2, as well as a week
later in Wave 3. These changes ranged from 11 and 24 percentage points.

2 Results

Figure 1 shows network of moral considerations related to safety beliefs about vaccina-
tion and GM food. In line with our first hypothesis, we find that changes in beliefs about
the moral considerations targeted by our educational interventions are strongly nega-
tively correlated with their structural embeddedness for both beliefs about vaccines and
GM food, when measured as simple closeness (r = —.53 and r = —.97, respectively).
For weighted closeness, the same relationship holds for GM food (r = —.86), but not for
vaccines (r = .69), where a moral value with high weighted closeness (the profit of big
companies) did experience significant changes. In line with our second hypothesis, we
find that changes in beliefs about safety are positively correlated with more correlated
yet less embedded target considerations. The results hold for structural embeddedness
measured both as closeness (r = .43 and r = .35) and weighted closeness (r = .48 and
r = .75, for vaccines and GM food, respectively).

In sum, we show that structural embeddedness of moral considerations strongly
affects the likelihood of changing beliefs about the safety of vaccines and GM food
after educational interventions. While the best educational interventions for each scien-
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Fig. 1. Relationship of different moral considerations with beliefs about the safety of A. vac-
cination and B. GM food. Thicker lines indicate stronger partial correlations, nodes in orange
represent targeted educational interventions, the yellow node represents the outcome.

tific issue differ in content, for both vaccines and GM the intervention producing most
change has one of the highest ratios of its correlation with safety beliefs over structural
embeddedness. Our results suggest that to change scientific beliefs, one should first
attempt to change underlying moral considerations, focusing on those that are impor-
tant for the scientific beliefs but not tightly interconnected with other considerations. In
further research, we will explore other measures of structural embeddedness, such as
betweenness, and study the accuracy of estimated networks of moral considerations.
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Axiomatization of the PageRank Centrality
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1 Introduction

PageRank, introduced over 20 years ago by Page et al. [5], is one of the standard tools
for network analysis. While nowadays PageRank is used in various settings, initially it
was developed for measuring the importance of webpages on the Internet. Using graph
terminology, Internet network is a directed multigraph, were webpages are nodes and
links between them—edges. Additionally, the node weights can be understood as a
baseline importance of a webpage coming from predefined preferences of the user [5],
its relevance to a specific topic [4], or another source.

PageRank belongs to a class of feedback centrality measures. These centralities
are defined through a recursive formula that links the centrality of a node with the
centralities of its direct predecessors. More in detail, PageRank of a node is the sum of
two parts: the first one is proportional to the sum of PageRanks of its direct predecessors
divided by the number of their outgoing edges; the second one is the weight of this node,
i.e., constant b,,. Formally,

PR,,(G)za-( Y P&‘(G)>+bv.
(u

See out-degree(u)

In this paper, we analyse PageRank by providing its axiomatic characterisation—a
set of simple, intuitive properties that uniquely characterise a centrality measure. This
approach allows to highlight similarities and differences between centrality measures
and in recent years has gained popularity in the literature, e.g.: to emphasise the useful-
ness of the Harmonic Centrality [3] or to find common patterns in the behaviour of dif-
ferent centrality measures [2, 7]. In our work, we capture the intuition behind PageRank
with six simple axioms namely: Foreseeability, Outgoing Homogeneity, Edge Swap,
Sink Merging, Twin Sources, and Dummy Node, and we prove that PageRank is the
only centrality measure that satisfies all six of them.

This is the first axiomatic characterisation of the PageRank centrality in its original,
general form. So far, only simplified version of PageRank (without constant b,) has
been axiomatized: Palacios-Huerta and Volij [6] axiomatized Invariance Method which
is equivalent to a simplified PageRank in a setting of a scientific journal citation net-
work; In turn, Altman and Tennenholtz [1] focused on the ranking that results from the
simplified PageRank.

o
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2 Results

Let us present our six axioms and explain the intuition behind them. Five of them de-
fine graph operations under which the centrality should be invariant. The sixth axiom,
namely Dummy Node, determines the exact centrality of a node in the borderline case.

Our first axiom, Foreseeability, states that the importance of a webpage depends
mostly on its backlinks, not its links. Hence, if we remove the part of a network, from
which we cannot reach our webpage by a sequence of links, then the importance of our
webpage should still be the same.

Foreseeability: For every graph G = (V,E) and node v € V, removing every-
thing but a subgraph consisted of v, all its predecessors and their outgoing
edges does not affect the centrality of v.

Observe that since the importance of a link on a webpage depends on the total number
of its links, the outgoing edges of all predecessors of v have to be preserved.

Outgoing Homogeneity, our next axiom, states that the absolute number of links on
a webpage does not impact the importance of any webpage. Since creating a link has
practically zero cost, this property is important to prevent ranking manipulations and
laid at the foundation of PageRank.

Outgoing Homogeneity: For every graph G = (V,E) and constant k € N,
adding k copies of all outgoing edges of node v € V does not affect any cen-
trality in the graph.

For the next axiom, Edge Swap, consider the case when there are two equally im-
portant webpages with equal number of links. Then, the axiom states that the links from
these webpages have equal impact—it does not matter for the importance of any web-
page from which of these two webpages it has a backlink. This property is characteristic
for feedback centralities.

Edge Swap: For every graph G = (V,E), if nodes u,v € V have equal centrali-
ties and equal number of outgoing edges, then replacing edges (u,u’),(v,v') €
E for edges (u,V'), (v,u') does not affect any centrality in the graph.

In our next axiom, Sink Merging, we focus on a situation, where two webpages are
merged into one, preserving their backlinks. If there are no links on both webpages,
then after this operation the importance of a merged webpage is a sum of the original
importance of both webpages.

Sink Merging: For every graph G = (V,E), merging two sinks u,v € V does
not affect the centralities of the remaining nodes in the graph; moreover, the
centrality of the merged node is the sum of the centralities of nodes u and v in
graph G.

Now, imagine that there are two identical webpages without backlinks. In such a
case, our next axiom, Twin Sources, states that if we remove one of them and transfer
its baseline importance to the other webpage, then the importance of webpages in the
rest of the network will not be affected.
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Fig. 1. Six graphs illustrating our axioms. Light grey nodes have weight 1 and dark grey—?2.

Twin Sources: For every graph G = (V,E) and two sources u,v € V with iden-
tical set of edges, removing u and adding its weight to the weight of v does
not affect the centralities of the remaining nodes in the graph; moreover, the
centrality of v is the sum of the centralities of nodes u and v in graph G.

In our last axiom, we consider a webpage without any links nor backlinks.

Dummy Node: For every graph G = (V,E), if node v € V does not have any
edges (outgoing nor incoming), then its centrality is equal to its weight.

Our main result states that these six axioms uniquely characterise PageRank.

Theorem 1. PageRank centrality is a unique centrality measure satisfying Foreseeabil-
ity, Outgoing Homogeneity, Edge Swap, Sink Merging, Twin Sources and Dummy Node.

The early version of this work was presented at the IICAI-18 conference [8].
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1 Introduction

Signed networks are a special type of complex networks with both positive and negative
edges. The positive edges represent positive relationships such as “friends” and “trust”,
and are represented by the positive sign “+”. The negative edges represent negative
relationships such as “enemies” and “distrust”, and are represented by the negative sign
“~". In a signed network, whether two nodes do link each other depends on not only
the number of common neighbors between them, but also the sign and direction of each
edge in their neighborhood.

The most commonly used link prediction algorithm in signed networks is based
on small subgraphs that satisfy status theory, and these subgraphs can be understood
as special cases of motifs [1]. Compared with many global structural features such
as small-world and scale-free, motif (i.e., subgraph) is the most basic structural and
functional unit in complex networks [2]. Link prediction via a motif can be expressed
as: whether two nodes do connect depends on the specific functional units formed by the
edge connecting these two nodes and their neighbors [3]. The motif-based prediction
algorithm considers the connection patterns (including the sign and direction of edges)
between node pairs and their neighbors, so it is applicable to signed networks [4].

The existing motif-based link prediction algorithms for signed networks have fol-
lowing three drawbacks. First, the current methods only focus on motifs that satisfy
status theory [5], but do not consider other types of motifs. Actually, the mechanism by
which the motifs can be employed to link prediction in signed networks is not explained.
At the same time, there is no answer as to explain the mechanism that calculating the
number of motifs on the predicted edge can be used for link prediction. Finally, the
classical algorithms of link prediction are based on only a single motif and do not think
about the relation between different kinds of motifs.

To solve the above mentioned problem, we investigate a novel framework based
on edge-dependent motif for link prediction. In this study, we first use motif theory to
explore the relationship between the number of each motif and its ability for link pre-
diction. Experiments on five empirical signed networks demonstrate that the prediction
ability of a motif depends not on its number in the whole network but on the number
of edge-dependent motifs. Then we explain the edge-dependent motif based link pre-
diction by a naive Bayes model. Secondly, we put forward a signed naive Bayes model
combining two motifs, which has higher prediction performance than a single motif. Fi-
nally, We combine all the types of 3-node motifs to build a machine learning classifier
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based on motif families. The network structure information used by motif families in
link prediction is more comprehensive than status theory and thus gives more accurate
prediction.

2 Results

We combine all the predictors for positive edges to construct motif families. Treat the
scores of edges calculated by 16 predictors as 16-dimensional features, and then use
XGboost for link prediction. The prediction results of the five large-scale signed net-
works based on all the predictors for positive edges are shown in Tables 1. In each
column, the best result and the result based on the motif family (all the motifs) are
highlighted in boldface. From these two tables, link prediction using the motif family is
more accurate than using a single motif, and this conclusion can be drawn from all the
five experimental networks. The motif families not only consider the motifs that satisfy
status theory, but also utilize the motifs that do not satisfy status theory, so they have
higher prediction performance.

Table 1. The results of link prediction by combining multiple positive predictors. Here P repre-
sents the result of Precision.

.|Bitcoinalpha| Bitcoinotc | Wiki-RfA | Slashdot Epinions
Motif

AUC| P |AUC| P |AUC| P |AUC| P |AUC| P

S1 10.782(0.996 |0.775[0.997|0.81410.988|0.634|0.999 |0.838 | 1.000
Sy 10.780/0.993 {0.774|0.996|0.775|0.988 |0.634|0.998 |0.821|1.000
S3 10.786|0.996 (0.778]0.997 0.913|0.996 | 0.655|1.000 | 0.841|1.000
S4 10.534/0.902 {0.533]0.840(0.608|0.874|0.515|0.661 {0.543|0.708
S5 10.509(0.605|0.511]0.611{0.515]0.548|0.506|0.562|0.524|0.614
Se¢ 10.509(0.6130.517{0.679{0.563]0.714|0.533|0.843|0.599|0.974
S7 10.533(0.8780.529(0.823]0.650]0.972|0.527|0.788 |0.582|0.892
Sg 10.539(0.9510.537{0.879]0.641]0.960{0.523|0.739|0.560|0.786
So 10.548|0.966 |0.542(0.937]0.555[0.692{0.510{0.608|0.548|0.731
S10 10.539]0.929(0.533]0.839|0.547|0.662{0.511|0.614 |0.564|0.807
S11 10.537]0.916(0.533]0.842|0.624|0.933|0.521|0.718 |0.555|0.763
S12 10.550{0.981(0.543]0.945|0.706|0.976|0.522|0.733 |0.540|0.692
S13 10.777]0.995 [0.766]0.998|0.6380.935|0.572|0.985|0.736|0.999
S14 10.508]0.585(0.510{0.613|0.554|0.689{0.515|0.663|0.519|0.593
S15 10.533]0.868(0.529(0.810{0.613]0.893|0.518|0.697|0.541|0.697
S16 10.539]0.933(0.536]0.896|0.637|0.962{0.517|0.682|0.530|0.644
All |0.823|0.996|0.825/0.998(0.959|0.9980.7461.000|0.899|1.000
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Then, we compare our proposed method (i.e., Motif Family) with two state-of-the-

art methods in signed networks: FriendTNS [6, 7] and Status Theory [5]. The results
of the predictors for positive edges are shown in Fig. 1, as the size of the training set
increases, the predictive performance of all methods is improved. Furthermore, motif-
based methods (i.e., Motif Family and Status Theory) can obtain higher prediction re-
sults than FriendTNS, and the method of Motif Family obtains the best predictive per-
formance because it considers more types of motifs (i.e., motifs that do not satisfy status
theory) than Status Theory.

0.81
0.78
O ///.
2 e
—B- Motif familiy
0.75 .~ Status theory
~@- FriendTNS
—@- Embedded method
~%— Wrapper method
0.72 —A— Filter method )
SLNB(Random selection)

0.6 0.7 0.8 0.9
Training Size

Fig. 1. The comparison of our proposed method with the existing methods.
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1 Introduction

Network structures are pervasive around us and numerous critical facilities are con-
nected together by various networks. The function and behaviour of networked systems
can be largely influenced by their structural features. In such a framework, network
topology plays an important role. A fundamental issue concerning complex networked
systems is indeed the robustness of the overall system to the failure of its constituent
parts (see [1]). In the recent literature a graph measure called Effective graph resistance,
also known as Kirchhoff index, has gained increasing attention in network robustness
theory. This topological indicator is defined as the accumulated effective resistance be-
tween all pairs of vertices (see [5]) and it has been reformulated as a function of the real
eigenvalues U; of the Laplacian matrix associated to a graph (see [3])

=L

In order to compare the value of the Kirchhoff index for networks with a different
number of vertices n, we can consider the normalized Kirchhoff index defined as (see

[6]):

1
— 1
0 ey

K(G)

n )

()
where the denominator considers the maximum number of edges>.
In [2] and [7], the authors showed that the Kirchhoff index is suitable for assessing the
ability of a network to continue performing well when it is subject to failure and/or
attack. In fact, the pairwise effective resistance measures the vulnerability of a connec-
tion between a pair of vertices that considers both the number of paths between the

vertices and their length. A small value of the effective graph resistance therefore in-
dicates a robust network. A very interesting feature of the Kirchhoff index is that it

KN(G) =

@

3 As an alternative normalization, for sparse graphs, it is possible to consider the number of
vertices.
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shows strict monotonicity when edges are added or removed, in particular it strictly
decreases/increases when edges are added/removed. However, it remains a challenge to
identify a specific indicator that displays all the desirable properties usually requested
for a robustness quantifier and that can be functional to evaluate and compare real-world
networks, especially when topological changes in the network structure have been oc-
curred. Moving along this line, we aimed at presenting a novel robustness measure,
which we refer to as Effective Resistance Centrality, based on the Kirchoff index. In
particular the Effective Resistance Centrality of a vertex (or an edge) is defined as the
relative drop of the Kirchhoff index caused by the deactivation of this vertex (edge)
from the network. In this way, we provide a local robustness measure able to catch
which is the effect of either a specific vertex or a specific edge on the network robust-
ness. Since the degree to which a networked system continues to function typically
depends on the integrity of the underlying network, the question of system robustness
is usually addressed by analysing how the network structure changes as vertices (or
edges) are removed. Several works deal with this topic by evaluating the effect on the
network structure of vertices removed either randomly (see, e.g., [1]) or on the basis of
targeting criteria related to specific centrality measures (see, e.g., [4]). To this end, we
provide a new local measure of importance that can be used as a new criterion for node
(or edge) selection when targeted attack strategies are implemented. We further investi-
gate the validness of our proposal on a wide variety of well-known model networks and
on the United States domestic airport network. In particular, we investigate the role and
significance that airports play in maintaining the structure of the entire domestic airport
network.

2 Effective Resistance Centrality

We now provide a definition and a structural description of the edge-based Effective
Resistance Centrality and vertex-based Effective Resistance Centrality, respectively.

2.1 Edge-based Effective Resistance Centrality

Let G = (V,E) be a k-edge-connected graph (with k > 1) of n vertices and m edges and
Ge, ; the graph obtained by removing the edge ¢; j, connecting vertices i and j, from G.

Lemma 1. If G,, ; is an arbitrary subgraph of a graph G, then K(G,, ;) > K(G)

It is noteworthy to say that, if G is a 1-edge-connected graph, then the resulting
subgraph G, ; can be disconnected. In this case, when ¢; ; is a bridge, we have that
K(Ge; ;) = oo.

We now introduce a new measure able to capture the relevance of an edge in the
network and we refer to it as Effective Resistance Centrality. It is mainly based on the
idea that the importance (or centrality) of an edge is related to the ability of the network
to continue performing well after the deletion of this edge.

Definition 1. The Effective Resistance Centrality Rk (e; j, G) of the edge e; j is defined
as
(AK)E,',_,' . K(Gei,_/) - K<G)

K(G) K(G) ®

RK(e,-‘,j,G) =
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By Lemma 1, (AK),, ; = K(G,, ;) — K(G) must be non-negative, therefore, Rk (e; j, G)
displays monotonicity with respect to edge removal.

2.2 Vertex-based Effective Resistance Centrality

Let G = (V,E) be a connected graph of n vertices and m edges and G,, the graph ob-
tained by removing the vertex v; and all its related connections from G.

Definition 2. The Effective Resistance Centrality Rk (v;,G) of the vertex v; is defined

“ AKY),  KN(G,)—KN(G

Rk (vi,G) is defined by considering at the numerator the drop of the normalized

Kirchhoff index. This choice is justified by the fact that we want to provide a consistent
comparison between graphs G and G,, that have different orders. Notice that in Defini-
tion 1 an eventual use of the normalized Kirchhoff index would lead to the same results
as in (3).
The quantity (AK"),, is not always positive, depending on the relevance of the specific
vertex v; in the network. On one hand, this measure can be useful in order to detect
strategic nodes, whose failure can affect the resilience of the network. On the other
hand, the measure also allows to identify eventual nodes to be removed in order to
improve the robustness of the network.

3 Main numerical results

In the numerical analysis we exploit how node and edges removals affect network
classes with different underlying mechanism. In the Erd6s-Rényi (ER) graphs, we ob-
serve the presence of specific vertices, whose removal can significant improve the ro-
bustness of the network. In general, a lower probability of attachment, and therefore,
a lower density, leads to increase the index, providing a more vulnerable graph. As
well-known, as a random network gets denser, the critical threshold, at which a com-
plex network will lose its giant component, increases, meaning a higher fraction of the
nodes must be removed to disconnect the giant component. Concerning Watts and Stro-
gatz (WS) graphs with higher densities, we derive results in line with the ER random
graphs. Instead, when low densities are considered, the WS graph appears more vul-
nerable than ER to random nodes or edges removal. In the Barabdasi-Albert model, our
findings validate the results of recent studies. Although, in general, scale-free networks
are extremely resilient to random failures, they are also extremely vulnerable to targeted
attacks.

Finally, we explored the behaviour of our proposal by using the peculiar business net-
work of the U.S. airport, where vertices are the airports and edges are related to the
presence of at least a domestic flight scheduled among them in 2017. Results show the
effectiveness of the measures we propose in catching the peculiar characteristics of dif-
ferent nodes in the airport network. In particular, focusing on large and medium hubs,
we are able to emphasize their strategic role in the airport system. We also provided
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a consistent comparison with several well-known topological measures that assess the
node importance (namely, degree, clustering coefficient, betweenness, closeness, eigen-
vector centrality and number of passengers). On average, we notice a significant pos-
itive dependence between different indicators. For instance, top strategic airports are
also selected by the betweenness. It is easy to understand that these airports are vital to
the network and pose serious risks to the structure if disrupted. On the other hand, we
observe that Effective Resistance Centrality and betweenness rank in a different way
medium airports whose removal does not lead to a disconnected graph.
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1 Introduction

A graph embedding is a mapping of the vertices of a graph into k-dimensional vectors.
Good embeddings should capture the graph topology and vertex-to-vertex relationship.
Several graph embedding algorithms are available and for each algorithm, parameters
need to be set such as the dimension of the embedding space. As a result, selecting the
best embedding is a challenging task and very often requires domain experts.

We propose an unsupervised framework for the computation of divergence scores
to compare the quality of different embeddings for a given graph, where quality is de-
fined as preserving the community structure, as in [2]. The framework relies on two
main ingredients: (i) a good, stable graph clustering algorithm; we use the ECG algo-
rithms detailed in [5], and (ii) a generalization of the Chung-Lu model for graphs which
incorporates the geometry provided by the graph embedding.

In order to validate our framework, we ran a large number of experiments with
synthetic networks as well as real-world networks, using various embedding algorithms.

2 Geometric Chung-Lu Model

In the Chung-Lu model [1], given some degree distribution w = (wy,...,w,) over n
vertices vi,...,v,, edge probabilities of a generated graph are defined such that the
expected degrees for the vertices agree with this distribution.

In our proposed Geometric Chung-Lu model (GCL), we also consider an embedding
of the vertices of G in some k-dimensional space & : V — RX. In particular, for each pair
of vertices, v;, v;, we know their distance: dist(&’(v;), & (vj)). We consider 0 < d; ; <1,
a normalized version of those distances.

In the GCL model, the probability that v; and v; are adjacent is proportional to
s(d; j), a decreasing function s. For some choice of ¢ € [0,00), we define s(d; ;) :=
(1—d; j)a for all d; ;’s. This choice gives us a good variety of functions to choose from.
Choosing a large value for & makes it less probable to have long edges in embedded
space. With a small value for o, the distance in embedded space has less importance,
and it is completely ignored when o = 0.

The GCL model is the random graph ¢ (w, &, @) on the vertex set V = {vi,...,v,}
in which each pair of vertices v;,v;, independently of other pairs, forms an edge with

o
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probability p; ;, where p; ; = x;x;s(d; ;) for some learned weights x; € R . The weights
are such that the expected degree of v; is w; = deg;(v;) forall 1 <i <n.

We show in [3] that there exists a unique selection of weights x;, provided that the
maximum degree of G is less than the sum of degrees of all other vertices. Moreover,
we show how to efficiently compute those weights numerically to any desired precision,
which can be made even faster via sampling.

3 The Framework

Given a graph G = (V, E), its degree distribution w on V, and an embedding & : V — R¥
of its vertices in k-dimensional space, we perform the five steps detailed below to obtain
Ag(G), adivergence score for the embedding. We can apply this algorithm to compare
several embeddings &7,...,&,, and select the best one via argmin; Ag (G)

Step 1: Run some stable graph clustering algorithm on G to obtain a partition C of the
vertex set V into £ communities Cy,...,C;. We use the ensemble clustering algorithm
for graphs (ECG) [5], but any other good algorithm can be used.

Step 2: For each 1 <i </, let ¢; be the proportion of edges of G with both endpoints
in C;. Similarly, for each 1 <i < j </, let ¢; ; be the proportion of edges of G with one
endpoint in C; and the other one in C;. Let:

(_::(Cl,Za"'7C1,Zac2,3a'"7C2,Z7-~~3C571,€) é:(Cl,--.,Cg) (1)

be two vectors that sum to one. These graph-based vectors characterize the partition C
from the perspective of G. The embedding & does not affect these vectors.

Step 3: For a given parameter o € R, and the same vertex partition C, consider
4 (w,&, o), the GCL model. For each 1 <i < j </, we compute b; j, the expected
proportion of edges of ¢ (w, &, o) with one endpoint in C; and the other one in C;. Sim-
ilarly, for each 1 <i </, let b; be the expected proportion of edges within C;. We obtain
two vectors:

bs(t) = (b12,--,b10,b235 -y bagy -y be10)  be(a) = (b1,....b)  (2)

that sum to one. These GCL-based vectors characterizes partition C from the perspec-
tive of the embedding &

Step 4: We use the Jensen-Shannon divergence [4] (JSD) to measure the dissimilarity
between the vectors obtained in (1) and (2). In our implementation, we used a simple

average, that is,
1 _ .
Ay = 3 (JSD(e,b(ax)) +JSD(&,b(r))) . 3)
Step 5: Run steps 3 and 4 for several choices of ¢; we tried several values on a grid in
the range 0 < o < 10 in our experiments. Let & = argmin, Ay. We define the divergence
score for embedding & on G as: Ag(G) = Ag.

To compare several embeddings of the same graph G, we repeat steps 3-5 above
and compare the divergence scores (the lower score, the better). Steps 1-2 are done only
once, so we use the same partition into ¢ communities for each embedding.

=
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4 Illustration

We illustrate our framework on the well-known Zachary’s Karate Club graph [6]. We
generated over 600 embeddings in dimension 2 to 128, using several different algo-
rithms. In Figure 1, we display the best and worst embeddings according to our frame-
work. Projection in 2 dimensions is obtained with UMAP!. The different colors and
shapes for the vertices correspond to the two known communities in this graph. We
clearly see that the best embedding does a much better job at keeping the vertices within
each community close. Results over several other real and artificial graphs as well as
using different graph clustering algorithms can be found in [3], all with conclusions
similar to Figure 1.

Fig. 1. The Karate Club Graph. We show the best (left) and worst embeddings according to our
framework given over 600 different choices. Vertex color and shape correspond to the two known
communities. We also display the edges from the graph. We clearly see that the best embedding
does a much better job at keeping the vertices within each community close.

References

1. Chung F, Lu L. Complex Graphs and Networks. American Mathematical Society (2006).

2. Keikha M.M., Rahgozar M., Asadpour M., Community Aware Random Walk for Network
Embedding, pre-print, arXiv:1710.05199 (2018).

3. Kaminski B., Pawel P., Théberge F., An Unsupervised Framework for Comparing Graph Em-
beddings, pre-print, arXiv:1906.04562 (2019).

4. Lin J. Divergence measures based on the Shannon entropy. In: IEEE Transactions on Infor-
mation Theory, 37(1), pp.145-151 (1991).

5. Poulin V., Théberge F., Ensemble Clustering for Graphs: Comparison and Applications, Ap-
plied Network Science vol. 4, no. 51 (2019).

6. Zachary W., An information flow model for conflict and fission in small groups. Journal of
Anthropological Research 33, 452-473 (1977).

"https://github.com/lmcinnes/umap

The 8" International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal

co LEX
NETWORKS
2019



Network Embedding For Link Prediction: The Pitfall
and Improvement

Xiao-Ke Xu, Ren-Meng Chao, and Jing Xiao

College of Information and Communication Engineering, Dalian Minzu University, Dalian
116600, China

1 Introduction

The existing link prediction algorithms can be divided into two categories: structural
similarity algorithms in network domain [1] and network embedding algorithms in the
field of machine learning [2]. In the algorithms of structural similarity, local similarity
indices are the most commonly used because of their low computational complexity,
such as Common Neighbor (CN) and Local Path (LP) indices [1].

Recently, the technique of network embedding has been widely applied in link pre-
diction[3]. It aims to map network data into a low dimensional space in which the net-
work neighborhood information is maximumly preserved [2]. By representing nodes
in a network as vectors, a wide variety of machine learning algorithms can be used
to provide a standard, general and effective solution for link prediction [4]. Besides,
network embedding has benefited many applications like network visualization, node
classification and node clustering. However, in the current researches, there is a lack of
systematic comparison of the two algorithms (structural similarity versus network em-
bedding), and few of them study the shortcomings of network embedding algorithms.

2 Results

Table 1 displays the AUC results of these algorithms. In each column, the best result
is highlighted in bold. A short-path network refers to the network where the shortest
path length between most pairs of nodes is short. On the contrary, A long-path network
refers to the network where the shortest path length between most pairs of nodes is
long. It can be seen that for short-path networks (i.e., Ht09 , Email, and WC networks),
structure similarity algorithms (e.g., CN, LP, and CCN) can achieve excellent predic-
tive performance. Furthermore, structure similarity algorithms significantly outperform
network embedding algorithms in short-path networks. Conversely, for long-path net-
works, the best predictive performance is obtained from network embedding algorithms
(e.g., LargeVis and Node2Vec). In other words, network embedding algorithms have a
great deficiency when performing link prediction in short-path networks.

To explain the phenomenon that network embedding algorithms have a pitfall when
performing link prediction in short-path networks, six real networks are embedded into
vector spaces and the Euclidean distances of node pairs are calculated. Figure 1 shows
the distance distributions of existent and nonexistent links in different networks, and

i
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Table 1. Comparison of the performance measured by AUC, results averaging over 10 systematic
experiments. (d) denotes the average shortest distance.

AUC Ht09 Email WC | Power BP10 MN
CN 0.776 0932 0.171 | 0.615 0.600 0.528

LP 0.757 0920 0953 | 0.689 0.695 0.553
CCN 0.760 0910 0912 | 0872 0915 0.736
Node2Vec | 0.531 0.546 0.667 | 0.863 0.938 0.801
LargeVis 0.506 0.478 0.556 | 0933 0.966 0.842
LINE 0.618 0.730 0919 | 0.613 0466 0.486
GraphWave | 0.484 0.627 0.732 | 0.507 0.541 0.587
(d) 1.65 1.96 222 | 1898 20.85 353

three short-path networks with lower average shortest distance and three long-path net-
works with larger average shortest distance are shown in Fig. 1(a)-(c) and Fig. 1(d)-
(f), respectively. It is found that in short-path networks, the distributions of existent
and nonexistent links overlap to a large extent, which can sharply reduce the algorith-
mic performance. Conversely, in long-path networks, the distances of existent links are
mainly between 2 and 6, while the distances of nonexistent links are mainly between 6
and 8. These two types of links are highly distinguishable, thus better predictive perfor-
mance can be obtained in these networks.
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Fig. 1. The Euclidean distance distributions of node pairs in the vector space after network em-
bedding. (a) Ht09, (b) Email, (c) WorldCites, (d) Power, (¢) Bcspwr10 and (f) Minnesota.
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Based on the above facts, we propose a novel link prediction method to improve
the performance of network embedding algorithms, namely, Network Embedding Sup-
plement the information in the Network Domain (NESND), which supplements local
structure information with network embedding algorithm and is defined as

SnesND = SNE +ASND, (D

where Syg denotes the network embedding information represented by the Euclidean
distance of node pairs, and Syp denotes local structure information from network do-
main. Syesyp denotes the combined information, and A is a parameter that adjusts how
much local structure information is added.

When A = 1, Table 2 list all the AUC values. In each column, the best results are
highlighted in bold. From the table, it can be seen that for short-path networks, the
performance improvements brought by the introduction of CN and LP are greater than
CCN index. This is because in short-path networks, compared with community struc-
ture information, the number of common neighbor and 3-order paths can more accu-
rately characterize node similarity. By contrast, for long-path networks, especially in
Power and MN networks, the enhanced performance brought by CCN index is more sig-
nificance than CN and LP, because it can predict links accurately in both short-path and
long-path networks. The proposed method has 0.2%~8.3% improvement in long-path
networks, while 36.7%~94.4% improvement can be obtained in short-path networks.

Table 2. Comparison of the performance qualified by the AUC results.

AUC Ht09 Email WC | Power BP10 MN
Node2vec 0.531 0.546 0.667 | 0.842 0.934 0.801
LargeVis 0.506 0.478 0.556 | 0.933 0.966 0.842
Node2vec+CN | 0.774 0.927 0.215 | 0.850 0.937 0.801
LargeVis+CN | 0.767 0.926 0.177 | 0.935 0.970 0.845
Node2vec+LP | 0.772 0.929 0.953 | 0.856 0.939 0.801
LargeVis+LP | 0.772 0.929 0.953 | 0.939 0.972 0.848
Node2vec+CCN | 0.772  0.920 0912 | 0.912 0.958 0.834
LargeVis+CCN | 0.772 0.920 0.912 | 0.942 0.968 0.859
(d) 1.65 196 222 | 1898 2085 353
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1 Introduction

A remarkable network model offering a scale-free degree distribution, high clustering
and the small world property at the same time is given by the popularity-similarity-
optimization (PSO) model [1]. In this approach the nodes are placed one by one on
the Poincaré disk representation of the 2D hyperbolic plane with a logarithmically
increasing radial coordinate and a random angular coordinate, and links are introduced
with probabilities following the hyperbolic distance between the nodes. The success
of the PSO model provides a strong motivation for the development of hyperbolic
embedding algorithms, that tackle the inverse problem of finding the optimal hyperbolic
coordinates of the nodes based on the network structure. One of the very promising
approaches to hyperbolic embedding is given by the noncentered minimum curvilinear
embedding (ncMCE) method [2, 3], offering a high quality embedding at a low running
time. In the present work we propose a further optimisation of the angular coordinates in
the framework of the ncMCE approach that seems to reduce further the logarithmic loss
of the embedding compared to the original version, thereby adding an extra improvement
to the quality of the inferred hyperbolic coordinates.

2 Methods

In vague terms, the degree of nodes in the PSO model is determined by their radial
coordinate (lower distance from the origin corresponds to larger degree), and the angular
proximity of the nodes can be interpreted as a sort of similarity, where more similar nodes
have a higher probability to be connected. Therefore, in most embedding algorithms
the radial coordinates are determined based on the degree of the nodes, whereas the
angular coordinates are obtained from some optimisation. In the case of the ncMCE,
first a minimum curvilinear distance matrix is prepared, which is then subjected to
singular value decomposition, and the angular coordinates are obtained from the vectors
corresponding to the first two largest singular values [2, 3].

To measure the quality of the obtained coordinates we can use the logarithmic
loss, corresponding to the log-likelihood of the observed adjacency matrix A given the

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



223

hyperbolic coordinates X, written as

N-1 N N-1 N
LL(X)==InL(AIX) == > > Ay-In(p(xi) = D D (1=Ay)-In(1 = p(xiy)),

i=1 j=i+l i=1 j=i+l
(H

where N denotes the number of nodes and the linking probability p(x;;) depending on
the hyperbolic distance x;; between nodes i and j is specified by the PSO model as

p(x) = (1+ T (-Rn ))~1, where ¢ and T are model parameters and Ry is a system size
dependent radius.

Our suggestion for improving the angular coordinates obtained from the ncMCE is
a direct optimisation of the logarithmic loss, by iterating over the nodes, and in each
iteration optionally modifying the angular coordinate of the current node by calculating
the logarithmic loss for a couple of new angular positions. If a lower LL can be achieved
compared to the original one, the angular coordinate of the node is changed. Since the
original angular coordinates given by the ncMCE algorithm are already quite good, we
can restrict the search for new angular coordinates within the second angular neighbours
of the nodes. The advantage of this choice is that it also allows swaps in the angular
order. The number of tried new angular positions per node, g and the total number of
correction rounds, n are parameters of our method, which of course, should be kept as
low as possible for efficiency. Due to the additive form of (1), at fixed ¢ and n, the time
complexity of our algorithm is proportional to N?.

3 Results

We tested the proposed angular optimisation on both synthetic networks generated with
the PSO model and real networks. According to our results, by working with ¢ = 6 new
angular positions per node, LL(X) can be decreased roughly by 15-20% on average
during the first 5 to 10 rounds. In Fig. 1a we show the average of LL as a function of the
system size for synthetic networks, whereas in Fig. 1b we plot the relative improvement
in LL as a function of the number of correction rounds n under the same settings. The
curves show that the angular optimisation can provide a significant decrease in LL for
both small and larger networks, and the relative improvement seems to converge to a
steady value already at n = 6 — 8 rounds.

In Fig. 2 we show the results for a food web among N = 142 Cambrian species
in the Burgess Shale [4]. The relative improvement in the logarithmic loss (displayed
in Fig. 2a) seems to converge again only under 10 rounds to a value close to 15%. In
Fig. 2b we show the layout of the network on the Poincaré disk. According to the figure,
the originally homogeneous angular arrangement provided by the ncMCE algorithm
has become inhomogeneous, allowing a more clear separation between groups of nodes
which roughly match the trophic roles of the species.

In conclusion, the proposed optimisation of the angular coordinates seems to provide
a substantial reduction in the logarithmic loss of the embedding, at the cost of a relatively
low number of extra rounds of iterations over the nodes. In addition, the modification of
the coordinates for the studied real network seemed to be quite useful. Based on these,
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our extension to the ncMCE can be beneficial in further practical applications where
high quality hyperbolic embedding of networks is important.
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Fig. 1. Logarithmic loss for synthetic networks. a) The average of L L(X) for the original ncMCE
algorithm (blue) and the ncMCE with angular optimisation (purple) as a function of the number
of nodes N, for 100 networks generated by the PSO model with input parameters ¢ 2-1,m=2,
B =2/3and T = 0.3. b) The relative improvement in LL as a function of n.
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Fig. 2. Results for the food web among Cambrian species in the Burgess Shale. a) The relative
improvement in LL as a function of the number of correction rounds n. b) The layout of the
network on the Poincaré disk resulted from the original ncMCE algorithm (left) and the ncMCE
with angular optimisation (right). The spatial separation of the nodes according to their trophic
roles is clearly visible in the hyperbolic plane.
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Designing plausible network models typically requires scholars to form a priori
intuitions on the key drivers of network formation. Oftentimes, these intuitions are
supported by the statistical estimation of a selection of network evolution processes
which will form the mathematical basis for the development of a stylized model. Ma-
chine learning techniques based on evolutionary computation have lately been intro-
duced to assist the automatic discovery of generative models [1,2,3]. Some of these
approaches [3] may more broadly be described as “symbolic regression”, where fun-
damental network dynamic functions, rather than just parameters, are evolved through
genetic programming. In other words, they aim at automatically discovering plausible
network generation laws from a given empirical network — i.e. extracting a generative
genotype based on a static phenotype.

The core of the present contribution consists in applying symbolic regression to
a collection of social networks of the same nature in order to explore the existence of
families of regular generative principles for networks of the same realm. In other words,
instead of looking for classes of network phenotypes, as is classical in the literature [4],
we use symbolic regression to find families of network genotypes, construed as net-
work generators. Our empirical case is based on an original data set of 238 anonymized
ego-centered networks of Facebook friends which were randomly sampled from about
10,000 such networks collected in a large-scale online survey.

Figure 1 shows an overview of the generator search process that we employed.
Generators are represented as tree-based computer programs, which are equivalent to
mathematical expressions. Tree leaves are variables and constants, and its other nodes
are operators. For a given candidate pair of nodes, a generator can compute a value
that maps to the probability of an arc/edge being created between the nodes. Generators
define decentralized growth processes and rely exclusively on local variables expressing
topological features of the nodes, such as their current degrees and network distances,
as well as unique identifiers. The quality of a generator is evaluated by comparing a
synthetic network generated by it with the target network. To measure the similarity
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(a) (b)

Figure 1: (a): Evolutionary loop including the synthetic network generation process. The outer
part of this figure describes evolution at the generator population level, while the framed part on
the right describes the evolution of a network for a given generator. (b): Visual representation of
ego-networks (real) with their reconstruction (left), for a selection of automatically discovered
generative families: ER (Erdos-Renyi), PA (preferential attachment), ID-based attachment, and
SC (featuring the endogeneous emergence of functions providing for Social Circles)

between the generated (evolved) network and the empirical (target) one, we combine
distributions that describe simple aspects of the network, such as in- and out- degree and
measures of centrality, with distributions describing finer and more meso-level aspects
of the structure, such as distances and triadic profiles. A bias favoring shorter generators
is used to avoid overfitting, and to encourage simpler, understandable expressions.

Applying an evolutionary search on each of the above-mentioned Facebook ego-
centered networks, we obtain one most plausible per network, thus 238 in total. Com-
paring generators as mathematical formulas is not a trivial task, but we define an addi-
tional measure of similarity, this time between the generator behaviors, in terms of the
similarity of the networks that they produce. We then used this measure to produce a
two-dimensional embedding of all 238 generators, as shown in figure 2. With the help
of this embedding we made easier the task of manual analyzing generators. In particu-
lar, we look for patterns of similar generators in mathematical terms, i.e. at the level of
the explicit formula.
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Figure 2: Network generators mapped into a two-dimensional layout according to their pairwise
distances. Different colors and shapes indicate families of generators that were manually identi-
fied as semantically similar. The legend shows the pattern that identifies each family.

We identified 11 such strong patterns, that we refer to as “families of generators”.
Five of these families are very simple, some matching well-known models such as pref-
erential attachment and Erdés-Rényi, especially for smaller networks (which may con-
tain less information or be more basic). The other eight have a very strong resemblance
with one another: their link dynamics is strongly influenced by the existence of a certain
number of classes of nodes which likely matches underlying social circles, i.e. cohe-
sive clusters of nodes. This further yields insights on ego-centered sociability networks,
especially with respect to the existence and contribution of social circles in their for-
mation. A simple interpretation for this is indeed that ego networks are a sample of
social groups that ego belongs to. For example: school friends, family, work colleagues
and so on. It makes sense that these groups are much more densely connected within
themselves than between them, as they correspond to separate social spheres.

More broadly, this approach substantiates the existence of a small class of generative
behaviors which are widespread among ego-centered networks. It also opens up to the
possibility of applying this approach to non-social networks as well.
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1 Introduction

Human behaviours often have associated mobility patterns which can be ubiquitously
observed. An in-depth understanding of the laws of human movement would be of great
significance in the fields of public health, urban planning and economic forecasting [1—
3]. Over the past few years, the availability of data sets, such as dollar-bill tracking
and traces of mobile phones, have offered deeper insights for the understanding of hu-
man mobility. However, mobility patterns can be distinct for distinct types of human
activities. In this work, we collect GPS data for an online-shopping app that has more
than 320 million active users. The location data is collected with the users’ permission
and is only recorded when users are active on the app browsing information on goods,
launching an online shopping cart and placing shopping orders. The data set consists of
the locations with longitude and latitude and their time of occurrence for the whole year
(2018). We analyse the mobility patterns of verified users and find scaling behaviour for
the radius of gyration that is different from any previous work [1-3]. A major distinc-
tion is that there are two distinct regimes of users, each one obeying a distinct scaling
relation. This suggests that understanding of the underlying mechanism that correlates
mobility and shopping behaviour is needed. Furthermore, a striking difference also ap-
pears in the scaling laws between verified users and those identified as fraud users which
enables us to develop a classification algorithm based on XGBOOST to identify fraud
users with a high accuracy. Typical fraud behaviours include promo abuse, user abuse
or user takeover on the e-commerce platform.

2 Results

We collect location data from a widely-used online-shopping app with the users’ per-
mission, recording the users’ longitude and latitude, and timestamps, for the whole
year (2018). The data set is distinguished from other existing ones for its huge amount
of samples and broad coverage of time span and locations, which will reveal rich details
in the scaling behaviours.
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(a) Distribution of waiting time. (b) Distribution of the gyration radii.
(c) Radius of gyration rg(r) versus (d) The number of visited distinct loca-
time for different rg groups. tions S(r) versus time in a log-log plot.

Fig. 1. Mobility results for normal e-commerce users.

We collect the data of 337,890 users in 2018 who are identified to have used the e-
commerce platform in a normal and non-abusing way. We measure the most important
metrics that are commonly used to characterize large-scale human mobility patterns.
As shown in Fig. 1a, the waiting time distribution P(T) o< T~! is consistent with the
queuing model prediction [1, 4]. However, as shown in Fig. 1b, we find that the scaling
exponent for the distribution of radii of gyration P(rg) o< rg~* is distinct from all pre-
vious results. We find that there are two-piecewise scaling modes for population groups
with different radii of gyration rg (the population can be divided into two groups, corre-
sponding to rg < rg® and rg > rg®). The scaling modes are separated by a turning point
rg¢, which shows that the behaviour of the population with rg < rg¢ is dramatically
different from that of the population with rg > rg¢. Even the scaling before the turn-
ing point exhibits a scaling exponent of o = 0.8, which is distinct from the previously
observed (for example, compared with o = 1.65 in Gonzalez, et al [3]).

Moreover, two other scaling behaviours also exhibit peculiarities as shown in Fig. 1¢
and Fig. 1d. Both the change of users’ radii of gyration over time rg(r) and the number
of visited locations versus time S(¢) are found to be dependent on rg. Such dependence
has not been identified in previous work. Two examples of location trajectories are dis-
played for users with two typical rg values in Fig. 2. The piecewise scaling behavior
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(a) rg=T78. (b) rg=602.

Fig. 2. Examples of location trajectories for two normal e-commerce users. Here the x-axis is for
longitude, the y-axis is for latitude and the third axis is for the corresponding timestamps.

observed for rg is shown in Fig. 1b and the rg-dependent behaviour suggest a differ-
ent mechanism underlying mobility patterns that is associated with the online shopping
behaviour, when compared to the pure human movement patterns studied previously. It
suggests that the mechanism here is not only affected by the generic mechanisms, ex-
ploration and preferential return [1], but also correlated with users’ shopping behaviour.

Fig. 3. Distribution of the number of days for which locations are reported for fraud and normal
users.

The necessity of examining the system by grouping together similar rg users is fur-
ther demonstrated in our study by classifying the normal and fraud accounts. Fraud
users are typically involved in promo abuse, user abuse or user takeover on the e-
commerce platform. Astonishingly, we found that adapting to the abnormal shopping
behaviours, the mobility patterns of malicious users are clearly distinguishable from
those of the normal users (Fig. 3). In particular, the distribution of the number of days
for which locations are reported (if a user reports locations everyday in 2018, its number
of days is 365) follows completely different scaling rules between the normal and fraud
users. Here we have used the Extreme Gradient Boosting algorithm (XGBOOST) for
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the classification task [5]. XGBOOST provides parallelization and high predictive accu-
racy [7, 8]. After removing redundancy and irrelevant information, 24 features including
number of active days (Fig. 3) and radii of gyration are found to be more effective in
discriminating the two user types with high accuracy (96.78%).

In summary, we have found that the human mobility patterns associated with online-
shopping behaviours are different from those shown in pure movements. In particular,
the scalings are highly dependent on different classes of users characterized by their
radii of gyration: although most metrics still follow power laws, they are separable in
terms of the gyration radii. An underlying mechanism taking into account the shopping
behaviours is needed to explain the emergence of this new universality class. Moreover,
we have shown that the investigation into detailed population structure, with the aid of
efficient classification algorithms, may also help to control risks related to underground
industries.
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1 Introduction

The classic Voter Model (VM) is an extremely idealized description for the evolution
of opinions in a population. It has played a central role in probability theory and in
statistical physics because it is one of the few exactly solvable many-body interaction
systems [1]. Furthermore, many phenomenology rich reality inspired generalizations
of the VM have been developed [2]. However, their lack of calibration of the model
parameters to real social data make them unfit to quantify observations or make pre-
dictions.A few steps have been made to overcome this issue [3,4]. In [3], the Social
Influence with Recurrent Mobility (SIRM) has been developed for two-party systems.
This generalization of the VM works well for the case when the support of the two par-
ties are well balanced. The key idea of the SIRM model is that the commuting pattern
of individuals is a good proxy for the topology of interactions, since people can interact
both in the regions where they live and where they work.

While the SIRM model has been shown to successfully recover spatial correlations
in U.S. presidential elections [3], it suffers from some mathematical issues in the han-
dling of the stochasticity of the interactions. In this paper, we present a generalized
version of the SIRM model that fixes the mathematical issues of the original formu-
lation and that is applicable to multi-party systems [4], as well as a novel calibration
procedure for the model parameters and apply it to Swedish data. In addition, we inves-
tigate Sweden electoral geography based on Network Science [5] with an analysis that
provides a partition of administrative units into electoral clusters based on the similar-
ity in their inhabitants’ electoral behavior. We present a functional network analysis to
uncover stable electoral clusters over time.

2 Method

We now shortly present the SIRM model. Let us denote the fraction of the total pop-
ulation living in region i and working in region j, defining a commuting cell ij, by n;;
and the vote-share for opinion k in a commuting cell ij by vfj. The dynamics of the
system is controlled by the transition operator Rf-‘j’?, = n,'jvfj pf-‘j_’k/. The first factor of the
RHS is the probability to choose the communting cell ij, the second factor is the local
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k—k'

vote-share for opinion k and pj;

to kK’ and is given [4] by

stands for the probability to change from opinion k

P =2 (@ + (- o)) + B 5+ y/K M

where vf?/ and v/ ];/ are the vote shares of opinion &’ for the population living in region i
and for the population working in region j, respectively. The first term encodes recurrent
mobility and the parameter o controls the relative importance of interactions at home
and at work. The second term controls the noise in the interaction as defined in [4],
Vij,p = Zir(v;j/D) is a Dirichlet sample of parameter v;;/D and D controls the ampli-
tude of the noise. The third term, called the free will term, encodes unilateral change
of opinion between the K possible opinions. Finally, parameters A,  and 7y control the
relative importance of these three terms. Model parameters D and Y are then calibrated
to data according to the procedure developed in [4].

3 Results

Fig. 1. Electoral clusters in Sweden in 1985 and 2018. The colors are arbitrary and used to visu-
alize clusters identified as the same cluster over time. Municipalities displayed in grey belong to
smaller clusters. In the 2018 map, the brown electoral cluster is characterized by a strong vote
share for Sweden Democrats.

We start with the results of the functional network analysis [5] applied to the ten
parliamentary elections held in Sweden between 1985 and 2018. For each elections,
Sweden was partitioned into electoral clusters and these clusters have been shown to
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be stable over time. Figure 1 displays the first and last partitions. Three main clusters
are present in all election and a fourth emerges and propagates form 2002 (colored in
brown in the figure) that is characterize with a stronger than average vote-share for
Sweden Democrats (a ring-wing populist party).

The generalized formulation of the SIRM [4] outlined above has been shown to
recover the original formulation of the SIRM model [3] in some limit allowing the two
formulations to be compared. In the model, we have two different types of noise. The
first one models local variations and fluctuations of the probability to change opinion.
Here, the challenge was to calibrate of the magnitude of the diffusion constant (D). The
other noise, the “free will term” (third term in (1)) allows spontaneous opinion changes
which leads to the emergence of new parties in the model.

The calibration procedure developed in [4] has been shown to be robust against
coalition, i.e., one can group parties together without changing the calibrated D. This
procedure has been applied to a synthetic network and to the commuting network of the
Stockholm county. We have discovered that the diffusion constant calculated in the lack
of the free will noise term (third term in (1)) for the synthetic case is about 18 times
larger than the calibrated value for the U.S. presidential election case calculated in [3],
whereas the corresponding value for the Stockholm case is about six times larger. This
indicates that a calibration procedure based on stationarity of given statistical properties
requires more noise when initial conditions are random than for real initial conditions
and that the Stockholm case is more noisy than the U.S. case.

The paper hints to many other possible developments of this work, since the rates
can be modified in many ways. One could, for example, use the Dirichlet distribution
to add noise on other components of the rate and include time dependent or spatially
dependent rates to account for varying and heterogeneous socioeconomic factors that
might have an influence on the dynamics of the system. Furthermore, the influence of
the commuting network can be studied through numerical experiments.

Summary: In this paper, we discuss the possible generalizations of the Social Influence
with Recurrent Mobility (SIRM) model [4]. As a result of the extension, we show that
our model works well for multiparty systems and is mathematically well-posed even in
the case of extreme vote shares by handling the noise term in a novel way. In addition,
we summarize preliminary results of a functional network analysis [5] to the last ten
parliamentary elections held in Sweden.
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1 Introduction

Migration has become an all-important topic in today’s political and public discourse.
Perhaps in line with that public interest, we have recently observed a surge of publica-
tions in which network analysis was applied to the phenomenon of human migration.
In the last couple of years alone, more than a dozen of migration-as-network analyses
have emerged ([1], [2], to just name a few). Very few network analyses, however, were
applied to migration at the level of settlements (cities, towns, and villages). Yet, as the
UN forecasts, the rise in urban population will reach about 70% of the total in just a
couple of decades. Therefore, we are likely to start discussing the migration at the city
level more often than at the country level. Besides that, the data on international (inter-
country) migrations are not exact, but only estimated, and, as such, are not useful for the
more focused, onspot policy decision making. It is, therefore, imperative to refine the
most functional (network) analysis tools for explaining migration within and between
cities, or, to be more precise, within and between settlements.

In this vein, due to the lack of such attempts in the past, we have run a network
analysis on migration at the settlement level, in the case of Austria. Here we present an
excerpt from the network analysis of internal migration in Austria in 2018, with some
of the basic network indicators and their comparisons, and an estimation of a gravity
model.

2 Network data and definition

Statistics Office Austria defines internal migration in any given year as individuals’
changes of address in that same year, recorded at the level of municipalities ([4]). Ad-
dress changes, independent of the length of stay at any given address, count as migration
as long as there is a minimum stay of 90 days in the country as a whole.

Formally, we define the network of Austrian internal migration at any particular
year as a weighted directed graph 4 = (A", £, #'), whose:

-nodes A" = {ny,ny,...,ny} represent all Austrian municipalities (N = 2096),

- link weights # = {w,- 5 } Nxn» are the total counts of recorded residence address
changes between or within municipalities occurring within the particular year,

- links & = {l is a binary projection of %, such that /;; = 1 if w;; > 0 and
l,'j =0 ifW,'j =0.

In this general formulation, we take into account loops (w;; > 0). From ¢ we further
identify a (spanning) subgraph &' = (A",.&", #"), where #' = W \ {wi;} and &' is
the according binary projection of #.

if}NxN’
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3 Results

We observe that the network of Austria-internal migration in 2018 (Figure 1) is domi-
nated by loops.

Fig. 1. Austria-internal migration network 2018. Labels indicate the most central nodes in ¢
in terms of their total node strength (s;). With little variation in ranking, the same nodes appear
as highest-strength nodes in ¢’. Edges of w;;, wii < 10 have been omitted from visualization.

We find very high correlation between direction-respective node strength values
([5]) for & vs. for &'; p (s, si"') = 0.96, p (s 59"} = 0.97. We also find nearly perfect
correlation (p > 0.98) between in- and out- degrees of nodes within both ¢ and in
%'and both in weighted and projected binary view. In that regard, in ¢, we search
for and find, expectedly, very high weighted reciprocity ([6]), ¥ = % ~ 0.81
(= 0.47 in binary network), while the average value of the non-reciproéated weights
(ibid.) is w;‘;” ~4 (maxw}?’ =497).

We further test the hold of the gravity law ([7]) on ¢’. We produce estimated weights
as wyj = P.P;jd;;", where P, and P; are populations of origin and destination in 2018,
respectively (data obtained from Statistics Office Austria), and d;; are the, currently,
shortest driving distances between them (data obtained using Google’s Distance Matrix
service). A simple regression shows very close fit between real and estimated weights,
and most of the migrations occurring among places separated by shorter (< 100 km)

driving distances (Figure 2).

Summary. We provide a rough sketch of the nature of migration occurring within Aus-
tria by using network indicators of centrality, reciprocity and through the gravity model.
Our results suggest Austria-internal migration takes place mostly within the boundaries
of large cities (or periphery-city), else mostly between larger cities, and that these larger
cities tend to send/receive migrants to/from many diverse locations. We find high reci-
procity and symmetry of migration flows; for each specific migration link A to B, there
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Fig.2. Gravity law in Austria-internal migration 2018. Linear regression on real vs. gravity
law-estimated values, standardized as w};/ maxwj;, w;'/ maxwj;’ . The model is reduced to the
1300 links of highest weights in ¢’.

are roughly same-sized countermigrations B to A. The results also show that the base
gravity law variables, of settlement populations sizes and driving distances between
settlements serve as very good predictors of internal migration in Austria. Our ongoing
research is invested into testing the greater variety of network indicators, both those ex-
isting, as well as customized for the specific case, and developmental models, especially
the updates and modifications to the gravity law model.
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1 Introduction

The academic exchange of ideas can go beyond physical borders. As such many scho-
lars are highly mobile and their work contributes to their host, rather than their origin
countries, through technological and economic advances. A growing body of literature
focuses on the mobility of scientists and its impact at the international level. From the
public policy perspective, it is in the interest of countries to maintain a strong base of
highly qualified scholars who can provide innovative and scientific solutions to pub-
lic issues. In doing so, governments look for the underlying reasons for researchers’
movements and sources of attraction at national and global level.

Nevertheless, little is known about the drivers of internal migration of researchers.
Understanding these patterns can shed light on important regional deficits that are the
source and outcome of disparities and inequality of opportunities for future generations.
We propose an approach to study internal migration of scholars using Scopus bibliomet-
ric data. We present our methods to measure mobility within Mexico as well as interpret
it from a network perspective. Mexico is a particularly important case for exploratory
analysis because a larger share of its mobile population moves internally rather than
internationally. Between 2005 and 2010, interstate and intrastate mobility represented
3.5% and 3.1% relative to 1.1% of the population moving abroad [11]. Moreover by
focusing on Mexico, we study an emerging system of science which has several leading
universities of Latin America. In addition, Mexico is an under-studied case in scien-
tometrics literature and it remains unclear whether mobility in Mexico has increased
or slowed down as a result of special socioeconomic conditions, such as government
spending on public institutions, social inequality, and alternative jobs in the private sec-
tor. This analysis intends to contribute twofold to the literature: first, by re-purposing
bibliometric data to analyze internal rather than international migration, secondly by
exploring mobility patterns of scholars in Mexico. Although our substantive focus is on
Mexico, the proposed methodological framework of re-purposing bibliometric data for
internal migration is applicable to other countries.
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2 Data and Methodology

For analyzing mobility of researchers, many studies have relied on bibliometric databases
such as Scopus [9,8]. Compared to other bibliometric databases, Scopus provides a
wider breadth of records in varied disciplines [6] and offers a more reliable author ID
[7] which is suitable for tracking mobility of individual researchers [1]. Other recent
studies offer proxies for place of residence [4], provide bilateral international migration
flows [5], offer a methodological framework for dealing with multiple affiliations [10],
and analyze mobility of highly mobile researchers and return migration [2].
Large-scale bibliometric data allow us to identify movements of researchers in a
way which has not been possible with traditional sources of migration data like cen-
suses and surveys. The unit of the data is authorship record which is the linkage be-
tween an author and a publication. Our data involve 1.1 million authorship records of
scholars who have published with Mexican affiliation addresses in sources covered by
Scopus. Using the data, we analyze mobility patterns of over 200,000 researchers be-
tween 32 states of Mexico through the changes in their affiliation addresses over the
1996-2016 period. Prior to the analysis, the data were pre-processed in order to extract
the state of the institution of affiliation for each scholar in a given year. First, a state-
detection algorithm is used to identify the most likely state from different parts of a
given authorship record. Then the results, combined with manually extracted states for
2200 records, were used as training data for developing a neural network using Keras
[3] which identifies the state for a given authorship record with an accuracy of 98.9%.

3 Results and Discussion

During the period 1996-2016, the majority of scholars have remained in one state and
only 7.8% have moved between states. The data show that the median mobile scholar
has actively published for 9 years while its non-mobile counterpart only for 5 years.

Although Mexico City appears to attract many scholars, the consistent and negative
net migration rate in Figure 1 suggests that more scholars have exited than entered.
However Jalisco, an important economic actor of the Pacific coast region, is an example
of a common trend in other states where migration rates vary greatly.

M=

Year

N
8

3

Per thousand scholars
|

2000
2005
2010
2015

Fig. 1. Net migration rates for scholars in selected states

Figure 2 shows the direction and magnitude of movements of scholars in Mexico
between 1996 and 2016. The states that receive and emit the most scholars include the
capital city and its surrounding states (State of Mexico, Puebla, and Morelos), as well
as states that contribute the most to national GDP such as Nuevo Leon, Guanajuato,
Jalisco and Michoacan. Overall, Mexico City appears to be the main destination and
origin of mobile scholars, which may be due to its political and economic importance
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as well as housing several large national universities. Subpanels (c-f) of Figure 2 high-
light the period movements of scholars between states. Overall, the mobility network
of researchers has not only become more dense but also more diverse over the past two
decades. For instance, in more recent years, states along the Pacific coast (red) show a
greater exchange (purple edges) with states along the Gulf of Mexico and the Yucatan
Peninsula (blue).

By studying the changes in the migration flows and rates of scholars between the 32
Mexican states, we offer a general perspective of where scholars are attracted to move
to. We also analyze general traits of scholars such as their number of years of active
publication and the main states of origin and destination. Our results suggest that there
is heterogeneity in the direction and magnitude of scholarly movements while Mexico
City and its surrounding states appear frequently on the paths of mobile researchers
based on betweenness centrality measure. Finally, our work highlights that longitudinal
bibliometric data offer valuable insight into internal migration patterns of scholars when
coupled with an algorithmic method for sub-national level of aggregation.

United States of America.

- L -\ w7

e

(c) 1996-1997 (d) 2002-2003 (e) 2008-2009 (f) 2014-2015

Fig. 2. Network of internal migration among researchers in Mexico in 1996-2016 (a), a map of
the colored regions corresponding the nodes of the networks (b) four cross-sectional networks
based on selected one-year periods (c-f). Directions of edges are clock-wise and their colors are
the mix of respective origins and destinations. Intensity of movements is seen by the thickness of
the edges (see the figure on screen for high resolution).
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1 Introduction

Even though it is a known fact that many of the great advances of science appear by
deepening into topics that are at the frontier of two or more scientific fields, the study of
language from the perspective of the theory and tools of complex networks has a certain
tradition [7, 11-14, 18]. Analyzing a particular system, discovering a complex network
related to it and studying the properties of that network in order to draw conclusions
about the system analyzed is a methodology that has produced a large number of re-
sults of great interest in many applications [1, 2, 16]. The research on the system under
study must necessarily encompass a diversity of views including different complemen-
tary aspects of the network structure. Throughout this study, a corpus is a collection of
authentic texts collected electronically according to a set of specific criteria used as a
representative sample of a language or subset of that language [4]. In our case, we are
interested in the study of the mathematical language produced by the scientific com-
munity about complex networks. The complex network arisen from this study roots on
a linguistic corpus composed by 89 papers and extended abstracts (all of them based
on the theory and applications of complex networks) and a total of 147,637 words and
25,210 sentences. This complex network will be used to design a help tool for special-
ized translations of this scientific area.

A central assumption of modern linguistics is that language is a system [7]. More-
over, it can be said that language is not only a network, but a complex network, which
with appropriate research can and should be fully exploited as an efficient and effective
approach to linguistic study [7]. Thus, the analysis of linguistic theories based on the
study of its corpus and the vision provided by complex networks can reflect stylistic
and typological characteristics of languages, contributing significantly to the search for
and establishment of the underlying laws and properties of the human being.

As manifested in [7], there is a wide range of quantitative measures [1, 2, 16] avail-
able for the characterization of the topological properties of a linguistic network. For
our analysis we are interested in considering a bi-layer network [3, 10] and the con-
cept of line graph [8, 9] which is very useful to highlight he importance that edges have
sometimes over nodes in the context of some networks and graphs. In fact, the main
motivation behind our study is the new vision that provides the concept of line graph
to characterize the structure of a language, allowing the realization of a comparative
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analysis between different grammars, and the clarity and new approach that offers the
use of a multilayer model for the analysis of the corresponding network.

At this point it is important to highlight that there are several approaches when
analyzing a language from the perspective of complex networks [5-7,11-15, 17] but
all of them are different from the one we are proposing here. In our model we consider
a directed network built from the corpus under study: network nodes are the words
that appear in any of the texts that make up the corpus, establishing a (directed) link
connecting two words if they appear consecutively (co-occurrence directed) somewhere
in a text. In addition, we place the nodes in two different layers. One layer, the layer Ny,
is formed by the “empty words” (v.g,: the, of, and, a, in, to, for, ...) and the other layer,
the layer NV, is formed by substantives and specific terms of the specialized language
under study (v.g.: network, nodes, systems, model, matrix,...). So, we have a directed
network G = (N, E) with two layers, in which N is the set of different words of the text
(N =V1UVW,) and E is the set of directed edges (intra and interlayer).

Fig. 1. Network built with the words surrounding the word network in 6 randomly chosen texts

2 Results

All natural languages have syntax, which encodes the relationships between concepts
(semantic structures) and underlies the linear sequencing of words [7, 13, 14]. The model
we present allows the analysis of the interaction between specific terms of the text
through the usual parameters of network theory (degree, average length of paths, ...)
in the field of multi-layer networks, being of capital importance the properties of the
line graph of (Ny,E7) (for example, the length of the paths of this layer) that allow to
compare texts and to classify them according to the Common European Framework of
Reference for Languages (A1,A2,B1,B2,C1,C2). A random text generator based on a
random walker on this model is presented. An additional layer with terms equivalent to

o
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those appearing in the corpus will allow to increase the linguistic complexity level of
the text. Finally, the model constitutes a very useful tool for translators working with
specialized texts in the area of knowledge corresponding to the corpus studied, since a
quality translation has to maintain the main linguistic characteristics used in the source
text, a especially difficult task if the translator is not mastered in this field. An extension
of this line of research will make it possible to compare corpus of different languages
according to the topological properties of the corresponding networks.
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1 Introduction

One can describe time evolution of complex systems in biology, computer science, eco-
nomics, and sociology as multilayer networks [1]. A network representing interactions
(links) between basic entities (nodes) is constructed at every time step and the snap-
shot layers are combined to form a multilayer network by connecting common nodes
appearing in the adjacent layers. Here we report an empirical study on temporal change
of Japanese interfirm transaction relations taking such a promising approach with an
emphasis on their community structure.

2 Construction of a multilayer network

We use annual data on transaction relations between firms in Japan compiled by Teikoku
Databank, Ltd. to construct a network for this study. The dataset covers the period of
2003 through 2012, including the Lehman crisis in 2008 and the Great East Japan Earth-
quake in 2011. The numbers of firms (nodes) and transaction relations (links directed
from suppliers to buyers with the same weight) are approximately 125,000 and 730,000,
respectively, with variations of less than 10% during the decade; see Refs. [2, 3] for de-
tails of the dataset. Here we stress that the network is so dynamic that about 60% of the
links which exist in 2003 are replaced by new ones in 2012.

Since we focus on evolution of the community structure due to changes in trans-
action relations between firms, we first build a link network [4] in each year which is
complementary to the original node network; links in the original network correspond
to nodes in the link network. The following corresponding relations are established be-
tween a node network and its companion:

— The WCC (weakly connected component) of the link network is the WCC of the
original node network and the opposite is not always true.

— The SCC (strongly connected component) of the link network is the SCC of the
original node network and the opposite is also true.

— The bow-tie structure of the link network is equivalent to the bow-tie structure of
the original node network.
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Fig. 1. Evolution of the Japanese interfirm transaction rel
work in three dimensional space. Individual layers (x —y
multilayer network are snapshots of the network taken at e
purple color are nodes belonging to the fifth largest com
algorithm for the multilayer network as shown in Fig. 3.

In this study, we analyze the giant SCC of the link
network, which encompasses about 80% of the whole
system. We then construct a multilayer network by re-
garding the link networks as layers. To connect com-
mon nodes in adjacent layers in both directions, we as-
sume that the relative weight values for interlayer and
intralayer links are given by £ (0 < € < 1)and 1 —¢,
respectively.

Figure 1 visualizes the multilayer network thus con-
structed in three-dimensional space with & = 0.5. The
nodes are arranged in the x-y plane using a spring-
electric model in which linked nodes are attracted by
spring force and all nodes are repelled each other by
Coulomb force. The z axis represents the time direction.
The x-y planes with z = —4 and z = 5 are layers in 2003
and 2012, respectively. This visualization allows us to
see the parts where the original links are dense.

3 Community Detection

248

Fig. 2. The number of commu-
nities detected by the map equa-
tion algorithm for the multi-
layer network as a function of
the interlayer coupling parame-
ter £. Note that the y axis is in
logarithmic scale.

To elucidate temporal change of the Japanese interfirm transaction relations, we illu-
minate how evolve major communities in the multilayer network by adopting the map
equation algorithm [5], a flow-based community detection method. Figure 2 shows the
number of communities as a function of the interlayer coupling parameter £. When
& = 0, communities in the multilayer network are identical to those in the layers of
individual years. Increment of & from & = 0 connects the communities so separated in
time direction. When & = 1, on the other hand, identical nodes (links in the original net-
work) sequentially connected in time direction form communities; the maximum size
of those communities is hence 10. Decrement of £ from & = 1 joins the communities

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal

NETWORKS
2019



249

within the layers. Therefore, there should be an optimum value of & at which the num-
ber of communities is the smallest. In fact, the community structure is optimized around
& = 0.6. We note that the community size obeys a power-law distribution.

Figure 3 is an evolutionary diagram for the
communities of the multilayer network obtained
at & = 0.6, where only the 10 largest ones are
shown. The communities distinguished by differ-
ent colors are piled up vertically so that larger
communities are placed at lower positions. The
communities show various types of evolutionary
patterns. Some exist steadily over the 10 years,
some gradually fade out, some gradually emerge,
some appear in the middle of the period. Specifi-
cally, the fifth community colored purple is very
stable over the 10 years. The dots of the same
color in Fig. 1 demonstrates how stable is the
community.

Summary. We are thus successful in elucidating
how the interfirm transaction network in Japan

Fig.3. Evolution diagram of the 10
largest communities in the Japanese in-
terfirm network, where the vertical axis
shows the cumulative relative size of
the communities.

develop gradually with a special emphasis on its community structure. More detailed
analyses on the evolution of the community structure are in progress. This work was
partially supported by JSPS KAKENHI Grant Numbers 17KT0034, 18K03451.
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1 Introduction

Roughly speaking Science tries to explain and understand any phenomenon that occurs
in real life. In order to reach this goal, the scientific activity can be classified into three
categories: observation, prediction and control. In this presentation we are focusing on
the control of the centrality of a complex networks in terms of some parameters of
the functions considered. There are many different centrality measures in Networks
Science, including local parameter (such as the in-degree), metric parameters (such as
the betweenness centrality) and spectral centralities (such as the eigenvector centrality),
but the PageRank centrality plays a relevant role, since it has many relevant applications
[6]. This measure is the basic ingredient of the (probably) most famous web searcher
(Google), but it also has many applications to different real-life problems, ranging from
biological systems to cibersecurity (hacking detection).

Given a complex network G = (X,E) of n nodes, a stochastic vector (so called
personalization vector) v € R" and a € (0, 1) (so called dumping factor), the (classic)
PageRank of the network is defined as the steady state of the Markov chain whose
transition matrix is given by

G=oaP+(1—-a)ev’,

where e = (1,1---,1)7 € R" and P is the row-stochastic matrix associated to the adja-
cency matrix A = (a;;) of the graph, i.e. if P = (p;;), then
Y 4
Pij kout (l) Zk Aik
An alternative way of defining a PageRank-like centrality measure is considering a
biplex point of view [8] such that each navigation mode (i.e random walking by using
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the connections of the network and random walking by using the personalization vector)
corresponds to a layer in a multiplex network [1]. Hence the Biplex PageRank is a n-
dimensional projection of the steady state of the Markov chain whose transition matrix

is given by
_(aP (1-a) 2nx2n
M(ocl(l—oc)ev7>€]R '

By using these ingredients, we can study the influence of the parameters of such cen-
trality measures (either their damping factors or their personalization vectors) in the
possible values of the PageRank centralities. This controllability analysis was also per-
formed for other spectral centrality measures in [5] and for the damping factor in the
case of the (classic) PageRank in [2], so in this presentation we will focus on the influ-
ence of the personalization vector in the Classic and Biplex PageRanks [4,7, 3].

2 Results

Our first analytical results show that we can give a sharp localization of all possible
PageRank centralities obtained for all admitted personalization vectors [4, 7].

Theorem 1 ([4], Theorem 3.2). If we denote by P % (i) the set of all possible values
of (personalized) classic PageRank of node i € {1,...,n} and fixed o € (0, 1), then

@%a(i) = (mjnxjhxi,'),
J
where X = (x;;) is the matrix given by
X=(-a)(I—aP)". (1

Theorem 2 ([7], Theorem 3.9). If we denote by PR PBy(i) the set of all possible
values of the Biplex PageRank of node i € {1,...,n} and fixed o« € (0,1), then

PRBa(i) = (minc;i,ci),
J

where C = (c;j) is the matrix given by

_ (- @)’ _a B —
C B <I B P) (1+o)—aP), 2)
withp=1—-a(l—a).

We can also analyze the relative position of the intervals % (i) and PR By (i),
obtaining the following analytical result:

Theorem 3 ([3], Theorem 3.1). Let G = (X,E) be a complex network with n nodes
and no loops. If i € {1,...,n}, then PR (i) N PRRB (i) # 0 for all a € (0,1).

=
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Since P X o (i) N PREPBa(i) # 0, we can compute all possible relative positions
of such intervals for different families of random networks (see [3]). In particular, if
we consider Barabdsi-Albert synthetic networks with » = 100 nodes and compute the
relative position of intervals for different values of the minimum degree value p from
5 to 40, Figure 1 shows that for small values of o all nodes verifies that 2% (i) C
PR B (i) (right panel). On the other hand, if o0 > 0.5 (independently of the minimum
degree value d) all nodes verifies that PZ By (i) C P % (i) (left panel).

Fig. 1. Relative position of intervals &% (i) and &% B /(i) for different Barabdsi-Albert syn-
thetic networks with n = 100 nodes

Summary. We have presented some sharp analytical results for the influence of the
personalization vector of the Classic and Biplex PageRank centralities. The relative
position of intervals % (i) and P XZ By (i) is studied, by proving that they always
intersect. Several numerical computations on different families of random networks
are included, showing that Biplex PageRank centrality is less controllable than Classic
PageRank for dumping factor ¢ > 0.5.
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One can model many physical, technological, biological, financial, and social systems as networks, which in their sim-
plest form yield graphs [1]. The standard type of network is a single-layer network (also called a “monolayer network™).
However, this relatively simple structure cannot capture many of the possible intricacies of connectivity patterns between
entities. For example, in temporal networks [2], nodes and/or edges change in time; and in multiplex networks [3], multi-
ple types of interactions can occur between the same pairs of nodes. To better account for the complexity, diversity, and
dependencies in real-world interactions, one can represent such connectivity patterns using multilayer networks [3, 4].

Our motivation for considering a single multilayer network instead of several independent single-layer networks is to
take into account that connectivity patterns in different layers often depend on each other. Data sets that have multilayer
structures are increasingly available (e.g., see Table 2 of [3]). A natural type of multilayer network consists of a sequence of
dependent single-layer networks, where layers may correspond to different temporal snapshots, different types of related
interactions that occur during a given time interval, and so on. Following existing terminology, we refer to an instance of
anode in a layer as a “state node”.

Given a (single-layer or multilayer) network representation of a system, it is often useful to apply a coarse-graining
technique to investigate features that lie between those at the microscale (e.g., nodes or pairwise interactions between
nodes) and those at the macroscale (e.g., total edge weight or degree distribution) [5]. One thereby studies mesoscale
features such as community structure [5], core—periphery structure [6], role structure [7], and others. We refer to a set in
a network partition that corresponds to some mesoscale structure as a “meso-set” (so community is a type of meso-set).

The ubiquity and diversity of mesoscale structures in empirical networks make it crucial to develop generative models
of mesoscale structure that can yield features that one encounters in empirical networks. Broadly speaking, the goal of such
generative models is to construct synthetic networks that resemble real-world networks when one appropriately constrains
the model parameters using information about the application at hand. Generative models of mesoscale structure can serve
a variety of purposes, such as (1) generating benchmark network models for comparing meso-set-detection methods and
algorithms [8, 9]; (2) undertaking statistical inference on empirical networks [10, 11]; (3) generating synthetic networks
with a desired set of properties [12, 13]; and (4) investigating “detectability limits” for mesoscale structure [9, 14].

One of the main challenges in constructing a realistic generative model (even for single-layer networks) is the breadth
of possible empirical features in networks. The available generative models for mesoscale structure in single-layer net-
works usually focus on replicating a few empirical features at a time (rather than all of them at once): heterogeneous degree
distributions and community-size distributions [8, 10], edge-weight distribution [11, 15], spatial embeddedness [16, 18],
and so on. Multilayer networks inherit all of the empirical features of single-layer networks, and they also have a key
additional one: dependencies between layers. Interlayer dependencies in multilayer networks can be temporal (ordered),
multiplex (unordered), or combinations thereof (partially ordered). However, despite this variety, existing generative mod-
els for mesoscale structure in multilayer networks allow only a restrictive set of interlayer dependencies (e.g., they assume
a temporal structure [9, 16], a simplified multiplex structure with the same planted partitions across all layers [13, 17] or
independent groups of layers in which layers in the same group have identical planted partitions [19], etc).

A key feature of multilayer networks is their flexibility, which allows one to incorporate many different types of
data in a single structure. In this spirit, we introduce one general framework that enables users of our generative model
to construct famili#2=2¥multilayer networks with a range of features of interest in empirical multilayer networks by
appropriately cons g the parameter .ét’fZ 3t COMETENGF PG O5RPIE* AYSE RSN the set of state nodes
of a multilayer ngffdgiGsand we then all hgir é&g §,até(f93nlg 'Iﬁﬁlgf’zfye%%grll'rfﬁ?ﬂ.ns%%r&lﬁélally, we focus on modeling
dependency at the 1e¥€1 of partitions (as was done in [9]), rather than with respect to edges; and we treat the process of
generating a multilayer partition separately from that of generating edges for a given multilayer partition. This modular




approach, which enables the use of all existing network models with a planted partition, yields random structures that can
capture a wide variety of interlayer-dependency structures (e.g., temporal and/or multiplex networks, appearance and/or
disappearance of gntities, uniform or nonuniform dependencies between state nodes from different layers, and so on). For
a specified interlayer-dependency structure, one can then use any network model with a planted partition to generate a
wide variety of network features, including weighted edges, directed edges, and spatially-embedded layers.

The flexibility of our model to generate multilayer networks with a specified dependency structure between different
layers makes it possible to (1) gain insight into whether, when, and how to build interlayer dependencies into methods for
studying different types of multilayer networks; and (2) generate tunable benchmarks to allow a principled comparison
for community-detection (and, more generally, meso-set-detection) tools for multilayer networks.

1 Results

We introduce a general and customisable generative model for mesoscale structures in multilayer networks [20]. The
complexity of dependencies between layers can make it difficult to explicitly specify a joint probability distribution for
meso-set assignments, especially for unordered or partially ordered multilayer networks. To address this issue, we define
a conditional probability model on a state node’s meso-set assignment, given the assignments of all other state nodes.
Specifying conditional models (which capture different dependency features separately) rather than joint models (which
try to capture many dependency features at once) is convenient for numerous situations. We parametrise the conditional
partition model with two key parameters: (1) layer-specific null distributions and (2) an interlayer dependency tensor. The
former allows the incorporation of certain desirable features for any choice of interlayer dependency (e.g., variation in the
expected number and sizes of meso-sets across layers) and the latter allows the explicit parametrisation of dependencies
between different layers. Using the conditional model, we define an iterative copying process on the meso-set assignments
of state nodes to generate multilayer partitions with dependencies between induced partitions in different layers.

Consider a node j in layer 3 and let V), be the set of state nodes in a multilayer network. We denote the user-specified
interlayer-dependency tensor by P, where Plj f is the probability that state node (j,3) copies its meso-set assignment
from state node (i, @), for any two state nodes (i, @), (j, B) € Vis. The interlayer-dependency tensor induces the interlayer-
dependency network, whose edges are all interlayer, directed, and pointing in the direction of information flow between
layers. The probability that state node (j, ) copies its meso-set assignment from an arbitrary state node when state node
(j,B)’s meso-set assignment is updated is

hip= L Pl

(i,a)eViy

where we require that p; g <1 for all state nodes (j, B) € V. Suppose that we are updating the meso-set assignment of
state node (j,3) at step 7 of the copying process and that the current multilayer partition is S(7). With probability p; g,
a state node (j, B) copies its meso-set assignment from one of its in-neighbors in the interlayer-dependency network; and
with probability 1— p; g, it obtains its meso-set assignment from the null distribution Pg . This yields the following update
equation at step T of our copying process:

P[S; g(T+1) =5[S(7)]

B
ZP] 0(Sia(T),s) )

(l OC)EVM

+(1=p;p)PEIS; 5 =5].

The update equation (1) is at the heart of our generative model. It is clear from (1) that the set of null distributions is
responsible for the specification of meso-set assignments in the absence of interlayer dependencies (i.e., if le aﬁ =0 for all
(i,0), (j,B)). In general, p; g determines the relative importance of interlayer dependencies and the null distribution on
the meso-set assignment of state node (,8). Specifically, when p; g = 0, the meso-set assignment of (j,3) depends only
on the null distribution; and when p; g = 1, the meso-set assignment of (j, 3) depends only on the meso-set assignments
of its in-neighbors in the interlayer-dependency network.

When updating the meso-set assignments of state nodes, we respect the order the layers (e.g., temporal ordering).
For a fully ordered #7iifilayer network (e.g., temporal) our update process reduces to sequentially sampling an induced
partition for each ased on the 1ndu€Eﬂ %ar!ﬁ'i‘?fﬁ@t@‘ GApirEenarerd FomaleuNstaréd #ditilayer network (e.g.,
multiplex), our up%%!‘%}ﬁécess defines a MART CRRIEIH: Bac]ezé?‘?ﬁnﬁ?l]a%zelr‘fﬁ?ﬂtf M sampling strategy reduces
to (pseudo-)Gibbs safiipling [21,22], an approach in which one samples partitions from a stationary distribution of this
Markov chain. For a partially ordered multilayer network (e.g., multiplex network that changes over time), our update




process combines these two sampling strategies. We discuss the parameters and properties of our generative model, and
we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer
networks [20]. 256

The three most important features of our model are the following: (1) it includes an explicitly parametrizable tensor
that controls interlayer-dependency structure; (2) it can generate an extremely general, diverse set of multilayer networks
(including, e.g., temporal and/or multiplex); and (3) it is modular, as the process of generating a partition is separate from
the process of generating edges, enabling a user to first generate a partition and then use any planted-partition network
model. We provide publicly available code (https://github.com/MultilayerGM) that users can modify to readily incorporate
different types of null distributions, interlayer-dependency structures, and planted-partition network models.

Summary. Multilayer networks allow one to represent diverse and coupled connectivity patterns — e.g., time-dependence,
multiple subsystems, or both — that arise in many applications and which are difficult or awkward to incorporate into
standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e.,
intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are
not apparent at the microscale or the macroscale. We introduce a generative model for mesoscale structure in multilayer
networks. Our model is very general, with the ability to produce many features of empirical multilayer networks, and
it explicitly incorporates a user-specified dependency structure between layers. Our results provide a standardized set of
null models, together with an associated set of principles from which they are derived, for studies of mesoscale structures
in multilayer networks. We discuss the parameters and properties of our generative model, and we illustrate examples of
its use with benchmark models for community-detection methods and algorithms in multilayer networks.
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1 Introduction

Network embedding methods [7—10] have attracted increasing attention as key-enabling
tool to successfully address emerging challenges in large real-world networks (such as
high computational complexity, low parallelizability, and inapplicability of machine
learning methods) by learning a low-dimensional representation of one or more com-
ponents of a graph network. In particular, deep embedding methods, such as those based
on convolutional neural networks, showed their effectiveness on a broad range of prob-
lems in different fields (e.g., speech and image recognition), and they promise to achieve
unprecedented opportunities also in network science.

However, such methods have traditionally focused on structured data (e.g., grids),
while there is an inherent difficulty in defining basic operations, such as convolution [3],
in graph networks; in fact, defining the convolution operation on grid-structured data is
straightforward (e.g., each pixel in an image can be seen as an element, and the size of
its neighborhood is determined by the size of the kernel), whereas in the case of graphs,
nodes are unordered and the size of their neighborhood can vary largely. One way of
performing the convolution operation on graph data is to aggregate the values of each
node’s features along with its neighbors’ features. This is the basic approach adopted
by the Graph Convolutional Network (GCN) method proposed in [4]. Alternatively, the
GraphEncoder method in [6] exploits stacked sparse autoencoders, which have shown
to be very similar to spectral clustering in theory yet much more efficient and flexible
in practice. It should be noted that the above methods work on simple networks only.

In this work, we take inspiration from GraphEncoder, but differently from it we
leverage graph convolutional networks and their use in an autoencoder framework [5].
To the best of our knowledge, we are the first to propose an autoencoder-based GCN ar-
chitecture for learning a compressed representation (i.e., node embeddings) of a multi-
layer network. Our closely related work is the one recently proposed in [1], which learns
two embeddings for each actor: the one obtained by aggregating information from the
different layers of the multiplex, and the other one for each node of the multiplex.
The two embeddings are then linked together by projection matrices that constrain the
generation of layer-specific representations conditioned to the across-layer ones. Note
that, however, this linkage relies on a hyper-parameter which adds a further degree of
freedom in learning an embedding; also, unlike our proposal, it misses the advantages
coming from autoencoders and, particularly, from variational autoencoders, which act
as generative models to learn the parameters of a probability distribution representing
the network data.

o
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2 Our proposed mMGCNAE and mGCNVAE methods

Given a set V of N entities (e.g., users) and aset L = {Ly,--- ,L;} of layers (e.g., user re-
lational contexts), with £ > 2, we denote a multilayer network with G- = (V. ,E.,V, L),
where V, CV X L is the set of entity-layer pairings or nodes (to denote, e.g., each user
is present in which layers), and E; C V, x V is the set of undirected edges between
nodes within and across layers.

We represent a multilayer network by a set of adjacency matrices A = {Ay, -+, Ay},
with A; € R">*™ (] = 1..£), where n; = |V;|. Entities may be associated with features
stored in layer-specific matrices X = {Xy,---,X,}, with X; € R"*/I and f; the number
of node features in the /-th layer. In case no side-information is available for G, each
layer-specific feature matrix is assumed to be the identity matrix I; € R™*" . Note that,
since we need to account also for inter-layer edges, the aggregation of features should be
computed not only with the ones of each node’s neighbors, but also with the features of
the different nodes coupled to the same entity over the layers of the multilayer network.

To enable effective convolution, each layer matrix is symmetrically normalized after
adding self-loops for all nodes; formally, for the /-th layer, we have A= ﬁ_%Alf)_% ,
with A; = A;+ I, D; =D; +1, and D; the degree matrix. As shown in [4], this helps
shrink the underlying graph spectrum, and as a consequence, nearby nodes will tend to
share similar representations. Note that the i-th entry in D; stores the degree of entity v;
internal to the /-th layer, plus the number of inter-layer edges that are incident to v;.

Let us utilize subscript / to denote the /-th layer of the input multilayer network,
and the superscript (k) to denote the k-th convolutional layer of the neural system. For
the k-th convolutional layer, we denote the input representations of all nodes with the
matrix H®=1 and the output representation with H®), which is usually smaller than
H*~1 . Note that the initial representation is the input feature matrix, i.e., HO = X,
which hence feds the first convolutional layer.

Our first proposed approach, dubbed Multilayer Graph Convolutional Network
Autoencoder (NGCNAE), requires at first the following embedding rule for every
[-th layer of the multilayer network:

H") = ReLU (A drop(X )W) (1)

where W denotes a weight matrix in the convolutional layer, the nonlinear activation
function ReLU (-) is applied pointwise, and drop(-) is the dropout function typically
introduced to help reduce overfitting. Matrix HEU has dimension R"*% (by default,
dy =32 [5]), and the layers L are treated independently.

From the second layer of MGCNAE, an analogous operation is performed, however
we devise two different modes and, consequently, two different representation update

rules, for every k =2..K:

— handle the different layers of the multilayer graph independently:

H} = Adrop(E ) ywt 2)

— share a unique weight matrix W*) through the different layers of the multilayer
graph:
HY = AydropH )W 3)
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Finally, the output of the K-th hidden layer corresponds to the new learned node
representation (i.e., the embedding), Z = HX). Once obtained the embedding, the de-
coding phase consists in the inner product ZlZ,T to achieve the reconstructed adjacency
matrix A; for the /-th layer of the multilayer graph.

Our second method, dubbed MGCNVAE, exploits the variational autoencoder para-
digm, so that it differs from MGCNAE in that the second hidden layer consists of two
components which constitute the core of the inference model:

Z") = ReLU (Asdrop(H"YW™)) and Z\°) = ReLU (Asdrop(H)W”))  (4)
with u (resp. o) mean (resp. standard deviation) of the latent representation. The en-
coding step corresponds to a function ¢ to learn:

N 2
a(ZX1,A)) = [ [ a(zilX1,Ar), with g(z,:X1,A)) ZN(Zl,i|Z§?)adiag(Z§S DS
i=1
while the generative model (i.e., the decoder) is given by function p:

N N
p(AZ) =TT ] r(As;

i=1j=1

z,2,,), With p(Aryj =1lz2 ;) = o(2/21;) ()
and the loss function is: Y'f_, Eqz,1x,.4,) [log p(A1|Z;)] — KL[q(Z; X1, Ay) || p(Z1)]-

3 Preliminary experimental results

We implemented our proposed methods and tested them, for a link prediction task, on
a number of multilayer networks, including Cora and Citeseer [16, 17], StarWars [18],
London transportation [15], EUair [14], FAO [13], ArXiv [12], and Pierre Auger [12].
We randomly selected and removed 5% (resp. 10%) of the edges from the input multi-
layer graph to be used for validation (resp. testing). Next, we integrated validation and
testing edge sets with unconnected pairs of nodes in a balanced fashion. Once obtained
the embeddings, we assessed the similarity between pairs of nodes to predict whether
the edge between the two nodes existed. For the sake of simplicity, we assumed »; and
/1 to be the same for all layers, and used two convolutional hidden layers (K = 2).
Moreover, we devised 4 settings of the two methods, depending on whether only intra-
layer edges or also inter-layer edges were used by the neural system, and whether the
across-layer shared weight matrix was used or not.

Preliminary results show that, on average over all datasets, MGCNAE and mGCN-
VAE obtained good performance in terms of AUC (0.73), precision (0.78) and accuracy
(0.65), with peaks on the Pierre Auger dataset by m-GCNVAE in terms of AUC (0.98)
and precision (0.98), and by m-GCNAE in terms of accuracy (0.93), for the only-intra-
layer-edges variants; also on the two citation networks, any variant of both methods
performed very well. By contrast, the variants using both intra- and inter-layer edges
appeared to perform worse, except on EUair; the latter network, on the other hand,
represents the more difficult testbed, due to their higher number of layers and their ex-
tremely varying structure [14]. Besides that, in general, using both intra- and inter-layer
edges may be more affected by the lack of relevant (side-)information associated with
inter-layer edges.
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1 Motivation

Interdependent complex systems have been shown to be highly vulnerable to attack
as failures cascade across layers leading to a rapid disintegration of the network[1, 2].
The risk of cascades of failure is created by inter-layer connections, which represent
the dependencies between the network layers. Consequently, most studies on resilience
of interdependent networks consider inter-layer connections a necessary evil needed to
sustain a systems functionality, but detrimental to its resilience[3, 4].
While this makes sense for certain types of networks such as the power-communication

interdependent system, which played a crucial role in the famous 2003 blackout in Italy,
it does not hold for all types of interdependent networks. In certain network contexts,
inter-layer connectivity does not only present a risk, but also a chance for resilience[5].

Fig. 1. Illustration of resilience impact of inter-layer edges in multiplex networks depending on
the functional coupling (layer interaction and dependency)

Inter-layer connectivity presents a chance for network resilience if inter-layer edges

have a function that allows for collaboration and shared dynamics between the layers,
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and do not only describe a dependency relation. For instance, strategic interconnectivity
between isolated power grids can suppress cascades of failure as excessive load can bet-
ter be distributed across different grids. However, too much interconnectivity increases
the risk of larger cascades infecting multiple power grids[5]. Furthermore, in multi-
modal transport networks, mode transshipment links increase flexibility to use different
transport modes in response to disruption, thereby mitigating its impact. At the same
time, intensifying inter-layer coupling increases the risk of cascading failure.

This suggests that inter-layer connections can have a very different impact on the
resilience of a multiplex network depending on the type of functional interaction and
dependency between layers. Figure 1 shows a framework describing the different cat-
egories of functional coupling and the resilience impact of inter-layer edges for each
category.

The focus of this study lies on the "Fragile opportunity’ category. For networks in
this category, inter- layer edges create benefits and make them more fragile at the same
time. This suggests that there is a trade-off in the layer coupling structure between
topological stability (risk of cascadic failure) and operational functionality. This trade-
off comes into play as density and location of inter-layer edges vary. Thus, in order to
understand it, the structural coupling of layers needs to be analyzed. Therefore, differ-
ent synthetic multiplex networks varying in the structure of their layers are analysed
and their resilience against disruption under different coupling structures (intensity of
coupling and coupling pattern) is assessed. Moreover, we study the resilience of the Eu-
ropean hinterland transport network for container shipping, a multiplex transportation
network with layers formed by transport modes rail and barge.

The results contribute to the understanding how inter-layer connectivity can influ-
ence resilience in different types of multiplex networks and how inter-layer connections
should be chosen to foster resilience and mitigate the impact of disruption. This is im-
portant for decision makers in hinterland shipping as transport modes are becoming
more strongly coupled towards an integrated intermodal system. For our analysis we
make use of a unique dataset containing all rail and barge services scheduled in the
European hinterland. We create a multiplex network with nodes representing cities that
have at least one container terminal and edges representing transport connections. Lay-
ers are formed by the two alternative transport modes.

2 Initial results

As a first step, the impact of coupling intensity, i.e. the share g of overlapping nodes that
is linked by an inter-layer edge, on resilience is assessed. Therefore, a multiplex net-
work with layers formed by two Erdos-Renyi networks with 100 nodes and p = 0.053
is studied. The two layers are partially overlapping at 50% of their nodes (Q = 0.5).
Initial failure of nodes is done randomly and cascadic failure propagation is modeled
as in [1]. Resilience is measured by the change in network efficiency [6], which is a
suitable measure particularly for transportation networks.

Figure 2 shows the results for three different initial attack sizes (share of nodes
p €{0,0.2,1}). If no attack takes place (p = 0), inter-layer edges have a purely positive
effect as they connect the layers and distances become shorter. The resilience trade-
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Efficiency under different coupling intensity
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Fig. 2. Efficiency of barge-rail coupled network for hinterland transport in Europe depending on
inter-layer coupling intensity ¢ and initial attack sizes p € {0,0.2,1}

off becomes visible at intermediate attack sizes (p = 0.2). At low coupling intensities,
each added inter-layer edge improves network efficiency as routing becomes easier.
However, the marginal added value of an additional edge decreases and at a certain
point, efficiency declines as the network becomes more and more fragile. This point
marks the optimal coupling intensity as resilience reaches its maximum under the given
network settings. Results can vary strongly depending on the choice of network type,
attack strategy, and coupling strategies.

References

1. Buldyreyv, S. V., Parshani, R., Paul, G., Stanley, H. E., Havlin, S. (2010). Catastrophic cascade
of failures in interdependent networks. Nature, 464(7291), 1025.

2. Gao, J.,, Barzel, B., Barabsi, A. L. (2016). Universal resilience patterns in complex networks.
Nature, 530(7590), 307.

3. Parshani, R., Buldyrev, S. V., Havlin, S. (2010). Interdependent networks: Reducing the cou-
pling strength leads to a change from a first to second order percolation transition. Physical
review letters, 105(4), 048701.

4. Schneider, C. M., Yazdani, N., Arajo, N. A., Havlin, S., Herrmann, H. J. (2013). Towards
designing robust coupled networks. Scientific reports, 3, 1969.

5. Brummitt, C. D., DSouza, R. M., Leicht, E. A. (2012). Suppressing cascades of load in
interdependent networks. Proceedings of the National Academy of Sciences, 109(12), E680-
E689.

6. Latora, V., Marchiori, M. (2001). Efficient behavior of small-world networks. Physical re-
view letters, 87(19), 198701.

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019



Part X

Network Analysis and Measure

The 8" International Conference on Complex Networks and

COMPLEX Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal
NETWORKS
2019




A Proposal for the E-I Index for Non-disjoint Groups

Ricardo Lopes de Andrade' and Leandro Chaves Régo!?

! Production Engineering Graduate Program
Universidade Federal de Pernambuco
Recife/PE, 50740-550, Brazil,
ricardolopesalgmail.com,

2 Statistics and Applied Math Department
Universidade Federal do Ceara
Fortaleza/CE, 60440-900, Brazil,

leandro@dema.ufc.br

1 Introduction

The studies on homophilia in social networks seek to quantify the propensity of in-
dividuals to interact with similar actors ([1], [2], [3]). In these studies, the E-I index
proposed by Krackhardt and Stern (1988) [4], is used as a measure for homophilia. The
E-I index is a simple measure obtained from the difference between the number of ex-
ternal links (links between nodes belonging to different groups - EL) and the number
of internal links (links between nodes belonging to the same group - IL), divided by the
total number of connections for normalization.

EL—-IL
EL+IL

The E-I index ranges from -1 (all bonds are internal) to +1 (all bonds are external).
The index can be calculated for the entire network, for each group or for each individual
actor. In a weighted network, EL is the sum of the edge’s weights that connect different
cells of the partition and IL is the sum of the edge’s weights that connect actors of the
same cell of the partition.

The nodes of the network are assigned to groups, for example: age-based [1]; based
on ethnicity [3]; based on gender, religion, politics [5]; among others. Grouping in-
volves partitioning the set of nodes into exhaustive and mutually exclusive subsets. Pub-
lications that use the E-I index as a measure of homophilia or segregation are concen-
trated in disjoint or mutually exclusive groups, that is, each node or actor in the network
has only one bond of a particular attribute. Situations where network actors are present
in more than one group, such as non-disjoint groups, are not commonly explored. How-
ever, distinctive disjoint groups rarely exist at large scales in many empirical networks
[6], what is observed in many analyzes, in fact, is a set of overlapping groups rather than
partitions [7]. Some attributes such as: areas of knowledge in networks of researchers;
economic blocks in commercial networks; communities in networks such as Facebook,
Twitter, among others; and other attributes linked to behaviors, tastes and attitudes gen-
erate non-disjoint groups. One of the barriers encountered in the analysis of non-disjoint
groups is the absence of a measure, since the E-I index is defined for disjoint groups.

E —1IIndex = (1
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In this context, the objective of this work is to develop a measure that quantifies the
relational structure within and between groups that encompass not only the analysis of
disjoint groups but also non-disjoint groups. Allowing the expansion of the analysis of
social networks, for several types of attributes, helps identifying which actors have more
similarities or differences, generating previously unexploited knowledge. Specifically,
we generalize the E-I index developed by [4] to deal with non-disjoint groups.

2 Results

In order to explore cases of non-disjoint groups, we have developed a new method to
obtain the E-I index, which is a generalization of the current method. Figure 1 is used to
illustrate the new method. Figure 1a has three nodes and two generic attribute groups,
nodes 0 and 1 have attribute A and nodes 0 and 2 have attribute B. Therefore, both
attribute groups have one node in common. In Figures 1b and 1c, nodes are connected
if they belong to the same group. In this context, the E-I Index is defined as follows:

— For a set of nodes: EL is the number of nodes’ edges in the first graph that are not
present in any of the group graphs and IL is the number of nodes’ edges in the first
graph that are present in at least one of the group graphs.

— For an attribute group: EL is the number of node edges of a given group in the first
graph that are not present in the given group graph and IL is the number of node
edges of a given group in the first graph that are present in the given group graph.

Table 1: E-I Index non-disjoint group example
Unweighted Weighted

EL IL E-I Index|EL IL E-I Index
set{0} 0 2 -1.00 |0 5 -1.00
set{1} 1 1 0.00 1 3 -050
set{2} 1 1 0.00 1 2 -033
set{0,1,2} 1 2 -033 |1 5 -0.66
GroupA 2 1 033 |3 3 0.00
GroupB 2 1 033 |4 2 033
(a) Graph G (b) Graph A (c) Graph B

Fig. 1: Social network with non-disjoint groups of nodes.

Table 1 displays the results for the graph shown in Figure 1a. It is easy to verify that
the proposed metric is a generalization of the E-I index proposed in [4] in the sense that
if groups are disjoint, then it coincides with (1).

o
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In future work, we will implement the proposed model in two real networks:

(i) Co-authorship PQ: The PQ network is a co-authorship network among researchers
in the area of Industrial Engineering of Brazil, has 92 nodes in the giant component
and 131 edges. The network is undirected and the edges represent the publications
in co-authorship [8].The sets of overlapping groups are the industrial engineering
areas of knowledge.

(ii) Trade of American Countries: The network of commerce between the American
countries is formed 30 countries and 356 edges. This network is a subnetwork of
the network of international trade, developed by [9], which includes 178 countries
that form a unique main component with 10,419 edges. The network is undirected
and the edges represent the commercial transactions between countries. The sets of
overlapping groups are the blocks or trade agreements that the American countries
are inserted into.

As these examples suggest, in applications, the groups do have an empirical mean-
ing and the E-I index is just a way to classify sets of nodes or attribute groups according
to the proportion of their internal/external links.
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1 Introduction

The spaces and networks which comprise a city evolve in a complex and interde-
pendent manner. Urban spaces are occupied by an increasing diversity of citizens,
all with varying needs and requirements. Transport networks are increasing in
form and variety and play a central role in providing enhanced access, among
and across neighbourhoods, to residential places, working institutions and local
amenities like shopping malls, restaurants and hospitals. Improved accessibility
through transportation networks also threatens to create larger, more sprawling
urban areas [1].

Discerning the urban structure in the context of public transit utilisation is
significant for urban planning [2] and sometimes central in controlling the ur-
ban sprawl [3] through Transit-oriented Development (TOD). In urban planning
research, urban structures are generally characterised using origin-destination
(OD) matrices that represent individual and cumulative mobility flows in a city
[4]. A standard sociological method involves survey-based direct observation of
urban populations [5] and their transport patterns such as walking and vehicle
ownership [6] or more novel analyses of mobile telephony networks [7]. However,
such indicators are merely representative of formal or designated use of the “di-
urnal” and “bimodal” city that are leveraged for standard planning applications.
Moreover, this framework of estimating demand and developing supply is heavily
model-based, relying on several parameters, and difficult to analyse and compare
through time. Given this, new methods are needed to assess the multiple types
and spatial flows of passengers on urban transportation networks.

Digital services like Automatic Fare Collection (AFC) have been introduced
into transit networks worldwide and enable an unprecedented amount of anony-
mous transit ridership data. We aim to illustrate a simple and powerful method
with an example where entry-only ridership data of ~ 4.5M daily traces from
the Greater London region can be transformed into spatiotemporal geography
of the city. Each station decomposes into a mix of siz distinct ridership classes
across time, while simultaneously being classified in spaces of central, polycen-
tric and concentric development. Our method can be applied to any region in

-
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the world where entry-only ridership data is available and could be useful for
data-driven planning.

2 Results

Typical
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Fig. 1. Disentangling Public Transit Ridership into Time and Space. A).
Probability Density Function of the individual ridership data of Greater London de-
composed into its characteristic mixtures across a day using GMM, with K = 6. B).
Ternary plots showing composite behaviour of stations with the mixtures either charac-
terising stations in time or space. Typical commuters are work or homebound. Midday
commutes relate to afternoon traffic. Nighttime commutes are following standard work
traffic. C). A population map describing the spatial classification of stations into six
types, each type composed of a percentage mix of mixtures as shown in part (A).

Public Transit Ridership. We use the London Underground Passenger
Count dataset as a proxy for ridership, which is provided freely by Transport for
London (TfL). The dataset describes the average number of entrances at each
station in the Underground Network of Greater London, represented as a time
series spanning 24 hours. The time series are aggregated at 15 minute intervals,
resulting in 96 data points per station. This represents an average of all days in
the month of November 2017, separated into weekdays and weekends. We verify
from the TfL datasets that November 2017 illustrates a typical sample of winter
travelling behaviour throughout the year and has been adjusted by TfL for any
disruptions in the Underground service. The time series of entrances (or exits) at
stations represents an aggregation of many different commuting patterns. Since
the vast majority of commuting takes place on weekdays, we ignore the ridership
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patterns on weekends, corresponding to Saturday and Sunday, the designated
weekend in London work district. We re-factor the wide dataset of TfL arranged
as aggregated counts of entrances into a longitudinal set amounting to a corpus
of ~ 4.56 million geolocated traces.

Disentangling transport demand into time geography. To charac-
terise the nature of urban demand for public transport in cities, we decompose
the diurnal and multimodel transit ridership into its characteristic unimodal
components (mixtures) across a day that is learned through the use of GMM
on the entrance data. Figure 1A shows a range of different demand categories
represented by subpopulations that are automatically identified based on transit
ridership (see Fig 1A). Each mixture has a component weight ¢y, with the con-
straint that Zk ¢; = 1 such that the probability distribution function normalises
to 1 (k = 6, see Fig 1). By analysing the weighted mixtures in a ternary plot, we
observe that stations in Greater London display only a limited range of usage
types (see Fig 1B).

Clustering of stations in space. Using a robust clustering technique over
the mixtures, we classify six individual ridership patterns that naturally serve a
mix of population types. Figure 1C illustrates that Greater London is spatially
divided into concentric zones of development, displaying a variety of central busi-
ness districts (CBD), secondary hubs (polycentric), and arterial flows of distinct
linkage types (outer and inner residential, mixed-commuter, and potential feeder
zones from outside the city). We reckon this space-time geography will be differ-
ent for other observed cities with different patterns of concentric or polycentric
development.
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1 Introduction

Citation networks provide an intriguing means of studying human activity in fields
such as science, law, and patenting [1]. While previous studies have investigated struc-
tural features of these networks, they have been limited by a lack of information about
the properties of the nodes and links. As such, it is not yet well known what structural
features may be revealed by information such as the level of nodes in an explicit hier-
archy of journals or courts, and the sign of links. In particular, the transitive reduction
link removal operation has been proposed as a way to pare a citation network down
to its most essential or “informative” links [2]. This is based on a mechanism that has
been proposed in some models of the growth of citation networks, in which authors
make citations in one of two ways: first, by searching for relevant articles and then
reading them; and second, by copying citations from documents that they have found
via the first method (without reading them) [3]. We examine and compare the struc-
tural properties of legal citation networks with detailed node and link properties from
three different areas of law. Despite strong differences in the three areas of law that are
confirmed by an analysis of the legal topics associated with each node, the high-level
properties of the three networks are very similar. However, using the information in our
dataset about the “treatment” of the links (whether the citation is positive or neutral) and
the hierarchical level of the court that issued the judgment, we also find evidence that
the transitive reduction operation removes key structure from these networks, contrary
to the proposal of Clough et al. [2]. These findings indicate that link copying is not a
relevant mechanism in the growth of legal citation networks.

2 Data

We study citation networks of court decisions constructed from unique datasets in
three distinct areas of Canadian law: defamation, bankruptcy, and family law. In each
network, the nodes represent judgments made by courts from all levels of the court hier-
archy (provincial trial-level, provincial appellate-level, and Supreme Court of Canada),
and the links represent citations from newer to older judgments. In addition to the level
of court, each node has one or more legal topics associated with it. These topics indicate
legal issues involved in the decision. For example, topics in family law include spousal
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support, division of family property, custody and access of children, and other topics.
Additionally, each link has a “treatment” value indicating how the citing judge cited the
past decision. The treatment of a link can be positive (“Followed” (F)), neutral (“Con-
sidered” or “Referred to” (CR)) or negative (“Distinguished” (D) or “Not Followed”).

3 Results and Discussion

Analysis of the legal topics confirms fundamental differences in the three areas of law.
Specifically, bankruptcy law consists of several strongly isolated (“siloed”) sub-areas,
where each sub-area pertains to a different legal topic and is readily identified as a
cluster of nodes by the Infomap algorithm [4]. In contrast, defamation judgments often
share the same legal topics, and clustering is dominated by temporal rather than topical
structure [5]. Family law is more complex, containing isolated sub-areas such as cases
involving child protection agencies, but also containing a large number of judgments
with multiple topics pertaining to division of finances and parental custody of children.

However, despite these fundamental differences in the three areas of law, we show that
the high-level properties of the three citation networks are very similar. In particular,
and similar to results found in scientific citation networks [6], in-degree distributions
are plausibly fit by a power-law with exponent between 2 and 3, directed degree-degree
correlations are close to zero, and distribution of 3-node motifs follows a similar pattern
in each of the three networks. Examining these properties when only certain types of
links are retained in the network (e.g. keeping only the positive or neutral links) exposes
key structural features of the networks, particularly in the motif analysis.

In directed acyclic graphs, such as our citation networks, only four different 3-node
motifs are possible (shown on the x-axis of Fig. 1). As seen in Fig. 1, the distribution of
3-node motifs following transitive reduction resembles the distribution obtained when
only the least significant, neutral links are retained in the network; conversely, when
only the positive links are retained, the motif distribution is significantly different. Ad-
ditionally, retaining only the positive links results in a much higher proportion of target
nodes (the cited node at the end of a link) issued by the highest level of the court hier-
archy, as compared to the full network, whereas considering only the links remaining
after transitive reduction results in a much higher proportion of target nodes from the
lowest level of the court hierarchy. Fig. 2 is an example showing why these strong dif-
ferences between positive and neutral or post-transitive reduction links occur: newer
judgments often make positive citations directly to highly-cited past judgments, despite
the existence of alternative citation paths of neutral links that pass through intermedi-
ate judgments. These findings suggest that link copying is not relevant in the growth
of legal citation networks, and suggest alternative mechanisms related to node fitness
(propensity of a node to attract links, e.g. due to its hierarchical level) and link type.
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Fig. 1. Comparison of motif occurrence rates and court level of target nodes in the family law
citation network. To the left of the vertical dashed line, the y-axis shows the difference in i) the
percentage of each 3-node motif when considering only the positive (F), neutral (CR), or post-
transitive reduction (TR) links, minus ii) the percentage of each 3-node motif in the full network
(considering all links). To the right of the vertical dashed line, the y-axis shows the difference in
proportion of target nodes issued by the trial (Tr), appellate (Ap) or supreme (SC) courts.

Fig. 2. Portion of a citation network showing the link patterns leading to the motif distributions
shown in Fig. 1. The yellow node represents an appellate-court judgment (Smith), and the rest of
the nodes and links constitute the tree reachable from the Smith in the reversed citation network.
The green node is an example of a judgment that directly cites Smith using a positive link, while
also being part of alternate paths to Smith. Link treatments: blue: F; grey: CR; orange: D.
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1 Introduction

Understanding which nodes and links represent a set of structurally relevant interac-
tions is of crucial importance to obtain parsimonious representations of large network
datasets, often referred to as network backbones. Indeed, filtering out noise in order to
extract meaningful backbones has shed light on the functioning of complex weighted
networks of repeated interactions in a variety of disciplines, ranging from Biology [1]
to Finance [2].

Earlier approaches to network backbone extraction relied on simple weight thresh-
olding. This, however, often amounts to neglecting the multiscale nature of most real-
world networks. Most methodologies put forward in recent years, instead, take such
multiscale nature into account by assigning a p-value to each link in a weighted net-
work by measuring the probability of observing its weight under a null hypothesis of
partially random interactions. One of the most successful - and widely adopted - options
in the literature is the disparity filter [3], which relies on a null hypothesis of uniform
distribution of a node’s strength over its links.

The disparity filter and other options in the same spirit (see, e.g., [4]) provide top-
down approaches based on well defined null hypotheses, against which all links in a
network are tested individually. While this certainly presents advantages in terms of
convenience, at the same time it can lead to a lack of flexibility, as different networks
may display different levels of heterogeneity, to which a ‘one-fits-all’ null hypothesis
cannot adapt. Furthermore, most of the above filters are based on null hypotheses of
partially random interactions. Yet, interactions in most natural and social systems are
far from being random, as past activity naturally breeds further activity.

Here, we propose a filtering methodology based on a null hypothesis designed to
respond to the specific heterogeneity of a network. We do so by contrasting links against
a null hypothesis based on the Pélya urn, a well known combinatorial problem driven by
a self-reinforcement mechanism according to which the observation of a certain event
increases the probability of further observing it. Such a mechanism is governed by a
single parameter a > 0 (which in the urn analogy quantifies the number of balls of a
certain color added to the urn after extracting one ball of the same color), which allows
to tune the null hypothesis’ tolerance to a specific network’s heterogeneity, and to study
a continuous family of network backbones &,,.
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2 Results

The full description of the Pdlya filter and some of its possible applications have been
recently published in [5]. The paper’s main results are summarised in the following.

1. We analytically demonstrate that the p-value assigned by the Pdlya filter to any
given link is - with excellent approximation - a function of the ratio r = wk/s,
where w is the weight of the link being tested, k is the degree of one of the two
nodes it is attached to (links can be tested with respect to both their directions),
and s is its strength. Therefore, whether a link is statistically validated against the
null hypothesis - and therefore included in a backbone &, - is determined by an
interplay between weights and topology, which accounts for the Pélya filter’s ability
to validate links at all scales.

2. We prove that the disparity filter [3] is recovered as a special case of the Pélya filter
fora=1.

3. The Pdlya filter becomes increasingly restrictive with the parameter a, with fewer
links being identified as statistically significant as a increases. As a result, back-
bones associated with higher values of a are subsets of those obtained for smaller
values (see Fig. 1),i.e., &,, C P, for ap > a;. Furthermore, we show that as back-
bones become more sparse with higher values of a, they retain links with higher
salience (a recently proposed measure of link importance, which can be loosely
defined as the fraction of weighted shortest-path trees a link participates in [6]) in
the network.

4. We compare the Pdlya filter’s performance on a number of network datasets against
that of 5 other well established alternatives in the literature, demonstrating its unique
ability to generate backbones that are simultaneously sparse, salient, and heteroge-
neous.

5. We provide a criterion to filter a network against a null hypothesis tailored around
its own heterogeneity. This is done by identifying the P6lya process whose self-
reinforcement mechanism is the most likely to generate the specific network under
study. Effectively, this amounts to identifying the value of a corresponding to the
‘nullest’ model in the Pélya family or, in other words, the Pdlya process that best
captures the heterogeneity of the network under consideration.

We showcase the above properties via two main applications devoted, respectively,
to the US air transport network (see Fig. 1) and to the input-output network of global
trade. In the latter case, we also provide evidence that links validated by the Pélya filter
are highly predictive of future interactions.

Summary. We propose a novel technique to extract backbones of statistically rele-
vant interactions between pairs of nodes in a weighted network based on the Pdlya
urn model. The link selection criterion underpinning the Pdlya filter is based on the
interplay between topology and the local relative importance of a link. This, in turn,
guarantees that the filter does not perform a naive link selection merely based on re-
taining high strength links connecting hubs, but instead ensures a non-trivial scanning
of all the relevant scales of a network. As a result, the Pdlya filter generates network
backbones that are simultaneously sparse, salient, and heterogeneous.

The 8" International Conference on Complex Networks and
Their Applications. 10 - 12 Dec., 2019, Lisbon, Portugal

co LEX
NETWORKS
2019



276

Fig. 1. PSlya backbones of the US Airports network for different values of the filter’s parameter
a. Links in blue, orange, and purple correspond, respectively, to short, medium, and long-haul
flights according to the US Bureau of Transportation’s classification. (a) Backbone for a = 0.4.
(b) Backbone for a = 1, which approximately corresponds to the one obtained via the disparity
filter. (¢) Backbone for a = 2.6, which is the highest value of the filter’s parameter where a long-
haul flight (New York - Los Angeles) is retained. (d) Backbone for a = 4.5, which corresponds to
the network’s optimal value mentioned in point 4 of the list above. As it can be seen, higher values
of a lead to sparser backbones. When tuning the Pélya filter to the network’s own heterogeneity
(panel (d)) all major long-haul flights between hubs (i.e., the links that mostly characterise the
network’s heterogeneity) are filtered out, resulting in a backbone of mostly regional and short-
haul flights connecting airports that are often of secondary importance on the national scale. Yet,
these flights provide vital connections, carrying very large numbers of passengers relative to the
overall heterogeneity of the broader transport system they are embedded in.
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1 Introduction

Detecting the presence of mesoscale structures in complex networks is of primary im-
portance [1,2]. This is especially true for financial networks, whose structural orga-
nization deeply affects their resilience to shocks propagation, node failures, etc. [3—6].
Several methods have been proposed, so far, to detect communities, i.e., groups of nodes
whose “internal” connectivity is significantly large. Communities, however, do not rep-
resent the only kind of mesoscale structures characterizing real-world networks: other
examples are provided by bow-tie, core-periphery and bipartite structures. In what fol-
lows, we will focus on the last two types of topological structures.

In recent years the detection of mesoscale structures has been faced by adopting a
bottom-up approach,