Asymptotic Behavior of Aldous’ Gossip Process

Shirshendu Chatterjee

Joint work with Rick Durrett

Probability and Mathematical Physics Seminar, NYU

March 24, 2012
First passage percolation on a torus

- Space is $\Lambda(N) = (\mathbb{Z} \mod N)^2$.
- Suppose one agent is present at each vertex of a $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at rate $1/4$.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate $1/4$.
- ξ_t is the set of vertices informed by time t. $\xi_0 = \{(0,0)\}$.

Questions:

How does ξ_t grow?

When $\xi_t = \Lambda(N)$?
First passage percolation on a torus

- Space is $\Lambda(N) = (\mathbb{Z} \mod N)^2$.
- Suppose one agent is present at each vertex of a $\Lambda(N)$.
- At time 0 the center receives an information.
- Each neighbor of the center gets the information independently at rate $1/4$.
- In general, whenever a vertex is informed, each of its uninformed neighbor gets the information independently at rate $1/4$.
- ξ_t is the set of vertices informed by time t. $\xi_0 = \{(0, 0)\}$.

Questions:
- How does ξ_t grow?
- When $\xi_t = \Lambda(N)$?
Results for nearest neighbor case

- (HW(’65) and Kesten(’86)) In any direction the information percolates with a linear speed.
- (Cox and Durrett(’81)) Diameter of ξ_t grows linearly and it has an asymptotic shape.
- Fluctuation results for the minimum passage time (on lattices):
 - lower bound due to Pemantle and Peres(’94), Newman and Piza(’95) and Zhang(’08).
 - upper bound due to of Benjamini, Kalai and Schramm(’03).
 - conjectured behavior differs from both bounds.

If T_N is the time when every agent on the torus is informed, then T_N/N converges to a number.
State of the process is $\xi_t \subset \Lambda(N)$, the set of informed vertices at time t. $\xi_0 = \{(0, 0)\}$.

Information spreads from vertex i to j at rate ν_{ij}, where

$$\nu_{ij} = \begin{cases} 1/4 & \text{if } j \text{ is a (nearest) neighbor of } i \\ \lambda_N/(N^2 - 5) & \text{if not.} \end{cases}$$

If a vertex gets the information from a non-neighbor, we call it a ‘center’.

So each informed vertex tries to give birth to new centers at rate λ_N.
State of the process is $\xi_t \subset \Lambda(N)$, the set of informed vertices at time t. $\xi_0 = \{(0, 0)\}$.

Information spreads from vertex i to j at rate ν_{ij}, where

$$
\nu_{ij} = \begin{cases}
1/4 & \text{if } j \text{ is a (nearest) neighbor of } i \\
\lambda_N/(N^2 - 5) & \text{if not.}
\end{cases}
$$

If a vertex gets the information from a non-neighbor, we call it a ‘center’.

So each informed vertex tries to give birth to new centers at rate λ_N.

Question: How does ξ_t grow? How does T_N scale?
Our model (‘balloon process C_t’)

To simplify:

- we remove randomness from nearest neighbor growth
- we formulate on the (real) torus $\Gamma(N) = (\mathbb{R} \mod N)^2$.

The state of our process at time t is $C_t \subset \Gamma(N)$, the subset informed by time t.

C_t starts with one center chosen uniformly from $\Gamma(N)$ at time 0.

Each center corresponds to a disk, whose radius grows as $r(s) = s/\sqrt{2\pi}$.

At time t, birth rate of new centers is $\lambda N |C_t| = \lambda NC_t$.

The location of each new center is chosen uniformly from the torus. If the new center lands at $x \in C_t$, it has no effect. But we count all centers in \tilde{X}_t.

S. Chatterjee ()

Aldous’ Gossip Process

March 24, 2012 5 / 26
Our model (‘balloon process C_t’)

To simplify:

- we remove randomness from nearest neighbor growth
- we formulate on the (real) torus $\Gamma(N) = (\mathbb{R} \mod N)^2$.

- The state of our process at time t is $C_t \subset \Gamma(N)$, the subset informed by time t.
- C_t starts with one center chosen uniformly from $\Gamma(N)$ at time 0.
- Each center corresponds to a disk, whose radius grows as $r(s) = s/\sqrt{2\pi}$.
- At time t, birth rate of new centers is $\lambda_N |C_t| = \lambda_N C_t$.
- The location of each new center is chosen uniformly from the torus.
- If the new center lands at $x \in C_t$, it has no effect. But we count all centers in \tilde{X}_t.
Phase transition

Consider $\lambda_N = N^{-\alpha}$.

- **Case 1: $\alpha > 3$.**
 - If the diameter of C_t grows linearly, then $\int_0^N C_t \, dt = O(N^3)$.
 - So with high probability there is no long jump before the initial disk covers the entire torus, and
 - the cover time satisfies
 \[
 \frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.
 \]
Phase transition

Consider \(\lambda_N = N^{-\alpha} \).

- **Case 1**: \(\alpha > 3 \).
 - If the diameter of \(C_t \) grows linearly, then \(\int_0^{c_0} C_t \, dt = O(N^3) \).
 - So with high probability there is no long jump before the initial disk covers the entire torus, and
 - the cover time satisfies
 \[
 \frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.
 \]

- **Case 2**: \(\alpha = 3 \).
 - with probabilities bounded away from 0, (i) no long range jump and \(T_N \approx \sqrt{\pi}N \), and (ii) there is one that lands close enough to \((N/2, N/2)\) to make \(T_N \leq (1 - \delta)\sqrt{\pi} N \).
 - \(T_N/N \) converges weekly to a random variable with support \([0, \sqrt{\pi}]\) and an atom at \(\sqrt{\pi} \).

- **Case 3**: \(\alpha < 3 \).
 - Many long range jumps.
 - The cover time is significantly accelerated.
Phase transition

Consider $\lambda_N = N^{-\alpha}$.

- **Case 1**: $\alpha > 3$.

 ▶ If the diameter of C_t grows linearly, then $\int_0^N C_t \, dt = O(N^3)$.

 ▶ So with high probability there is no long jump before the initial disk covers the entire torus, and

 ▶ the cover time satisfies
 \[
 \frac{T_N}{N} \xrightarrow{P} \sqrt{\pi}.
 \]

- **Case 2**: $\alpha = 3$.

 ▶ with probabilities bounded away from 0, (i) no long range jump and $T_N \approx \sqrt{\pi}N$, and (ii) there is one that lands close enough to $(N/2, N/2)$ to make $T_N \leq (1 - \delta)\sqrt{\pi}N$.

 ▶ T_N/N converges weakly to a random variable with support $[0, \sqrt{\pi}]$ and an atom at $\sqrt{\pi}$.

- **Case 3**: $\alpha < 3$.

 ▶ Many long range jumps.

 ▶ The cover time is significantly accelerated.
Branching balloon process A_t

- Overlaps among the disks in C_t make it difficult to study.
- We begin by studying much simpler balloon branching process A_t.

In the process A_t,

- we do not ignore any center (unlike in C_t),
- A_t and X_t denote the sum of the areas of all of the disks and the number of centers at time t,
- new centers are born at rate $N^{-\alpha}A_t$ at uniformly chosen locations.

We couple C_t and A_t so that

- they start from the same point, and
- $C_t \subset A_t$, $C_t \leq A_t$, $\tilde{X}_t \leq X_t \ \forall t \geq 0$. (Recall $\tilde{X}_t = \#$ centers in C_t)
Properties of A_t

Let $\lambda = N^{-\alpha}$.

- Let $L_t := \int_0^t X_s \, ds$ be the length process. Then
 $$A_t = \int_0^t (t - s)^2 / 2 \, dX_s = \int_0^t L_s \, ds.$$
- Using i.i.d. behavior of all the centers,
 $$X_t = 1 + \sum_{i : s_i \in \Pi_t} X_{t-s_i}^i,$$
 where $\Pi_t \subset [0, t]$ is the set of time points when the initial disk gives birth to new centers, and X_i's are i.i.d. copies of X.
Properties of A_t

Let $\lambda = N^{-\alpha}$.

- Let $L_t := \int_0^t X_s \, ds$ be the length process. Then

 $$A_t = \int_0^t (t - s)^2/2 \, dX_s = \int_0^t L_s \, ds.$$

- Using i.i.d. behavior of all the centers,

 $$X_t = 1 + \sum_{i:s_i \in \Pi_t} X^i_{t-s_i},$$

 where $\Pi_t \subset [0, t]$ is the set of time points when the initial disk gives birth to new centers, and X^i's are i.i.d. copies of X.

- A little Poisson process computation shows that

 $$EX_t = 1 + \int_0^t EX_{t-s} \frac{\lambda s^2}{2} \, ds,$$

 as the initial disk has area $s^2/2$ at time s.

- Solving the renewal equation

 $$EX_t = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k}}{(3k)!}.$$
Properties of A_t (continued)

- Solving the ODE $v''' = \lambda v$, (ω, ω^2 are complex cube roots of 1)
 \[EX_t = \frac{1}{3} \left[\exp(\lambda^{1/3} t) + \exp(\lambda^{1/3} \omega t) + \exp(\lambda^{1/3} \omega^2 t) \right], \text{ and so} \]
 \[EA_t = \frac{\lambda^{-2/3}}{3} \left[\exp(\lambda^{1/3} t) + \omega \exp(\lambda^{1/3} \omega t) + \omega^2 \exp(\lambda^{1/3} \omega^2 t) \right], \]

- (X_t, L_t, A_t) is a Markov process.
- If $\mathcal{F}_s = \sigma\{X_r, L_r, A_r : r \leq s\}$, then
 \[
 \frac{d}{dt} E \left[\begin{array}{c|c}
 X_t \\
 L_t \\
 A_t \\
 \end{array} \bigg| \mathcal{F}_s \right]_{t=s} = Q \left[\begin{array}{c}
 X_s \\
 L_s \\
 A_s \\
 \end{array} \right], \text{ where } Q = \left(\begin{array}{ccc}
 0 & 0 & \lambda \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 \end{array} \right).
 \]

- The left eigenvalues of Q are $\eta = \lambda^{1/3}, \lambda^{1/3} \omega, \lambda^{1/3} \omega^2$ with eigenvector $(1, \eta, \eta^2)$.
- From Dynkin's formula, $e^{-\eta t}(X_t + \eta L_t + \eta^2 A_t)$ is a (complex) martingale.
The random variable M

Theorem

$$M_t := \exp(-\lambda^{1/3} t)(X_t + \frac{\lambda^{1/3}}{3} L_t + \frac{\lambda^{2/3}}{3} A_t)$$ is a positive L^2-martingale, and so $M_t \to M$ a.s. and in L^2. M does not depend on λ and $P(M > 0) = 1$. $X_t/EX_t, L_t/EL_t, A_t/EA_t \to M$ a.s. and in L^2.
Hitting time

- \(\tau(\epsilon) = \inf\{ t : C_t \geq \epsilon N^2 \} \). We compare it with
 \[\sigma(\epsilon) := \inf\{ t : A_t \geq \epsilon N^2 \}. \]

- \(EA_t \sim a(t) = (1/3)N^{2\alpha/3} \exp(N^{-\alpha/3}t) \), and let
 \[S(\epsilon) := N^{\alpha/3}[(2 - 2\alpha/3) \log N + \log(3\epsilon)] \] so that \(a(S(\epsilon)) = \epsilon N^2 \).

- Using the \(L^2 \) convergence we have nice estimates for
 \(P(\sup_{t \geq u} |A_t/a(t) - M| > \gamma) \) which in turn gives:

Lemma

*If \(0 < \epsilon < 1 \), then as \(N \to \infty \),

\[N^{-\alpha/3}(\sigma(\epsilon) - S(\epsilon)) \xrightarrow{P} - \log(M). \]

The coupling between \(C_t \) and \(A_t \) implies \(\tau(\epsilon) \geq \sigma(\epsilon) \).
Upper bound for $\tau(\varepsilon)$

To have an upper bound for $\tau(\varepsilon)$ we need to bound the difference $A_t - C_t$. Note that

- $x \in C_t$ if and only if a center is born in the space-time cone

$$K_{x,t} := \left\{ (y, s) \in \Gamma(N) \times [0, t] : |y - x| \leq (t - s)/\sqrt{2\pi} \right\}.$$

So

$$P(x \notin C_t | s_0, s_1, s_2, \ldots) = \prod_{i:s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right] \leq \exp \left[- \sum_{i:s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right],$$

which gives a lower bound

$$EC_t \geq N^2 E \left[1 - \exp \left(- \int_0^t \frac{(t-s)^2}{2N^2} \, d\tilde{X}_s \right) \right].$$
Upper bound for $\tau(\epsilon)$ (continued)

- Using the inequality $1 - e^{-x} \geq x - x^2/2$ for $x \geq 0$,

 \[
 EC_t \geq \frac{t^2}{2} + \int_0^t \frac{(t - s)^2}{2} \, d\tilde{X}_s - \frac{1}{2N^2} E \left[\int_0^t \frac{(t - s)^2}{2} \, dX_s \right]^2
 \]

 \[
 \geq \frac{t^2}{2} + \int_0^t \frac{(t - s)^2}{2} \lambda EC_s \, ds - \frac{EA_t^2}{2N^2}.
 \]

- Recall that by the definition of A_t,

 \[
 EA_t = \frac{t^2}{2} + \int_0^t \frac{(t - s)^2}{2} \lambda EA_s \, ds.
 \]

- So if $u(t) = EA_t - EC_t$, then

 \[
 u(t) \leq \frac{EA_t^2}{2N^2} + \int_0^t \frac{(t - s)^2}{2} \lambda u(s) \, ds = \frac{EA_t^2}{2N^2} + \int_0^t u(t - r) \lambda \frac{r^2}{2} \, dr,
 \]
Upper bound for $\tau(\epsilon)$ (continued)

- From the last argument

$$EC_t \geq EA_t - \frac{11a^2(t)}{N^2}.$$

- Using Markov inequality we can bound $A_t - C_t$, and have

Lemma

For any $\gamma > 0$,

$$\limsup_{N \to \infty} P[\tau(\epsilon) > \sigma((1 + \gamma)\epsilon)] \leq P \left(M \leq (1 + \gamma)\epsilon^{1/3} \right) + 11\frac{\epsilon^{1/3}}{\gamma}.$$

Remark: So $\tau(\epsilon) \sim (2 - 2\alpha/3)N^{\alpha/3} \log N.$
How does C_t/N^2 grow?

We choose

- $R := N^{\alpha/3}[(2 - 2\alpha/3) \log N - \log(M)]$ and $\psi(t) := R + N^{\alpha/3}t$ so that

$$A_{\psi(t)}/N^2 \xrightarrow{P} e^t/3, -\infty < t < \infty.$$

In particular for $W = \psi(\log(3\epsilon))$, $N^{-2}A_W \xrightarrow{P} \epsilon$.

- If ϵ is small, then using previous bound on $A_t - C_t$, C_W/A_W is close to 1.
- Thus C_W is close to ϵN^2 with high probability.

To study the growth of C_t after time W,

- call the centers present at time W ‘generation 0 centers’.
- For $k \geq 1$, generation k centers are those which are born from area covered by generation $(k - 1)$ centers.
Estimates for area covered by generation 0 centers

Def: For \(k \geq 0 \) let \(C^k_{W,\psi(t)} \) (resp \(A^k_{W,\psi(t)} \)) be the area covered in \(C_t \) (resp \(A_t \)) by centers of generations \(j \in \{0, 1, \ldots, k\} \). Then

\[
A^0_{W,\psi(t)} = \int_0^W \frac{(\psi(t) - r)^2}{2} \, dX_r
\]

\[
= \frac{(\psi(t) - W)^2}{2}X_W + (\psi(t) - W)L_W + A_W
\]

\[
= \frac{(t - \log(3\epsilon))^2}{2}N^{2\alpha/3}X_W + (t - \log(3\epsilon))L_W + A_W.
\]

Recall that \(N^{-2}A_W \overset{P}{\to} \epsilon \). In the same spirit,

\(N^{-(2-\alpha/3)}L_W, N^{-(2-2\alpha/3)}X_W \overset{P}{\to} \epsilon \).

So if \(g_0(t) := \epsilon[1 + (t - \log(3\epsilon)) + (t - \log(3\epsilon))^2/2] \),

\[
\lim_{N \to \infty} P \left(\sup_{s \in [\log(3\epsilon), t]} \left| N^{-2}A^0_{W,\psi(s)} - g_0(s) \right| > \eta \right) = 0 \quad \text{for any } \eta > 0.
\]
Estimates for area covered by generation 0 centers

For a lower bound on $C_{W,\psi(t)}^0$, note that $x \in C_{s,t}^0$ if and only if a center is born in the space-time cone

$$K_{x,s,t} := \left\{(y, r) \in \Gamma(N) \times [0, s] : |y - x| \leq (t - r)/\sqrt{2\pi}\right\}.$$

Applying the inequality $1 - e^{-x} \geq x - x^2/2$ and doing some algebra,

$$EC_{s,t}^0 \geq EA_{s,t}^0 - \frac{a^2(s)}{N^2} p((t - s)N^{-\alpha/3}),$$

where $p(\cdot)$ is a polynomial.

This leads to the estimate

$$P\left(\inf_{s \in I_{\epsilon,t}} N^{-2} \left(C_{W,\psi(s)}^0 - A_{W,\psi(s)}^0\right) < -\epsilon^{7/6}\right) \leq P(M < \epsilon^{1/3}) + \epsilon^{1/12}.$$

Since $C_{W,\psi(t)}^0 \leq A_{W,\psi(t)}^0$, if ϵ is small, with high probability $g_0(t)$ and $f_0(t) := g_0(t) - \epsilon^{7/6}$ provide upper and lower bounds respectively for $N^{-2} C_{W,\psi(t)}^0$.
Lower bound for $C^1_{W,\psi(t)}$

A point $x \notin C^1_{W,\psi(t)}$, if $x \notin C^0_{W,\psi(t)}$ and no generation 1 center is born in

$$K^\epsilon_{x,t} \equiv \left\{ (y, s) \in \Gamma(N) \times [W, \psi(t)] : |y - x| \leq (\psi(t) - s) / \sqrt{2\pi} \right\}.$$

To get a lower bound, we compare it with a process $B^1_{\psi(t)}$, where B^0_t has area $N^2 f_0(t)$ and generation 1 centers are born as a Poisson process with intensity $N^{2-\alpha} f_0(\cdot)$.

Using a PP computation and second moment argument, if

$$1 - f_1(t) = (1 - f_0(t)) \exp \left(- \int_{\log(3\epsilon)}^t \frac{(t - s)^2}{2} f_0(s) \, ds \right),$$

the $N^{-2} |B^1_{\psi(t)}|$ is close to $f_1(t)$. This gives the estimate

$$\limsup_{N \to \infty} P \left[\inf_{s \in I_{\epsilon,t}} (N^{-2} C^1_{W,\psi(s)} - f_1(s)) < -\delta \right] \leq P(M < \epsilon^{1/3}) + \epsilon^{1/12}.$$

for any $\delta > 0$ and small ϵ.
Lower bound for $C_\psi(t)$

The last argument can be iterated. Let

$$1 - f_{k+1}(t) = (1 - f_k(t)) \exp \left(- \int_0^t \frac{(t - s)^2}{2 \log(3\epsilon)} (f_k(s) - f_{k-1}(s)) \, ds \right)$$

$$\cdots = (1 - f_0(t)) \exp \left(- \int_0^t \frac{(t - s)^2}{2 \log(3\epsilon)} f_k(s) \, ds \right).$$

$f_k \uparrow f_\epsilon$ satisfying

$$f_\epsilon(t) = 1 - (1 - f_0(t)) \exp \left(- \int_0^t \frac{(t - s)^2}{2 \log(3\epsilon)} f_\epsilon(s) \, ds \right)$$

with $f_\epsilon(0) = \epsilon - \epsilon^{7/6}$ and $|f_\epsilon(t) - f_k(t)| \leq \frac{(t - \log(3\epsilon))^{3k}}{(3k)!}$. Choosing k large enough and noting that $C_\psi(t) \geq C^k_{\mathcal{W},\psi}(t)$, if ϵ is small and $\delta > 0$,

$$\limsup_{N \to \infty} P \left[\inf_{s \in I_{\epsilon,t}} (N^{-2} C_\psi(s) - f_\epsilon(s)) < -\delta \right] \leq P(M < \epsilon^{1/3}) + \epsilon^{1/12}.$$
Recall that $g_0(\cdot) = \epsilon [1 + (\cdot - \log(3\epsilon)) + (\cdot - \log(3\epsilon))^2 / 2]$ is an upper bound of $C_{W,\psi}^0(t)$. Using similar argument, $g_k(\cdot)$ satisfying

$$1 - g_{k+1}(t) = (1 - g_k(t)) \exp \left(- \int_{\log(3\epsilon)}^{t} \frac{(t - s)^2}{2} (g_k(s) - g_{k-1}(s)) \, ds \right)$$

$$\cdots = (1 - g_0(t)) \exp \left(- \int_{\log(3\epsilon)}^{t} \frac{(t - s)^2}{2} g_k(s) \, ds \right)$$

provides an upper bound for $C_{W,\psi}(\cdot)$.

$g_k \uparrow g_\epsilon$ satisfying

$$g_\epsilon(t) = 1 - (1 - g_0(t)) \exp \left(- \int_{\log(3\epsilon)}^{t} \frac{(t - s)^2}{2} g_\epsilon(s) \, ds \right)$$

with $g_\epsilon(0) = \epsilon$ and $|g_\epsilon(t) - g_k(t)| \leq \frac{(t - \log(3\epsilon))^{3k}}{(3k)!}$.
Upper bound for $C_{\psi}(t)$ (continued)

$C^k_{W,\psi}(t) \uparrow C_{\psi}(t)$ uniformly in k, as

- $C_{\psi}(t) - C^k_{W,\psi}(t) \leq A_{\psi}(t) - A^k_{W,\psi}(t)$
- $A_{s+t} - A^k_{s,s+t}$ is increasing in s and decreasing in k.

So choosing large k, if ϵ is small and $\delta > 0$,

$$\limsup_{N \to \infty} P \left[\sup_{s \in I_{\epsilon,t}} \left(N^{-2} C_{\psi}(s) - g_\epsilon(s) \right) > \delta \right] \leq P(M < \epsilon^{1/3}) + \epsilon^{2/3}.$$
Limiting behavior of $C_{\psi}(t)$

$g_\epsilon(t)$ and $f_\epsilon(t)$ provide upper and lower bounds for $C_{\psi}(t)$. In the limit as $\epsilon \to 0$ both the bounds converge to the same thing. Let $h_\epsilon(t) = e^t/3$ for $t < \log(3\epsilon)$.

$$h_\epsilon(t) = 1 - \exp \left(- \int_{-\infty}^{\log(3\epsilon)} \frac{(t - s)^2 e^s}{2} ds - \int_{\log(3\epsilon)}^{t} \frac{(t - s)^2}{2} h_\epsilon(s) ds \right)$$

for $t \geq \log(3\epsilon)$. Then

$$\sup_{s \in I_{\epsilon, t}} |f_\epsilon(s) - h_\epsilon(s)|, \sup_{s \in I_{\epsilon, t}} |g_\epsilon(s) - h_\epsilon(s)| \to 0, \quad h_\epsilon(t) \to h(t)$$

satisfying (a) $\lim_{t \to -\infty} h(t) = 0$ (b) $\lim_{t \to \infty} h(t) = 1$ (c) h is increasing with $0 < h(t) < 1$ and

$$(d) \quad h(t) = 1 - \exp \left(- \int_{-\infty}^{t} \frac{(t - s)^2}{2} h(s) ds \right).$$
Limiting behavior of $C_{\psi}(t)$

Theorem (C. and Durrett; to appear in AoAP)

For any $t < \infty$ and $\delta > 0$,

$$
\lim_{N \to \infty} P \left(\sup_{s \leq t} \left| N^{-2} C_{\psi}(s) - h(s) \right| \leq \delta \right) = 1.
$$

Remarks:

- The displacement of $\tau(\epsilon)$ from $(2 - 2\alpha/3)N^{\alpha/3} \log N$ on the scale $N^{\alpha/3}$ is dictated by the random variable M that gives the rate of growth of the balloon branching process.
- Once C_t reaches ϵN^2, the growth is deterministic.
The cover time T_N

- $h(t)$ never reaches 1.
- Since $N^{-2} C_{\psi(s)} \sim h(s)$, the number of centers in $C_{\psi(0)}$ dominates a Poisson random variable with mean

 $$\lambda(\delta) N^{2-2\alpha/3},$$
 where
 $$\lambda(\delta) = \int_{-\infty}^{0} (h(s) - \delta)^+ \, ds,$$

 which are uniformly distributed in the torus.
- If $\delta > 0$ is small, then $\lambda(\delta) > 0$.
- Divide the torus into smaller squares with side $\kappa N^{\alpha/3} \sqrt{\log N}$.
- With high probability each of the small squares owns at least one center at time $\psi(0)$.
- This makes $T_N \leq \psi(0) + O(N^{\alpha/3} \sqrt{\log N})$, and so
 $$T_N / N^{\alpha/3} \log N \to 2 - 2\alpha/3.$$
Future direction

What happens when percolation rate depends on distance?
Thank You