ASYMPTOTIC BEHAVIOR OF ALDOUS’ GOSSIP PROCESS

BY SHIRSHENDU CHATTERJEE AND RICK DURRETT

Cornell University and Duke University

Aldous [(2007) Preprint] defined a gossip process in which space is a discrete $N \times N$ torus, and the state of the process at time t is the set of individuals who know the information. Information spreads from a site to its nearest neighbors at rate $1/4$ each and at rate $N^{-\alpha}$ to a site chosen at random from the torus. We will be interested in the case in which $\alpha < 3$, where the long range transmission significantly accelerates the time at which everyone knows the information. We prove three results that precisely describe the spread of information in a slightly simplified model on the real torus. The time until everyone knows the information is asymptotically

$$T = \left(2 - 2\alpha/3\right) N^{\alpha/3} \ln N$$

If ρ_s is the fraction of the population who know the information at time s and ε is small then, for large N, the time until ρ_s reaches ε is

$$T(\varepsilon) \approx T + N^{\alpha/3} \ln(3\varepsilon/M),$$

where M is a random variable determined by the early spread of the information. The value of ρ_s at time $s = T(1/3) + tN^{\alpha/3}$ is almost a deterministic function $h(t)$ which satisfies an odd looking integro-differential equation. The last result confirms a heuristic calculation of Aldous.

1. Introduction. We study a model introduced by Aldous (2007) for the spread of gossip and other more economically useful information. His paper considers various game theoretic aspects of random percolation of information through networks. Here we concentrate on one small part, a first passage percolation model with nearest neighbor and long-range jumps introduced in his Section 6.2. The work presented here is also related to work of Filipe and Maule (2004) and Cannas, Marco and Montemurro (2006), who considered the impact of long-range dispersal on the spread of epidemics and invading species.

Space is the discrete torus $\Lambda(N) = (\mathbb{Z} \mod N)^2$. The state of the process at time t is $\xi_t \subset \Lambda(N)$, the set of individuals who know the information at
time t. Information spreads from i to j at rate
\[\nu_{ij} = \begin{cases} 1/4, & \text{if } j \text{ is a (nearest) neighbor of } i, \\ \lambda_N/N^2, & \text{if not}. \end{cases} \]
If $\lambda_N = 0$, this is ordinary first passage percolation on the torus. If we start with $\xi_0 = \{(0,0)\}$, then the shape theorem for nearest-neighbor first passage percolation, see Cox and Durrett (1981) or Kesten (1986), implies that until the process exits $(-N/2, N/2)^2$, the radius of the set ξ_t grows linearly and ξ_t has an asymptotic shape. From this we see that if $\lambda_N = 0$, then there is a constant c_0 so that the time T_N, until everyone knows the information, satisfies
\[\frac{T_N}{N} \xrightarrow{P} c_0, \]
where \xrightarrow{P} denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest neighbor part of the process, and formulate it on the (real) torus $\Gamma(N) = (\mathbb{R} \mod N)^2$. One should be able to prove a similar result for the first passage percolation model but there are two difficulties. The first and easier to handle is that the limiting shape is not round. The second and more difficult issue is that the growth is not deterministic but has fluctuations. One should be able to handle both of these problems, but the proof is already long enough.

We consider what we call the “balloon process,” in which the state of the process at time t is $C_t \subset \Gamma(N)$. It starts with one “center” chosen uniformly from the torus at time 0. When a center is born at x, a disk with radius 0 is put there, and its radius grows deterministically as $r(s) = s/\sqrt{2\pi}$, so that the area of the disk at time s after its birth is $s^2/2$. If the area covered at time t is C_t, then births of new centers occur at rate $\lambda_N C_t$. The location of each new center is chosen uniformly from the torus. If the new point lands at $x \in C_t$, it will never contribute anything to the growth of the set, but we will count it in the total number of centers, which we denote by \tilde{X}_t.

Before turning to the details of our analysis we would like to point out that a related balloon process was used by Barbour and Reinert (2001) in their study of distances on the small world graph. Consider a circle of radius L and introduce a Poisson mean $\rho L/2$ number of chords with length 0 connecting randomly chosen points on the circle. To study the distance between a fixed point O and a point chosen at random one wants to examine $S(t) = \{x: \text{dist}(O, x) \leq t\}$. If we ignore overlaps and let $M(t)$ be the number of intervals in $S(t)$ then $S'(t) = 2M(t)$ and $M(t)$ is a Yule process with births at rate $2\rho M(t)$ due to the interval ends encountering points in the Poisson process of chords. This a balloon process in which the new births come from the boundaries. As in our case one first studies the growth of
the balloon process and then estimates the difference from the real process to prove the desired result. There are interesting parallels and differences between the two proofs, see Section 5.2 of Durrett (2007) for a proof.

Here we will be concerned with $\lambda_N = N^{-\alpha}$. To begin we will get rid of trivial cases. If the diameter of C_t grows linearly, then $\int_0^{c_0 N} C_t \, dt = O(N^3)$. So if $\alpha > 3$, with probability tending to 1 as $N \to \infty$, there is no long range jump before the initial disk covers the entire torus, and the time T_N until the entire torus is covered satisfies

$$\frac{T_N}{N} \xrightarrow{\text{p}} c_1 \quad \text{where } c_1 = \sqrt{\pi}.$$

If $\alpha = 3$, then with probabilities bounded away from 0, (i) there is no long range jump and $T_N \approx c_1 N$, and (ii) there is one that lands close enough to $(N/2, N/2)$ to make $T_N \leq (1 - \delta)Nc_1$. Using \Rightarrow for weak convergence, this suggests that

Theorem 0. When $\alpha = 3$, $T_N/N \Rightarrow$ a random limit concentrated on $[0, c_1]$ and with an atom at c_1.

Proof. Suppose without loss of generality that the initial center is at 0, and view the torus as $(-N/2, N/2)^2$. The key observation is that the set-valued process $\{C_t/N, t \geq 0\}$ converges to a limit D_t. Before the first long-range dispersal, the state of D_t is the intersection of the disk of radius $t/\sqrt{2\pi}$ with $(-1/2, 1/2)^2$. Long range births occur at rate equal to the area of D_t and are dispersed uniformly. Since the distance from $(0,0)$ to $(1/2,1/2)$ is $1/\sqrt{2}$, if there are no long range births before time $c_1 = \sqrt{\pi}$ or if all long range births land inside D_t then the torus is covered at time c_1. Computing the distribution of the cover time when it is $< c_1$ is complicated, but the answer is a continuous functional of the limit process, and standard weak convergence results give the result. \square

For the remainder of the paper we suppose $\lambda_N = N^{-\alpha}$ with $\alpha < 3$. The overlaps between disks in C_t pose a difficulty in analyzing the process, so we begin by studying a simpler “balloon branching process” A_t, in which A_t is the sum of the areas of all of the disks at time t, births of new centers occur at rate $\lambda N A_t$, and the location of each new center is chosen uniformly from the torus. Let X_t be the number of centers at time t in A_t.

Suppose we start C_0 and A_0 from the same randomly chosen point. The areas $C_t = A_t$ until the time of the first birth, which can be made to be the same in the two processes. If we couple the location of the new centers at that time, and continue in the obvious way letting C_t and A_t give birth at the same time with the maximum rate possible, to the same place when they give birth simultaneously, and letting A_t give birth by itself otherwise, then
we will have

\[C_t \subset A_t, \quad C_t \leq A_t, \quad \bar{X}_t \leq X_t \quad \text{for all } t \geq 0. \]

\(X_t \) is a Crump–Mode–Jagers branching process, but saying these words does not magically solve our problems. Define the length process \(L_t \) to be \(\sqrt{2\pi} \) times the sum of the radii of all the disks at time \(t \).

\[
L_t = \int_0^t (t - s) \, dX_s = \int_0^t X_s \, ds,
\]

(1.2)

\[
A_t = \int_0^t (t - s)^2 \, dX_s = \int_0^t L_s \, ds.
\]

Here and later we use \(\int_0^t \) for integration over the closed interval \([0, t]\), that is, we include the contribution from the atom in \(dX_s \) at 0 (\(X_0 = 1 \) while \(X_s = 0 \) for \(s < 0 \)). For the second equality on each line integrate by parts or note that \(L'_t = X_t \) and \(A'_t = L_t \). Since \(X_t \) increases by 1 at rate \(\lambda N A_t \), \((X_t, L_t, A_t)\) is a Markov process.

To simplify formulas, we will often drop the subscript \(N \) from \(\lambda_N \). For comparison with \(C_t \), the parameter \(\lambda \) is important, but in the analysis of \(A_t \) it is not. If we let

\[
(1.3) \quad X^1_t = X(t\lambda^{-1/3}), \quad L^1_t = \lambda^{1/3} L(t\lambda^{-1/3}), \quad A^1_t = \lambda^{2/3} A(t\lambda^{-1/3}),
\]

then \((X^1_t, L^1_t, A^1_t)\) is the process with \(\lambda = 1 \).

To study the growth of \(A_t \), first we will compute the means of \(X_t \), \(L_t \) and \(A_t \). Let \(F(t) = \lambda t^3 / 3! \). Using the independent and identical behavior of all the disks in \(A_t \) it is easy to show that (see the proof of Lemma 2.4)

\[
EX_t = 1 + \int_0^t EX_{t-s} \, dF(s).
\]

Solving the above renewal equation and using (1.2), we can show

\[
EX_t = \sum_{k=0}^{\infty} F^k(t) = V(t) = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k}}{(3k)!},
\]

(1.4)

\[
EL_t = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k+1}}{(3k+1)!},
\]

\[
EA_t = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k+2}}{(3k+2)!}.
\]

To evaluate \(V(t) \) we note that \(V'''(t) = \lambda V(t) \) with \(V(0) = 1, V'(0) = V''(0) = 0 \), so

\[
(1.5) \quad V(t) = \frac{1}{3} \left[\exp(\lambda^{1/3} t) + \exp(\lambda^{1/3} \omega t) + \exp(\lambda^{1/3} \omega^2 t) \right].
\]
Theorem 1. \(\{M_t : t \geq 0\} \) is a positive square integrable martingale with respect to the filtration \(\{F_t : t \geq 0\} \). \(EM_t = M_0 = 1 \).

\[
EM_t^2 = \frac{8}{9} - \frac{4}{9} \exp(-\lambda^{1/3}t) + O(\exp(-5\lambda^{1/3}t/2)),
\]

\[
E|\tilde{J}_t|^2, \ E|\tilde{K}_t|^2 = \frac{1}{6} \exp(2\lambda^{1/3}t) + O(\exp(\lambda^{1/3}t/2)).
\]

If we let \(M = \lim_{t \to \infty} M_t \), then \(P(M > 0) = 1 \) and

\[
\exp(-\lambda^{1/3}t)X_t, \ \lambda^{1/3} \exp(-\lambda^{1/3}t)L_t, \ \lambda^{2/3} \exp(-\lambda^{1/3}t)A_t \to M/3
\]
a.s. and in \(L^2 \). The distribution of \(M \) does not depend on \(\lambda \).

The last result follows from (1.3), which with (1.2) explains why the three quantities converge to the same limit. The key to the proof of the convergence results is to note that \(1 + \omega + \omega^2 = 0 \) implies

\[
3X_t = I_t + J_t + K_t,
\]

\[
3\lambda^{1/3}L_t = I_t + \omega^2 J_t + \omega K_t,
\]

\[
3\lambda^{2/3}A_t = I_t + \omega J_t + \omega^2 K_t.
\]

The real parts of \(\omega \) and \(\omega^2 \) are \(-1/2\). Although the results for \(E|\tilde{J}_t|^2 \) and \(E|\tilde{K}_t|^2 \) show that the martingales \(\tilde{J}_t \) and \(\tilde{K}_t \) are not \(L^2 \) bounded, it is easy to show that \(\exp(-\lambda^{1/3}t)J_t \) and \(\exp(-\lambda^{1/3}t)K_t \to 0 \) a.s. and in \(L^2 \), and Theorem 1 then follows from \(M_t = \exp(-\lambda^{1/3}t)I_t \to M. \)

Here \(\omega = (-1 + i\sqrt{3})/2 \) is one of the complex cube roots of 1 and \(\omega^2 = (-1 - i\sqrt{3})/2 \) is the other. Note that each of \(\omega \) and \(\omega^2 \) has real part \(-1/2\). So the second and third terms in (1.5) go to 0 exponentially fast.

If \(F_s = \sigma\{X_r, L_r, A_r : r \leq s\} \), then

\[
dt E \left[\begin{array}{c|c} X_t & L_t \\ \hline A_t & F_s \end{array} \right]_{t=s} = \left(\begin{array}{ccc} 0 & 0 & \lambda \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} X_s \\ L_s \\ A_s \end{array} \right).
\]

Let \(Q \) be the matrix in (1.6). By computing the determinant of \(Q - \eta I \) it is easy to see that \(Q \) has eigenvalues \(\eta = \lambda^{1/3}, \omega \lambda^{1/3}, \omega^2 \lambda^{1/3} \), and \(e^{-\eta t}(X_t + \eta L_t + \eta^2 A_t) \) is a (complex) martingale. To treat the three martingales separately, let

\[
I_t = X_t + \lambda^{1/3}L_t + \lambda^{2/3}A_t, \quad M_t = \exp(-\lambda^{1/3}t)I_t,
\]

\[
J_t = X_t + (\omega \lambda^{1/3})L_t + (\omega \lambda^{1/3})^2 A_t, \quad \tilde{J}_t = \exp(-\omega \lambda^{1/3}t)J_t,
\]

\[
K_t = X_t + (\omega^2 \lambda^{1/3})L_t + (\omega^2 \lambda^{1/3})^2 A_t, \quad \tilde{K}_t = \exp(-\omega^2 \lambda^{1/3}t)K_t,
\]

so that \(M_t \) is the real martingale, and \(\tilde{J}_t \) and \(\tilde{K}_t \) are the complex ones.

Theorem 1. \(\{M_t : t \geq 0\} \) is a positive square integrable martingale with respect to the filtration \(\{F_t : t \geq 0\} \). EM_t = M_0 = 1.

EM_t^2 = \frac{8}{9} - \frac{4}{9} \exp(-\lambda^{1/3}t) + O(\exp(-5\lambda^{1/3}t/2)),

E|\tilde{J}_t|^2, E|\tilde{K}_t|^2 = \frac{1}{6} \exp(2\lambda^{1/3}t) + O(\exp(\lambda^{1/3}t/2)).

If we let M = \lim_{t \to \infty} M_t, then P(M > 0) = 1 and

exp(-\lambda^{1/3}t)X_t, \ \lambda^{1/3} \exp(-\lambda^{1/3}t)L_t, \ \lambda^{2/3} \exp(-\lambda^{1/3}t)A_t \to M/3
a.s. and in L^2. The distribution of M does not depend on \(\lambda \).
Recall that \(\lambda_N = N^{-\alpha} \) and let
\[
a(t) = (1/3)N^{2\alpha/3} \exp(N^{-\alpha/3}t), \quad l(t) = N^{-\alpha/3}a(t),
\]
\[
x(t) = N^{-2\alpha/3}a(t),
\]
so that \(A_t/a(t), L_t/l(t), X_t/x(t) \to M \) a.s. Let
\[
S(\varepsilon) = N^{\alpha/3}[(2 - 2\alpha/3) \log N + \log(3\varepsilon)],
\]
so \(a(S(\varepsilon)) = \varepsilon N^2 \). Let
\[
\sigma(\varepsilon) = \inf\{t : A_t \geq \varepsilon N^2\} \quad \text{and} \quad \tau(\varepsilon) = \inf\{t : C_t \geq \varepsilon N^2\}.
\]
The first of these is easy to study.

Theorem 2. If \(0 < \varepsilon < 1 \), then as \(N \to \infty \)
\[
N^{-\alpha/3}(\sigma(\varepsilon) - S(\varepsilon)) \overset{P}{\to} -\log(M).
\]
The coupling in (1.1) implies \(\tau(\varepsilon) \geq \sigma(\varepsilon) \). In the other direction, for any \(\gamma > 0 \)
\[
\limsup_{N \to \infty} P[\tau(\varepsilon) > \sigma((1 + \gamma)\varepsilon)] \leq P(M \leq (1 + \gamma)\varepsilon^{1/3}) + 11\varepsilon^{1/3}/\gamma.
\]
The last result implies that for \(\varepsilon < 1 \)
\[
(1.10) \quad \tau(\varepsilon) \sim (2 - 2\alpha/3)N^{\alpha/3} \log N.
\]
Our next goal is to obtain more precise information about \(\tau(\varepsilon) \) and about how \(|C_t|/N^2 \) increases from a small positive level to reach 1.

The first result in Theorem 2 shows that \((\sigma(\varepsilon) - S(\varepsilon))/N^{\alpha/3} \) is determined by the random variable \(M \) from Theorem 1, which in turn is determined by what happens early in the growth of the branching balloon process. Let
\[
R = N^{\alpha/3}[(2 - 2\alpha/3) \log N - \log(M)],
\]
\(R \) is defined so that \(a(R) = (1/3)N^2/M \), and hence \(A_R/N^2 \overset{P}{\to} 1/3 \). Define
\[
(1.12) \quad \psi(t) \equiv R + N^{\alpha/3}t, \quad W \equiv \psi(\log(3\varepsilon)) \quad \text{and} \quad I_{\varepsilon,t} = [\log(3\varepsilon),t]\]
for \(\log(3\varepsilon) \leq t \). \(W \) is defined so that \(a(W) = \varepsilon N^2/M \) and hence \(A_W/N^2 \overset{P}{\to} \varepsilon \). The arguments that led to Theorem 2 will show that if \(\varepsilon \) is small then \(C_W/A_W \) is close to 1 with high probability.

To get a lower bound on the growth of \(C_t \) after time \(W \) we declare that the centers in \(C_W \) and \(A_W \) to be generation 0 in \(C_t \) and \(A_t \), respectively, and we number the succeeding generations in the obvious way, a center born from an area of generation \(k \) is in generation \(k + 1 \). For \(t \geq \log(3\varepsilon) \), let \(C_{W,\psi(t)}^k \) and \(A_{W,\psi(t)}^k \) denote the areas covered at time \(\psi(t) \) by respective centers of
generations \(j \in \{0, 1, \ldots, k\} \) and let
\[
g_0(t) = \varepsilon \left[1 + (t - \log(3\varepsilon)) + \frac{(t - \log(3\varepsilon))^2}{2} \right],
\]
(1.13)
\[
f_0(t) = g_0(t) - \varepsilon^{7/6}.
\]
To explain these definitions, we note that Lemma 4.3 will show that for any \(t \), there is an \(\varepsilon_0 = \varepsilon_0(t) \) so that for any \(0 < \varepsilon < \varepsilon_0 \)
\[
\lim_{N \to \infty} P\left(\sup_{s \in I_{t,t}} |N^{-2} A_{W,\psi(s)}^0 - g_0(s)| > \eta \right) = 0 \text{ for any } \eta > 0,
\]
\[
P\left(\inf_{s \in I_{t,t}} N^{-2} (C_{W,\psi(s)}^0 - A_{W,\psi(s)}^0) < -\varepsilon^{7/6} \right) \leq P(M < \varepsilon^{1/3}) + \varepsilon^{1/12}.
\]
Since \(C_{W,\psi(t)}^0 \leq A_{W,\psi(t)}^0 \), if \(\varepsilon \) is small, with high probability \(g_0(t) \) and \(f_0(t) \) provide upper and lower bounds, respectively, for \(C_{W,\psi(t)}^0 \).

To begin to improve these bounds we let
\[
f_1(t) = 1 - (1 - f_0(t)) \exp \left(- \int_{\log(3\varepsilon)}^{t} \frac{(t - s)^2}{2} f_0(s) \, ds \right),
\]
and define \(g_1 \) similarly. To explain this equation note that an \(x \notin C_{W,\psi(t)}^0 \) will not be in \(C_{W,\psi(t)}^0 \) if and only if no generation 1 center is born in the space–time cone
\[
K_{x,t}^\varepsilon = \{(y,s) \in \Gamma(N) \times [W,\psi(t)] : |y-x| \leq (\psi(t) - s)/\sqrt{2\pi} \}.
\]
Lemma 4.4 shows that for \(0 < \varepsilon < \varepsilon_0 \) and \(\delta > 0 \),
\[
\limsup_{N \to \infty} P\left(\inf_{s \in I_{t,t}} N^{-2} C_{W,\psi(s)}^1 - f_1(s) < -\delta \right) \leq P(M < \varepsilon^{1/3}) + \varepsilon^{1/12}.
\]
To iterate this we will let
\[
f_{k+1}(t) = 1 - (1 - f_k(t)) \exp \left(- \int_{\log(3\varepsilon)}^{t} \frac{(t - s)^2}{2} (f_k(s) - f_{k-1}(s)) \, ds \right)
\]
for \(k \geq 1 \). The difference \(f_k(s) - f_{k-1}(s) \) in the integral comes from the fact that a new point in generation \(k+1 \) must come from a point that is in generation \(k \) but not in generation \(k-1 \). Combining these equations we have
\[
1 - f_{k+1}(t)
\]
\[
= (1 - f_k(t)) \exp \left(- \int_{\log(3\varepsilon)}^{t} \frac{(t - s)^2}{2} (f_k(s) - f_{k-1}(s)) \, ds \right)
\]
\[
= (1 - f_{k-1}(t)) \exp \left(- \int_{\log(3\varepsilon)}^{t} \frac{(t - s)^2}{2} \sum_{l=k-1}^{k} (f_l(s) - f_{l-1}(s)) \, ds \right) \ldots
\]
\[
(1 - f_0(t)) \exp \left(- \int_{t_0}^{t} \frac{(t - s)^2}{2} \sum_{l=1}^{k} (f_l(s) - f_{l-1}(s)) + f_0(s) \, ds \right)
\]
so that
\[
f_{k+1}(t) = 1 - (1 - f_0(t)) \exp \left(- \int_{t_0}^{t} \frac{(t - s)^2}{2} f_k(s) \, ds \right).
\] (1.14)

Since \(f_1(t) \geq f_0(t)\), letting \(k \to \infty\), \(f_k(t) \uparrow f_\varepsilon(t)\), where \(f_\varepsilon\) is the unique solution of
\[
f_\varepsilon(t) = 1 - (1 - f_0(t)) \exp \left(- \int_{t_0}^{t} \frac{(t - s)^2}{2} f_\varepsilon(s) \, ds \right)
\] (1.15)

with \(f_\varepsilon(\log(3\varepsilon)) = \varepsilon - \varepsilon^{7/6}\). \(g_k(t)\) and \(g_\varepsilon(t)\) are defined similarly.

\(g_\varepsilon(t)\) and \(f_\varepsilon(t)\) provide upper and lower bounds on the growth of \(C_\psi(t)\) for \(t \geq \log(3\varepsilon)\). To close the gap between these bounds we let \(\varepsilon \to 0\).

Lemma 1.1. For any \(t < \infty\), if \(I_{\varepsilon,t} = [\log(3\varepsilon), t]\), then as \(\varepsilon \to 0\),
\[
\sup_{s \in I_{\varepsilon,t}} |f_\varepsilon(s) - h(s)|, \quad \sup_{s \in I_{\varepsilon,t}} |g_\varepsilon(s) - h(s)| \to 0
\]
for some nondecreasing \(h\) with (a) \(\lim_{t \to -\infty} h(t) = 0\), (b) \(\lim_{t \to \infty} h(t) = 1\),
(c) \(h(t) = 1 - \exp \left(- \int_{-\infty}^{t} \frac{(t - s)^2}{2} h(s) \, ds \right)\)
and (d) \(0 < h(t) < 1\) for all \(t\).

If one removes the 2 from inside the exponential, this is equation (36) in Aldous (2007). Since there is no initial condition, the solution is only unique up to time translation.

Theorem 3. Let \(h\) be the function in Lemma 1.1. For any \(t < \infty\) and \(\delta > 0\),
\[
\lim_{N \to \infty} P \left(\sup_{s \leq t} |N^{-2} C_\psi(s) - h(s)| \leq \delta \right) = 1.
\]

This result shows that the displacement of \(\tau(\varepsilon)\) from \((2 - 2\alpha/3) N^{\alpha/3} \log N\) on the scale \(N^{\alpha/3}\) is dictated by the random variable \(M\) that gives the rate of growth of the branching balloon process, and that once \(C_t\) reaches \(\varepsilon N^{2}\), the growth is deterministic.

The solution \(h(t)\) never reaches 1, so we need a little more work to show that

Theorem 4. Let \(T_N\) be the first time the torus is covered. As \(N \to \infty\),
\[
T_N/(N^{\alpha/3} \log N) \xrightarrow{P} 2 - 2\alpha/3.
\]
The remainder of the paper is organized as follows. In Section 2, we prove the properties of \(A_t \) presented in Theorem 1. In Section 3, we prove the properties of the hitting times \(\sigma(\varepsilon) \) and \(\tau(\varepsilon) \) stated in Theorem 2. In Section 4, we prove the limiting behavior of \(C_t \) mentioned in Theorem 3. Finally in Section 5, we prove Theorem 4.

2. Properties of the balloon branching process \(A_t \).

Lemma 2.1. \(\int_0^t s^m (t-s)^n ds = \frac{m! n!}{(m+n+1)!} t^{m+n+1} \).

Proof. If you can remember the definition of the beta distribution, this is trivial. If you cannot then integrate by parts and use induction. \(\Box \)

Let \(F(t) = \lambda t^3/3! \) for \(t \geq 0 \), and \(F(t) = 0 \) for \(t < 0 \). Let \(V(t) = \sum_{k=0}^\infty F^k(t) \), where \(F^k \) indicates the \(k \)-fold convolution.

Lemma 2.2. If \(\omega = (-1 + i\sqrt{3})/2 \), then

\[
V(t) = \sum_{k=0}^\infty \frac{\lambda^k t^{3k}}{(3k)!} = \frac{1}{3} \left[\exp(\lambda^{1/3} t) + \exp(\lambda^{1/3} \omega t) + \exp(\lambda^{1/3} \omega^2 t) \right].
\]

Proof. We first use induction to show that

\[
F^k(t) = \begin{cases} \frac{\lambda^k t^{3k}}{(3k)!}, & t \geq 0, \\ 0, & t < 0. \end{cases}
\]

This holds for \(k = 0,1 \) by our assumption. If the equality holds for \(k = n \), then using Lemma 2.1 we have for \(t \geq 0 \)

\[
F^{n+1}(t) = \int_0^t F^n(t-s) dF(s) = \int_0^t \frac{\lambda^n (t-s)^{3n}}{(3n)!} \frac{\lambda s^2}{2} ds = \frac{\lambda^{n+1} t^{3n+3}}{(3n+3)!}.
\]

It follows by induction that \(V(t) = \sum_{k=0}^\infty \frac{\lambda^k t^{3k}}{(3k)!} \). To evaluate the sum we note that setting \(\lambda = 1 \), \(U(t) = \sum_{k=0}^\infty e^{\gamma k t} / (3k)! \) solves \(U''(t) = U(t) \) with \(U(0) = 1 \) and \(U'(0) = U''(0) = 0 \).

This differential equation has solutions of the form \(e^{\gamma t} \), where \(\gamma^3 = 1 \), that is, \(\gamma = 1, \omega \) and \(\omega^2 \). This leads to the general solution

\[
U(t) = Ae^t + Be^{\omega t} + Ce^{\omega^2 t}
\]

for some constants \(A,B,C \). Using the initial conditions for \(U(t) \) we have

\[
A + B + C = 1, \quad A + B\omega + C\omega^2 = 0, \quad A + B\omega^2 + C\omega = 0.
\]

Since \(1 + \omega + \omega^2 = 0 \), we have \(A = B = C = 1/3 \). Since \(V(t) = U(\lambda^{1/3} t) \), we have proved the desired result. \(\Box \)

Our next step is to compute the first two moments of \(X_t, L_t \) and \(A_t \). For that we need the following lemma in addition to the previous one.
Lemma 2.3. Let \(\{N_t: t \geq 0\} \) be a Poisson process on \([0, \infty)\) with intensity \(\lambda(\cdot) \) and let \(\Pi_t \) be the set of points at time \(t \). If \(\{Y_t, Z_t: t \geq 0\} \) are two complex valued stochastic processes satisfying

\[
Y_t = y(t) + \sum_{s_i \in \Pi_t} Y_{t-s_i}, \quad Z_t = z(t) + \sum_{s_i \in \Pi_t} Z_{t-s_i},
\]

where \((Y^i, Z^i), i=1,2,\ldots, \) are i.i.d. copies of \((Y,Z) \), and independent of \(N \), then

\[
EY_t = y(t) + \int_0^t EY_{t-s}\lambda(s) \, ds,
\]

\[
E(Y_t Z_t) = (EY_t)(EZ_t) + \int_0^t E(Y_{t-s} Z_{t-s})\lambda(s) \, ds.
\]

Proof. \(N_t \) has Poisson distribution with mean \(\Lambda_t = \int_0^t \lambda(s) \, ds \). Given \(N_t = n \), the conditional distribution of \(\Pi_t \) is same as the distribution of \(\{t_1,\ldots,t_n\} \), where \(t_1,\ldots,t_n \) are i.i.d. from \([0,t]\) with density \(\beta(\cdot) = \lambda(\cdot)/\Lambda_t \). Hence

\[
E(Y_t|N_t) = y(t) + \sum_{i=1}^{N_t} EY_{t-t_i} = y(t) + N_t \int_0^t EY_{t-s}\beta(s) \, ds,
\]

and taking expected values \(EY_t = y(t) + \int_0^t EY_{t-s}\lambda(s) \, ds \).

Similarly \(EZ_t = z(t) + \int_0^t EZ_{t-s}\lambda(s) \, ds \). Using the conditional distribution of \(\Pi_t \) given \(N_t \),

\[
E(Y_t Z_t|N_t) = y(t)z(t) + y(t)E Z_{t-t_i} + z(t)E Y_{t-t_i}
\]

\[
+ E \left[\sum_{i=1}^{N_t} Y_{t-t_i} Z_{t-t_i} + \sum_{i \neq j} Y_{t-t_i} Z_{t-t_j} \right]
\]

\[
= y(t)z(t) + y(t)N_t \int_0^t EZ_{t-s}\beta(s) \, ds
\]

\[
+ z(t)N_t \int_0^t EY_{t-s}\beta(s) \, ds + N_t \int_0^t E(Y_{t-s} Z_{t-s})\beta(s) \, ds
\]

\[
+ N_t(N_t-1) \int_0^t EY_{t-s}\beta(s) \, ds \int_0^t EZ_{t-s}\beta(s) \, ds.
\]

Taking expectation on both sides and using \(E N_t(N_t-1) = \Lambda_t^2 \), we get

\[
E(Y_t Z_t) = (EY_t)(EZ_t) + \int_0^t E(Y_{t-s} Z_{t-s})\lambda(s) \, ds,
\]

which completes the proof. □
Now we use Lemmas 2.2 and 2.3 to have the first moments.

Lemma 2.4. \(E(X_t, L_t, A_t) = (V(t), V''(t)/\lambda, V'(t)/\lambda) \).

Proof. Recall that \(F(t) = \lambda t^3/3! \). In the balloon branching process, the initial center \(x \) gives birth to new centers at rate \(F'(t) = \lambda t^2/2 \), and all the centers behave independently and with the same distribution as the one at \(x \). So

\[
X_t = 1 + \sum_{s_i \in \Pi_t} X_{t-s_i}^i,
\]

where \(\Pi_t \subset [0, t] \) is the set of times when new centers are born in \(A_t \) and \(X^i \), \(i = 1, 2, \ldots \), are i.i.d. copies of \(X \), and using Lemma 2.3,

\[
EX_t = V(t) = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k}}{(3k)!},
\]

\[
EL_t = \int_0^t EX_s ds = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k+1}}{(3k+1)!},
\]

\[
EA_t = \int_0^t EL_s ds = \sum_{k=0}^{\infty} \frac{\lambda^k t^{3k+2}}{(3k+2)!}.
\]

Since \(V(t) = 1 + \sum_{k=0}^{\infty} \lambda^{k+1} t^{3k+3}/(3k+3)! \), it is easy to see that \(EA_t = V'(t)/\lambda \) and \(EM_t = V''(t)/\lambda \).

Lemma 2.5. If \(M_t = \exp(-\lambda^{1/3} t [X_t + \lambda^{1/3} L_t + \lambda^{2/3} A_t]) \), then \(\{M_t : t \geq 0\} \) is a square integrable martingale with respect to the filtration \(\{\mathcal{F}_t : t \geq 0\} \).

\(EM_t = 1 \) and

\[
EM_t^2 = \frac{8}{3} \frac{\lambda}{t} \exp(-\lambda^{1/3} t) + \theta_t \quad \text{where} \quad |\theta_t| \leq \frac{4}{15} \exp(-5\lambda^{1/3} t/2),
\]

and hence \((8/7) - EM_t^2 \leq \exp(-\lambda^{1/3} t) \).

Proof. Let \(h(t, x, \ell, a) = \exp(-\lambda^{1/3} t) [x + \lambda^{1/3} \ell + \lambda^{2/3} a] \), and let \(L \) be the generator of the Markov process \((t, X_t, L_t, A_t)\). Equation (1.6) implies \(Lh = 0 \), so \(M_t \) is a martingale from Dynkin’s formula. \(EM_t = EM_0 = 1 \).

To compute \(EM_t^2 \) we use Lemma 2.3 as follows. Let \(Y_t = Z_t = X_t + \lambda^{1/3} L_t + \lambda^{2/3} A_t \), and \(g(t) \equiv (EY_t)^2 \). Since \(EM_t = 1 \), \(g(t) = \exp(2\lambda^{1/3} t) \). Combining (1.2) and (2.2), letting \(L_i^t = \int_0^t X_s^i ds \) and \(A_i^t = \int_0^t L_s^i ds, i = 1, 2, \ldots \),
and changing the variables $u = s - s_1$, we see that

$$L_t = \int_0^t \left[1 + \sum_{s_i \in \Pi_s} X_{s-s_1}^i \right] ds = t + \sum_{s_i \in \Pi_s} \int_0^{t-s_1} X_u^i \, du = t + \sum_{s_i \in \Pi_s} L_{t-s_1}^i$$

and hence

$$A_t = \int_0^t \left[t + \sum_{s_i \in \Pi_s} L_{s-s_1}^i \right] ds = t^2/2 + \sum_{s_i \in \Pi_s} \int_0^{t-s_1} L_u^i \, du = t^2/2 + \sum_{s_i \in \Pi_s} A_{t-s_1}^i.$$

Thus all of X_t, L_t and A_t satisfy the hypothesis of Lemma 2.3 and so do Y_t and Z_t, as they are linear combinations of X_t, L_t and A_t. So applying Lemma 2.3

$$EY_t^2 = g(t) + \int_0^t EY_{t-s}^2 \, dF(s).$$

Solving the renewal equation using (4.8) in Chapter 3 of Durrett (2005),

$$EY_t^2 = g \ast V(t) = \exp(2\lambda^{1/3}t) + \int_0^t \exp(2\lambda^{1/3}(t-s))V'(s) \, ds,$$

where $V = \sum_{k=0}^{\infty} F^k$. To evaluate the integral we use Lemma 2.2 to conclude

$$\int_0^t \exp(-2\lambda^{1/3}s)V'(s) \, ds$$

$$= \frac{1}{3} \int_0^t \exp(-2\lambda^{1/3}s)$$

$$\times \lambda^{1/3} [\exp(\lambda^{1/3}s) + \omega \exp(\lambda^{1/3}\omega s) + \omega^2 \exp(\lambda^{1/3}\omega^2 s)] \, ds$$

$$= \frac{1}{3} \left[\frac{1}{1-2} \{\exp(-\lambda^{1/3}t) - 1\} + \frac{\omega}{\omega - 2} \{\exp((\omega - 2)\lambda^{1/3}t) - 1\} \right.$$

$$+ \frac{\omega^2}{\omega^2 - 2} \{\exp((\omega^2 - 2)\lambda^{1/3}t) - 1\} \right].$$

Now using $1 = -\omega - \omega^2$ and $\omega^3 = 1$,

$$1 - \frac{\omega}{\omega - 2} - \frac{\omega^2}{\omega^2 - 2} = 1 - \frac{\omega^3 - 2\omega + \omega^3 - 2\omega^2}{\omega^3 - 2\omega^2 - 2\omega^2 + 4} = 1 - \frac{4}{7} = \frac{3}{7}.$$

Since $\omega = (-1 + i\sqrt{3})/2$ and $\omega^2 = (-1 - i\sqrt{3})/2$, the remaining error satisfies

$$3|\theta_t| = \left| \frac{\omega}{\omega - 2} \exp((\omega - 2)\lambda^{1/3}t) \right| + \left| \frac{\omega^2}{\omega^2 - 2} \exp((\omega^2 - 2)\lambda^{1/3}t) \right|$$

$$= \left(\frac{1}{|\omega - 2|} + \frac{1}{|\omega^2 - 2|} \right) \exp(-5\lambda^{1/3}t/2) \leq 2 \cdot \frac{2}{5} \exp(-5\lambda^{1/3}t/2),$$
since $\omega - 2$ and $\omega^2 - 2$ each have real part $-5/2$. Putting all together

\[
(2.4) \quad \int_0^t \exp(-2\lambda^{1/3}s)V'(s)\,ds = \frac{1}{7} + \frac{1}{3} \exp(-\lambda^{1/3}t) + \theta_t,
\]

since $EM_t^2 = \exp(-2\lambda^{1/3}t)EY_t^2$, the desired result follows. \(\square\)

We use the previous calculation to get bounds for EA_t^2, EL_t^2 and EX_t^2, which will be useful later.

Lemma 2.6. Let $a(\cdot), l(\cdot)$ and $x(\cdot)$ be as in (1.7). Then

\[
EA_t^2 \leq \frac{27}{2} a^2(t), \quad EL_t^2 \leq \frac{27}{2} l^2(t), \quad EX_t^2 \leq \frac{27}{2} x^2(t).
\]

Proof. By (2.4) we have

\[
(2.5) \quad \int_0^t \exp(-2\lambda^{1/3}s)V'(s)\,ds \leq \frac{1}{7} + \frac{4}{15} = \frac{43}{105} \leq \frac{1}{2}.
\]

Now using Lemma 2.3

\[
EA_t^2 = (EA_t)^2 + \int_0^t EA_{t-s}^2 \,dF(s), \quad EL_t^2 = (EL_t)^2 + \int_0^t EL_{t-s}^2 \,dF(s), \quad EX_t^2 = (EX_t)^2 + \int_0^t EX_{t-s}^2 \,dF(s).
\]

Solving the renewal equations $EA_t^2 = \phi_a \ast V(t)$, $EL_t^2 = \phi_l \ast V(t)$ and $EX_t^2 = \phi_x \ast V(t)$, where $V(\cdot)$ is as in Lemma 2.2 and $\phi_a(t) = (EA_t)^2$, $\phi_l(t) = (EL_t)^2$ and $\phi_x(t) = (EX_t)^2$. A crude upper bound for $\phi_a(t)$ is $9a^2(t)$. Since $a(t - s) = a(t) \exp(-\lambda^{1/3}s)$,

\[
(2.6) \quad a^2 \ast V(t) = a^2(t) \left[1 + \int_0^t \exp(-\lambda^{1/3}s)V'(s)\,ds \right] \leq \frac{3a^2(t)}{2}
\]

by (2.5). Hence $EA_t^2 \leq 9a^2 \ast V(t) \leq (27/2)a^2(t)$.

Similarly using the bounds $9l^2(t)$ and $9x^2(t)$ for $\phi_l(t)$ and $\phi_x(t)$, respectively, and noting that $l(t - s)/l(t) = x(t - s)/x(t) = \exp(-\lambda^{1/3}s)$, we get the desired bounds for EL_t^2 and EX_t^2. \(\square\)

Lemma 2.7. Let $\tilde{J}_t, \tilde{K}_t = e^{-\eta t}(X_t + \eta L_t + \eta^2 A_t)$ with $\eta = \omega \lambda^{1/3}, \omega^2 \lambda^{1/3}$, respectively. Then \tilde{J}_t and \tilde{K}_t are complex martingales with respect to the filtration \mathcal{F}_t, and

\[
E|\tilde{J}_t|^2, E|\tilde{K}_t|^2 = \frac{1}{6} \exp(2\lambda^{1/3}t) + \frac{1}{3} + \theta_t \quad \text{where} \quad |\theta_t| \leq \frac{2}{3} \exp(\lambda^{1/3}t/2),
\]

and hence $E|\tilde{J}_t|^2, E|\tilde{K}_t|^2 \leq (4/3) \exp(2\lambda^{1/3}t)$.

PROOF. Let $h(t, x, \ell, a) = e^{-\eta t}(x + \eta \ell + \eta^2 a)$, and let L be the generator of the Markov process (t, X_t, L_t, A_t). Equation (1.6) implies $Lh = 0$ when $\eta = \lambda^{1/3}\omega, \lambda^{1/3}\omega^2$, so that \tilde{J}_t and \tilde{K}_t are complex martingales by Dynkin’s formula.

First we compute $E|J_t|^2$, where $J_t = \exp(\lambda^{1/3}\omega t)\tilde{J}_t$. For that we use Lemma 2.3 with $Y_t = J_t$ and $Z_t = \tilde{J}_t$, the complex conjugate. Since J_t is a complex martingale with $\tilde{J}_0 = 1$ and $\omega = (-1 + i\sqrt{3})/2$, $E\tilde{J}_t = 1$ and hence

$$|EJ_t|^2 = \exp(-\lambda^{1/3}t).$$

Using Lemma 2.3 $E|J_t|^2 = |EJ_t|^2 + \int_0^t E|J_{t-s}|^2 dF(s)$. Solving the renewal equation as we have done twice before

$$E|J_t|^2 = \exp(-\lambda^{1/3}t) + \int_0^t \exp(-\lambda^{1/3}(t-s))V'(s)ds.$$

Repeating the first part of the proof for $K_t = \exp(\lambda^{1/3}\omega^2t)\tilde{K}_t$, we see that $E|K_t|^2$ is also equal to the right-hand side above.

The integral is $\exp(-\lambda^{1/3}t)$ times

$$\frac{1}{3} \int_0^t \exp(\lambda^{1/3}s)\cdot \lambda^{1/3}[\exp(\lambda^{1/3}s) + \omega \exp(\lambda^{1/3}\omega s) + \omega^2 \exp(\lambda^{1/3}\omega^2 s)]ds$$

$$= \frac{1}{3} \left[\frac{1}{1 + 1} \{ \exp(2\lambda^{1/3}t) - 1 \} + \frac{\omega}{\omega + 1} \{ \exp((\omega + 1)\lambda^{1/3}t) - 1 \} \right.$$

$$\left. + \frac{\omega^2}{\omega^2 + 1} \{ \exp((\omega^2 + 1)\lambda^{1/3}t) - 1 \} \right].$$

Now using $1 = -\omega - \omega^2$ and $\omega^3 = 1$,

$$\frac{-1}{2} - \frac{\omega}{\omega + 1} - \frac{\omega^2}{\omega^2 + 1} = -\frac{1}{2} - \frac{\omega^3 + \omega + \omega^3 + \omega^2}{\omega^3 + \omega^2 + \omega + 1} = -\frac{3}{2}.$$

Since $\omega = (-1 + i\sqrt{3})/2$ and $\omega^2 = (-1 - i\sqrt{3})/2$, if we take

$$\theta_t = \frac{1}{3} \left[\frac{\omega}{\omega + 1} \exp((\omega + 1)\lambda^{1/3}t) + \frac{\omega^2}{\omega^2 + 1} \exp((\omega^2 + 1)\lambda^{1/3}t) \right],$$

then

$$3|\theta_t| \leq \left(\frac{1}{|\omega + 1|} + \frac{1}{|\omega^2 + 1|} \right) \exp(\lambda^{1/3}t/2) \leq 2 \exp(\lambda^{1/3}t/2),$$

since each of $\omega + 1$ and $\omega^2 + 1$ has real part $1/2$. Putting all together

$$E|J_t|^2 \leq \frac{1}{6} \exp(\lambda^{1/3}t) + \frac{1}{2} \exp(-\lambda^{1/3}t) + \frac{1}{2} \exp(-\lambda^{1/3}t/2),$$

which completes the proof, since $E|J_t|^2/E|J_t|^2 = \exp(\lambda^{1/3}t) = E|\tilde{K}_t|^2/E|K_t|^2$. □
Lemma 2.8. If \(M = \lim_{t \to \infty} M_t \), we have \(P(M > 0) = 1 \) and
\[
\exp(-\lambda^{1/3} t) X_t, \lambda^{1/3} \exp(-\lambda^{1/3} t) L_t, \lambda^{2/3} \exp(-\lambda^{1/3} t) A_t \to \frac{M}{3}
\]
a.s. and in \(L^2 \).

Proof. \(M = \lim_{t \to \infty} M_t \) exists a.s. and in \(L^2 \), since \(M_t \) is an \(L^2 \) bounded martingale. Recall that
\[
I_t = X_t + \lambda^{1/3} L_t + \lambda^{2/3} A_t,
J_t = X_t + \omega \lambda^{1/3} L_t + \omega^2 \lambda^{2/3} A_t,
K_t = X_t + \omega \lambda^{1/3} L_t + \omega \lambda^{2/3} A_t.
\]
Since \(1 + \omega + \omega^2 = 0 \) and \(\omega^3 = 1 \),
\[
3X_t = I_t + J_t + K_t, \quad 3\lambda^{1/3} L_t = I_t + \omega^2 J_t + \omega K_t, \quad 3\lambda^{2/3} A_t = I_t + \omega J_t + \omega^2 K_t.
\]
Since \(M_t = \exp(-\lambda^{1/3} t) I_t \to M \), it suffices to show that \(\exp(-\lambda^{1/3} t) J_t \) and \(\exp(-\lambda^{1/3} t) K_t \) go to 0 a.s. and in \(L^2 \). We will only prove this for \(J_t \), since the argument for \(K_t \) is almost identical. \(\tilde{J}_t \) is a complex martingale, so \(|\tilde{J}_t| \) is a real submartingale. Using the \(L^2 \) maximal inequality, (4.3) in Chapter 4 of Durrett (2005) and Lemma 2.7,
\[
E \left(\max_{0 \leq s \leq t} |\tilde{J}_s|^2 \right) \leq 4E|\tilde{J}_t|^2 \leq \frac{16}{3} \exp(2\lambda^{1/3} t).
\]
The real part of \(\omega \) is \(-1/2\). So writing \(\bar{J}_s = \exp(\lambda^{1/3} (1 - \omega)s) \cdot \exp(-\lambda^{1/3} s) J_s \), we see that
\[
E \left(\max_{u \leq s \leq t} |\bar{J}_s|^2 \right) \geq \exp(3\lambda^{1/3} u) E \left(\max_{u \leq s \leq t} |\exp(-\lambda^{1/3} s) J_s|^2 \right).
\]
Combining these bounds with Chebyshev inequality, and taking \(t_n = 2\lambda^{-1/3} \log n \) for \(n = 1, 2, \ldots \),
\[
P \left(\max_{t_n \leq s \leq t_{n+1}} |\exp(-\lambda^{1/3} s) J_s|^2 \geq \varepsilon \right) \leq \varepsilon^{-2} E \left(\max_{t_n \leq s \leq t_{n+1}} |\exp(-\lambda^{1/3} s) J_s|^2 \right) \leq \frac{16}{3} \varepsilon^{-2} \exp(\lambda^{1/3} (2t_{n+1} - 3t_n)) = \frac{16}{3} \varepsilon^{-2} \frac{(n+1)^4}{n^6}
\]
for any \(\varepsilon > 0 \). Summing over \(n \), and using the Borel–Cantelli lemma
\[
|\exp(-\lambda^{1/3} s) J_s| \to 0 \quad \text{a.s.}
\]
To get convergence in L^2 we use (2.7).

$$E|\exp(-\lambda^{1/3}t)J_t|^2 \leq \frac{4}{3}\exp(-\lambda^{1/3}t) \to 0 \quad \text{as } t \to \infty.$$

To prove that $P(M > 0) = 1$ we begin by noting that convergence in L^2 implies that $P(M > 0) > 0$. Every time a new balloon is born it has positive probability of starting a process with a positive limit, so this will happen eventually and $P(M > 0) = 1$. \qed

3. Hitting times for A_t and C_t. Recall that $\sigma(\varepsilon) = \inf\{t: M_t \geq \varepsilon N^2\}$ and $\tau(\varepsilon) = \inf\{t: C_t \geq \varepsilon N^2\}$. Also recall the definitions of $a(\cdot), l(\cdot), x(\cdot)$ and $S(\cdot)$ from (1.7) and (1.8). Note that $a(S(\varepsilon)) = \varepsilon N^2$ and $A_t/a(t), L_t/l(t), X_t/x(t) \to M$ a.s. by Theorem 1. We begin by estimating the difference between M and each of $A_t/a(t), L_t/l(t)$ and $X_t/x(t)$.

Lemma 3.1. For any $\gamma, u > 0$

$$P\left(\sup_{t \geq u}|A_t/a(t) - M| \geq \gamma^2\right) \leq C\gamma^{-4}\exp(-\lambda^{1/3}u)$$

for some constant C. The same bound holds for $P(\sup_{t \geq u}|L_t/l(t) - M| \geq \gamma^2)$ and $P(\sup_{t \geq u}|X_t/x(t) - M| \geq \gamma^2)$.

Proof. Using (2.8) $A_t/a(t) = M_t + \omega \exp(-\lambda^{1/3}t)J_t + \omega^2 \exp(-\lambda^{1/3}t)K_t$. For $0 < u \leq t$ the triangle inequality implies

$$(3.1) \quad |A_t/a(t) - M| \leq |M_t - M| + |\exp(-\lambda^{1/3}t)J_t| + |\exp(-\lambda^{1/3}t)K_t|.$$

Taking the supremum over t,

$$P\left(\sup_{t \geq u}|A_t/a(t) - M| \geq \gamma^2\right)$$

$$\leq P\left(\sup_{t \geq u}|M_t - M| \geq \gamma^2/3\right) + P\left(\sup_{t \geq u}|\exp(-\lambda^{1/3}t)J_t| \geq \gamma^2/3\right)$$

$$+ P\left(\sup_{t \geq u}|\exp(-\lambda^{1/3}t)K_t| \geq \gamma^2/3\right).$$

To bound the first term in the right-hand side of (3.2) we note that

$$E\left(\sup_{t \geq u}|M_t - M|^2\right) = \lim_{U \to \infty} E\left(\max_{u \leq t \leq U} |M_t - M|^2\right).$$

Using triangle inequality $|M_t - M| \leq |M_t - M_u| + |M_u - M|$. Taking supremum over $t \in [u, U]$ and using the inequality $(a + b)^2 \leq 2(a^2 + b^2)$,

$$E\left(\max_{u \leq t \leq U} |M_t - M|^2\right) \leq 2\left(E\left(\max_{u \leq t \leq U} |M_t - M_u|^2\right) + E|M_u - M|^2\right).$$
Using the L^2 maximal inequality, (4.3) in Chapter 4 of Durrett (2005) and orthogonality of martingale increments,

$$E\left(\max_{u \leq t \leq U} |M_t - M_u|^2\right) \leq 4E(M_U - M_u)^2 = 4(EM_U^2 - EM_u^2).$$

Since the martingale M_t converges to M in L^2, $EM^2 = \lim_{t \to \infty} EM_t^2 = 8/7$. Then using orthogonality of martingale increments and Lemma 2.5,

$$E(M_u - M)^2 = EM^2 - EM_u^2 \leq \exp(-\lambda^{1/3}u).$$

Combining the last four bounds with Lemma 2.5, and using Chebyshev inequality

$$P\left(\sup_{t \geq u} |M_t - M| \geq \gamma^2/3\right) \leq 9\gamma^{-4} \cdot 10 \exp(-\lambda^{1/3}u).$$

(3.3)

To bound the second term in the right-hand side of (3.2) we take $t_n = u + 2\lambda^{-1/3}\log n$ for $n = 1, 2, \ldots$ and use an argument similar to the one leading to (2.11) together with Chebyshev inequality to get

$$P\left(\sup_{t \geq u} |\exp(-\lambda^{1/3}t)J_t| \geq \gamma^2/3\right) \leq 9\gamma^{-4} \sum_{n=1}^{\infty} E\left(\max_{t_n \leq t \leq t_{n+1}} |\exp(-\lambda^{1/3}t)J_t| \geq \gamma^2/3\right)^2$$

$$\leq 9 \cdot \frac{16}{3} \gamma^{-4} \sum_{n=1}^{\infty} \exp(\lambda^{1/3}(2t_{n+1} - 3t_n))$$

$$= 48\gamma^{-4} \exp(-\lambda^{1/3}u) \sum_{n=1}^{\infty} \frac{(n+1)^4}{n^6}. $$

(3.4)

Repeating the previous argument for the third term in the right-hand side of (3.2) we get the same upper bound as in (3.4). Combining (3.2), (3.3) and (3.4) we get the desired bound for $A_t/a(t)$.

The bound in (3.1) also works for both $L_t/l(t)$ and $X_t/x(t)$, since using (2.8)

$$L_t/l(t) = M_t + \omega^2 \exp(-\lambda^{1/3}t)J_t + \omega \exp(-\lambda^{1/3}t)K_t,$$

$$X_t/x(t) = M_t + \exp(-\lambda^{1/3}t)J_t + \exp(-\lambda^{1/3}t)K_t,$$

and so the assertion of this lemma holds if $A_t/a(t)$ is replaced by $L_t/l(t)$ or $X_t/x(t)$.

□

We now use Lemma 3.1 to study the limiting behavior of $\sigma(\varepsilon)$.

Lemma 3.2. Let $W_\varepsilon = S(\varepsilon/M)$, where $S(\cdot)$ is as in (1.8) and M is the limit random variable in Theorem 1. Then for any $\eta > 0$
\[
\lim_{N \to \infty} P(|A_{W_\varepsilon} - \varepsilon N^2| > \eta N^2) = \lim_{N \to \infty} P(|L_{W_\varepsilon} - \varepsilon N^{2-\alpha/3}| > \eta N^{2-\alpha/3})
\[
= \lim_{N \to \infty} P(|X_{W_\varepsilon} - \varepsilon N^{2-2\alpha/3}| > \eta N^{2-2\alpha/3})
\[
= 0.
\]

Proof. Since $P(M > 0) = 1$, given $\theta > 0$, we can choose $\gamma = \gamma(\theta) > 0$ so that $\gamma < \eta/\varepsilon$ and
\[
P(M < \gamma) < \theta. \tag{3.5}
\]
Using Lemma 3.1 we can choose a constant $b = b(\gamma, \theta)$ such that
\[
P\left(\sup_{t \geq bN^{\alpha/3}} |A_t/a(t) - M| > \gamma^2\right) < \theta.
\]
Combining with (3.5)
\[
P\left(\sup_{t \geq bN^{\alpha/3}} |A_t/a(t) - M| > \gamma M\right) < 2\theta.
\]
Since $a(W_\varepsilon) = \varepsilon N^2/M$, by the choices of γ and b,
\[
P(|A_{W_\varepsilon} - \varepsilon N^2| \geq \eta N^2) \leq P(|A_{W_\varepsilon} - \varepsilon N^2| \geq \varepsilon \gamma N^2)
\[
= P(|A_{W_\varepsilon}/a(W_\varepsilon) - M| \geq \gamma M)
\[
< 2\theta + P(W_\varepsilon < bN^{\alpha/3}).
\]
By the definition of $S(\cdot)$,
\[
P(W_\varepsilon < bN^{\alpha/3}) = P\left(M > \frac{3\varepsilon}{b} N^{2-2\alpha/3}\right) \to 0
\]
as $N \to \infty$, and so $\limsup_{N \to \infty} P(|A_{W_\varepsilon} - \varepsilon N^2| > \eta N^2) \leq 2\theta$. Since $\theta > 0$ is arbitrary, we have shown that
\[
\lim_{N \to \infty} P(|A_{W_\varepsilon} - \varepsilon N^2| \geq \eta N^2) = 0.
\]
Repeating the argument for L_{W_ε} and X_{W_ε}, and noting that $l(W_\varepsilon) = \varepsilon N^{2-\alpha/3}/M$ and $x(W_\varepsilon) = \varepsilon N^{2-2\alpha/3}/M$, we get the other two assertions. \hfill \Box

As a corollary of Lemma 3.2 we get the first conclusion of Theorem 2.

Corollary 1. As $N \to \infty$, $N^{-\alpha/3}(\sigma(\varepsilon) - S(\varepsilon)) \overset{P}{\to} -\log(M)$.

Proof. For any $\eta > 0$ choose $\gamma > 0$ so that $\log(1 + \gamma) < \eta$ and $\log(1 - \gamma) > -\eta$. Let W_ε be as in Lemma 3.2. Clearly $W_{(1+\gamma)_\varepsilon} = S(\varepsilon) + N^{\alpha/3}[\log(1 + \gamma) - \log M]$ and $W_{(1-\gamma)_\varepsilon} = S(\varepsilon) + N^{\alpha/3}[\log(1 - \gamma) - \log M]$. Using Lemma 3.2

$$P\left[N^{-\alpha/3}(\sigma(\varepsilon) - S(\varepsilon)) > -\log M + \eta \right] \leq P(\sigma(\varepsilon) > W_{(1+\gamma)_\varepsilon}) = P(A_{W_{(1+\gamma)_\varepsilon}} < \varepsilon N^2) \to 0,$$

$$P\left[N^{-\alpha/3}(\sigma(\varepsilon) - S(\varepsilon)) < -\log M - \eta \right] \leq P(\sigma(\varepsilon) < W_{(1-\gamma)_\varepsilon}) = P(A_{W_{(1-\gamma)_\varepsilon}} > \varepsilon N^2) \to 0$$

as $N \to \infty$, and the proof is complete. □

The second conclusion in Theorem 2 follows from $C_t \leq A_t$. To get the third we have to wait till Lemma 3.5. First we need to show that when A_t/N^2 is small, C_t/N^2 is not very much smaller. To prepare for that we need the following result.

Lemma 3.3. Let $F(t) = \lambda t^3/3!$. If $u(\cdot)$ and $\beta(\cdot)$ are functions such that $u(t) \leq \beta(t) + \int_0^t u(t-s) dF(s)$ for all $t \geq 0$, then

$$u(t) \leq \beta * V(t) = \beta(t) + \int_0^t \beta(t-s) dV(s),$$

where $V(\cdot)$ is as in Lemma 2.2.

Proof. Define $\tilde{\beta}(t) \equiv \beta(t) + \int_0^t u(t-s) dF(s) - u(t)$. So $\tilde{\beta}(t) \geq 0$ for all $t \geq 0$. If $\beta(t) \equiv \beta(t) - \tilde{\beta}(t)$, then

$$u(t) = \tilde{\beta}(t) + \int_0^t u(t-s) dF(s).$$

Solving the renewal equation we get $u(t) = \tilde{\beta} * V(t)$, where $V(\cdot)$ is as in Lemma 2.2. Since $\tilde{\beta}(t) \leq \beta(t)$ for all $t \geq 0$, we get the result. □

We now apply Lemma 3.3 to estimate the difference between EA_t and EC_t.

Lemma 3.4. For any $t \geq 0$ and $a(\cdot)$ as in (1.7),

$$EC_t \geq EA_t - \frac{11a^2(t)}{N^2}.$$

Proof. In either of our processes, if a center is born at time s, then the radius of the corresponding disk at time $t > s$ will be $(t-s)/\sqrt{2\pi}$. Thus x will be covered at time t if and only if there is a center in the space–time
cone

$$K_{x,t} = \{(y,s) \in \Gamma(N) \times [0,t] : |y - x| \leq (t-s)/\sqrt{2\pi}\}.$$

If $0 = s_0 < s_1 < s_2 < \ldots$ are the birth times of new centers in C_t, then

$$P(x \notin C_t | s_0,s_1,s_2,\ldots) = \prod_{i : s_i \leq t} \left[1 - \frac{(t-s_i)^2}{2N^2} \right] \leq \exp \left[- \sum_{i : s_i \leq t} \frac{(t-s_i)^2}{2N^2} \right],$$

since $1 - x \leq e^{-x}$. Let $q(t) = P(x \notin C_t)$, which does not depend on x, since we have a random chosen starting point. Recall that \tilde{X}_t is the number of centers born by time t in C_t. Using the last inequality

$$q(t) \leq E \exp \left[- \int_0^t \frac{(t-s)^2}{2N^2} d\tilde{X}_s \right]$$

and $EC_t = N^2(1 - q(t))$. Integrating $e^{-y} \geq 1 - y$ gives $1 - e^{-x} \geq x - x^2/2$ for $x \geq 0$. So

$$EC_t \geq N^2 E \left[1 - \exp \left(- \int_0^t \frac{(t-s)^2}{2N^2} d\tilde{X}_s \right) \right]$$

$$\geq N^2 E \left[\int_0^t \frac{(t-s)^2}{2N^2} d\tilde{X}_s - \frac{1}{2} \left(\int_0^t \frac{(t-s)^2}{2N^2} d\tilde{X}_s \right)^2 \right].$$

For the first term on the right we use $E\tilde{X}_t = 1 + \lambda \int_0^t EC_s \, ds$. For the second term on the right, we use the coupling between \tilde{C}_t and \mathcal{A}_t described in the Introduction, see (1.1), so that we have $\int_0^t (t-s)^2 \, d\tilde{X}_s \leq \int_0^t (t-s)^2 \, dX_s$. Combining these two facts

$$EC_t \geq \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda EC_s \, ds - \frac{1}{2} E \left[\int_0^t \frac{(t-s)^2}{2} \, dX_s \right]^2$$

$$\geq \frac{t^2}{2} \frac{(t-s)^2}{2} \lambda EC_s \, ds - \frac{EA_t^2}{2N^2}.$$

The last equality follows from (1.2), as does the next equation for EA_t:

$$EA_t = \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} V'(s) \, ds = \frac{t^2}{2} + \int_0^t \frac{(t-s)^2}{2} \lambda EA_s \, ds.$$

Here $V(\cdot)$ is as in Lemma 2.2 and $EA_t = V'(t)/\lambda$ by Lemma 2.4. Combining (3.8) and (3.9), if $u(t) \equiv EA_t - EC_t$, and $F(s) = \lambda s^3/3!$, then

$$u(t) \leq \frac{EA_t^2}{2N^2} + \int_0^t \frac{(t-s)^2}{2} \lambda u(s) \, ds = \frac{EA_t^2}{2N^2} + \int_0^t u(t-r) \, dF(r),$$

where the last step is obtained by changing variables $s \mapsto t - r$. If $\beta(t) = EA_t^2/2N^2$, then by Lemma 2.6 $\beta(t) \leq 27a^2(t)/4N^2$, and using Lemma 3.3
and (2.6)
\[u(t) \leq \beta \ast V(t) \leq \frac{27}{4N^2}(a^2) \ast V(t) \leq \frac{27}{4N^2} \frac{3}{2} a^2(t), \]
which gives the result, since $81/8 \leq 11$. □

To complete the proof of Theorem 2 it remains to show the third conclusion of it, which we separate as the following lemma and prove it using Lemma 3.4.

Lemma 3.5. For any $\gamma > 0$
\[\limsup_{N \to \infty} P(\tau(\varepsilon) > \sigma((1 + \gamma)\varepsilon)) \leq P(M \leq (1 + \gamma)\varepsilon^{1/3}) + 11 \frac{\varepsilon^{1/3}}{\gamma}. \]

Proof. Let $U = \sigma((1 + \gamma)\varepsilon)$ and $T = S(\varepsilon^{2/3})$, where $S(\cdot)$ is as in (1.8).

Now
\[S(\varepsilon^{2/3}) - S((1 + \gamma)\varepsilon) = N^{\alpha/3}[\frac{1}{3} \log(\varepsilon) - \log(1 + \gamma)]. \]

It follows from Corollary 1 that
\[\limsup_{N \to \infty} P(U \geq T) \leq P \left(-\log(M) \geq -\frac{1}{3} \log(\varepsilon) - \log(1 + \gamma) \right) = P(M \leq (1 + \gamma)\varepsilon^{1/3}). \]

Using Markov’s inequality, Lemma 3.4, and $a(T) = \varepsilon^{2/3} N^2$,

(3.10) \[P(|A_T - C_T| > \gamma \varepsilon N^2) \leq \frac{E(A_T - C_T)}{\gamma \varepsilon N^2} \leq \frac{6(a(T))^2}{\gamma \varepsilon N^4} \leq 11 \frac{\varepsilon^{1/3}}{\gamma}. \]

Using these two bounds and the fact that $|A_t - C_t|$ is nondecreasing in t, we get
\[\limsup_{N \to \infty} P[\tau(\varepsilon) > \sigma((1 + \gamma)\varepsilon)] = \limsup_{N \to \infty} P[|A_U - C_U| > \gamma \varepsilon N^2] \leq \limsup_{N \to \infty} P(U \geq T) + \limsup_{N \to \infty} P[|A_U - C_U| > \gamma \varepsilon N^2, U < T] \leq \limsup_{N \to \infty} P(U \geq T) + P(|A_T - C_T| > \gamma \varepsilon N^2), \]
which completes the proof. □

4. Limiting behavior of C_t. Let $C_{s,t}^0$ be the set of points covered in C_t at time t by the balloons born before time s. If we number the generations of centers in C_t starting with those existing at time s as C_t-centers of generation 0, then $C_{s,t}^0$ is the set of points covered at time t by the generation 0 centers of C_t. Let $C_{s,t}^1$ be the set of points, which are either in $C_{s,t}^0$, or are
covered at time t by a balloon born from this area. This is the set of points covered by C_t-centers of generations ≤ 1 at time t, ignoring births from $C^1_{s,t}\setminus C^0_{s,t}$, which are second generation centers. Continuing by induction, we let $C^k_{s,t}$ be the set of points and $C^k_{s,t} = |C^k_{s,t}|$ be the total area covered by C_t-centers of generations $0 \leq j \leq k$ at time t. Similarly $A^k_{s,t}$ denotes the total area of the balloons in A_t of generations $j \in \{0,1,\ldots,k\}$ at time t, where generation 0 centers are those existing at time s.

Recall the following definitions from (1.7), (1.8), (1.11) and (1.12).

$$a(t) = (1/3)N^{2\alpha/3} \exp(N^{-\alpha/3}t),$$

$$S(\varepsilon) = N^{\alpha/3}[(2 - 2\alpha/3) \log N + \log(3\varepsilon)],$$

$$R = N^{\alpha/3}[(2 - 2\alpha/3) \log N - \log(M)],$$

where M is the limit random variable in Theorem 1, and for $\log(3\varepsilon) \leq t$,

$$\psi(t) \equiv R + N^{\alpha/3}t, \quad W \equiv \psi(\log(3\varepsilon)) \quad \text{and} \quad I_{\varepsilon,t} = [\log(3\varepsilon),t].$$

Note that $\psi(t) \leq 0$ only if $M \geq N^{2-2\alpha/3}t$.

Obviously $C^0_{s,t} \leq A^0_{s,t}$. For the other direction we have the following lemma.

Lemma 4.1. For any $0 < s < t$,

$$EC^0_{s,t} \geq EA^0_{s,t} - \frac{a^2(s)}{N^2}p((t-s)\lambda^{1/3}),$$

where for some positive constants c_1, c_2 and c_4,

$$p(x) = c_1 + c_2 x^2/2! + c_4 x^4/4!.$$

Proof. By the definition of $A^0_{s,t}$,

$$A^0_{s,t} = \int_0^s \frac{(t-r)^2}{2} dX_r = \frac{(t-s)^2}{2}X_s + (t-s)L_s + A_s.$$

For the second equality we have written $(t-r)^2 = (t-s)^2 + 2(t-s)(s-r) + (s-r)^2$ and used (1.2). As in Lemma 3.4, a point x is not covered by time t by the balloons born before time s, if and only if no center is born in the truncated space–time cone

$$K_{x,s,t} = \{(y,r) \in \Gamma(N) \times [0,s]: |y-x| \leq (t-r)/\sqrt{2\pi}\}.$$

So using arguments similar to the ones for (3.7) and $1-e^{-x} \geq x - x^2/2$,

$$EC^0_{s,t} \geq N^2 E\left[1 - \exp\left(-\int_0^s \frac{(t-r)^2}{2N^2} d\tilde{X}_r\right)\right]$$

$$\geq N^2 \left[E \int_0^s \frac{(t-r)^2}{2N^2} d\tilde{X}_r - \frac{1}{2}E\left(\int_0^s \frac{(t-r)^2}{2N^2} d\tilde{X}_r\right)^2\right].$$
For the first term on the right, we use $EX_t = 1 + \lambda \int_0^t EC_s ds$. For the second term on the right, we use the coupling between C_t and A_t described in the Introduction, see (1.1), to conclude that

$$\int_0^s (t - r)^2 dX_r \leq \int_0^s (t - r)^2 dX_r = 2A_{s,t}^0.$$

Combining these two facts, using the first equality in (4.2), $EX_t = 1 + \lambda \int_0^t EA_s ds$, and Lemma 3.4,

$$EC_{s,t}^0 \geq \frac{t^2}{2} + \int_0^s \frac{(t - r)^2}{2} \lambda E \alpha_2(r) dr - \frac{E(A_{s,t}^0)^2}{2N^2};$$

(4.3)

$$\geq \frac{t^2}{2} + \int_0^s \frac{(t - r)^2}{2} \lambda EA_r dr - 11 \int_0^s \frac{(t - r)^2}{2} \frac{\lambda \alpha_2(r)}{N^2} dr - \frac{E(A_{s,t}^0)^2}{2N^2};$$

$$= EA_{s,t}^0 - 11 \int_0^s \frac{(t - r)^2}{2} \frac{\lambda \alpha_2(r)}{N^2} dr - \frac{E(A_{s,t}^0)^2}{2N^2}.$$

To estimate the second term in the right-hand side of (4.3), we write

$$(t - r)^2 / 2 = (t - s)^2 / 2 + (t - s)(s - r) + (s - r)^2 / 2,$$

change variables $r = s - q$, and note $a(s - q) = a(s) \exp(-\lambda^{1/3}q)$, to get

$$\int_0^s \frac{(t - r)^2}{2} \lambda \alpha_2(r) dr$$

$$= a^2(s) \left[\frac{(t - s)^2}{2} \lambda^{2/3} \int_0^s \lambda^{1/3} \exp(-2\lambda^{1/3}q) dq \right.$$

$$(4.4)$$

$$\left. + (t - s) \lambda^{1/3} \int_0^s \lambda^{2/3} q \exp(-2\lambda^{1/3}q) dq \right]$$

$$\leq a^2(s) \left[\frac{(t - s)^2}{2} \lambda^{2/3} + (t - s) \lambda^{1/3} + 1 \right].$$

For the last inequality we have used

$$\int_0^s r^k \exp(-\mu r) dr \leq \int_0^\infty r^k \exp(-\mu r) dr = \frac{k!}{\mu^{k+1}}.$$

To estimate the third term in the right-hand side of (4.3) we use (4.2) to get

$$E[(A_{s,t}^0)^2] \leq 3[EX_s^2(t - s)^4/4 + EL_s^2(t - s)^2 + EA_s^2].$$
Applying Lemma 2.6 and using the fact that \(a(s) = \lambda^{-1/3}l(s) = \lambda^{-2/3}x(s) \),

\[
E[(A_{s,t}^0)^2] \leq 3 \cdot \frac{27}{2} \left[a^2(s) \frac{(t-s)^4}{4} + l^2(s)(t-s)^2 + a^2(s) \right]
\]

(4.5)

\[
\leq 243a^2(s) \left[\frac{(t-s)^4}{4!} \lambda^{4/3} + \frac{(t-s)^2}{2!} \lambda^{2/3} + 1 \right].
\]

Combining (4.3), (4.4) and (4.5) we get the result. \(\Box \)

To show uniform convergence of \(C_{W,\psi}^{k} \) to \(C_{\psi}(\cdot) \), we also need to bound the difference \(A_t \) and \(A_{s,t}^{k} \) for suitable choices of \(s \) and \(t \).

Lemma 4.2. If \(T = S(e^{2/3}) \), where \(S(\cdot) \) is as in (1.8), then for any \(t > 0 \)

\[
EA_{T+tN^{\alpha/3}} - EA_{T,T+tN^{\alpha/3}}^{k} \leq 3 \varepsilon^{2/3} N^2 \sum_{j=k+1}^{\infty} \frac{t^j}{j!}.
\]

Proof. By (4.2) \(EA_{s,t}^0 = EA + EL_s(t-s) + EX_s(t-s)^2/2 \). If \(X_{s,t}^k \) and \(L_{s,t}^k \) denote the number of centers and sum of radii of all the balloons in \(A_t \) of generations \(j \in \{1,2,\ldots,k\} \) at time \(t \), where generation 0 centers are those which are born before time \(s \), then for \(t > s \),

\[
\frac{d}{dt} EX_{s,t} = N^{-\alpha} EA_{s,t}^{0}, \quad \frac{d}{dt} EL_{s,t} = EX_{s,t}^{1}, \quad \frac{d}{dt} EA_{s,t}^{1} = EL_{s,t}.
\]

Integrating over \([s,t]\) and using (4.2) we have

\[
EX_{s,t} = N^{-\alpha} \left[(t-s) EA + \frac{(t-s)^2}{2!} EL_s + \frac{(t-s)^3}{3!} EX_s \right],
\]

\[
EL_{s,t} = N^{-\alpha} \left[\frac{(t-s)^2}{2!} EA + \frac{(t-s)^3}{3!} EL_s + \frac{(t-s)^4}{4!} EX_s \right],
\]

\[
EA_{s,t}^{1} = N^{-\alpha} \left[\frac{(t-s)^3}{3!} EA + \frac{(t-s)^4}{4!} EL_s + \frac{(t-s)^5}{5!} EX_s \right].
\]

Turning to other generations, for \(k \geq 2 \) and \(t > s \),

\[
\frac{d}{dt} (EX_{s,t}^k - EX_{s,t}^{k-1}) = N^{-\alpha} (EA_{s,t}^{k-1} - EA_{s,t}^{k-2}),
\]

\[
\frac{d}{dt} (EL_{s,t}^k - EL_{s,t}^{k-1}) = (EX_{s,t}^k - EX_{s,t}^{k-1}),
\]

\[
\frac{d}{dt} (EA_{s,t}^k - EA_{s,t}^{k-1}) = (EL_{s,t}^k - EL_{s,t}^{k-1}),
\]

and using induction on \(k \) we have

\[
EA_{s,t}^k = \sum_{j=0}^{k} N^{-\alpha j} \left[\frac{(t-s)^{3j}}{(3j)!} EA + \frac{(t-s)^{3j+1}}{(3j+1)!} EL_s + \frac{(t-s)^{3j+2}}{(3j+2)!} EX \right],
\]
Since $A^k_{s,t} \uparrow A_t$ for any $s < t$, $EA_t = \lim_{k \to \infty} EA^k_{s,t}$ by Monotone Convergence theorem. Replacing s by T and t by $T + tN^{\alpha/3}$,

\[EA_{T+tN^{\alpha/3}} - EA^k_{T,T+tN^{\alpha/3}} \]

(4.6)

\[
= \sum_{j=k+1}^{\infty} \left[\frac{t^{3j}}{(3j)!} EA_T + \frac{t^{3j+1}}{(3j + 1)!} N^{\alpha/3} EL_T + \frac{t^{3j+2}}{(3j + 2)!} N^{2\alpha/3} EX_T \right].
\]

Using the fact that $EA_T + N^{\alpha/3} EL_T + N^{2\alpha/3} EX_T - 3a(T) = 0$ and $a(T) = \varepsilon^{2/3} N^2$, the right-hand side of (4.6) is $\leq 3\varepsilon^{2/3} N^2 \sum_{j=k+1}^{\infty} t^j/j!$, which completes the proof. □

Recall the definitions of $\psi(\cdot), W$ and $I_{\varepsilon,t}$ from the displays before Lemma 4.1 and that for $\log(3\varepsilon) \leq t$,

\[g_0(t) = \varepsilon \left[1 + (t - \log(3\varepsilon)) + \frac{(t - \log(3\varepsilon))^2}{2} \right]. \]

Lemma 4.3. For any $t < \infty$, there is an $\varepsilon_0 = \varepsilon_0(t) > 0$ so that for $0 < \varepsilon < \varepsilon_0,$

\[
\lim_{N \to \infty} P \left(\sup_{s \in I_{\varepsilon,t}} |N^{-2} A_{W,\psi(s)}^0 - g_0(s)| > \eta \right) = 0 \quad \text{for any } \eta > 0,
\]

\[
P \left(\inf_{s \in I_{\varepsilon,t}} N^{-2} (C^0_{W,\psi(s)} - A_{W,\psi(s)}^0) < -\varepsilon^{7/6} \right) \leq P(M < \varepsilon^{1/3} + \varepsilon^{1/12}).
\]

Proof. To prove the first result we use (4.2) to conclude

\[A_{W,\psi(t)}^0 = \frac{(t - \log(3\varepsilon))^2}{2} N^{2\alpha/3} X_W + (t - \log(3\varepsilon)) N^{\alpha/3} \xi L_W + A_W. \]

Applying Lemma 3.2

\[
\lim_{N \to \infty} P \left(\sup_{s \in I_{\varepsilon,t}} |N^{-2} A_{W,\psi(s)}^0 - g_0(s)| > \eta \right)
\]

\[
\leq \lim_{N \to \infty} P \left(|N^{-(2 - 2\alpha/3)} X_W - \varepsilon| > \frac{2\eta}{3(t - \log(3\varepsilon))^2} \right)
\]

\[
+ \lim_{N \to \infty} P \left(|N^{-(2 - \alpha/3)} \xi L_W - \varepsilon| > \frac{\eta}{3(t - \log(3\varepsilon))} \right)
\]

\[
+ \lim_{N \to \infty} P \left(|N^{-2} A_W - \varepsilon| > \frac{\eta}{3} \right) = 0.
\]

Let $\varepsilon_0 = \varepsilon_0(t)$ be such that $\varepsilon_0^{1/12} p(t - \log(3\varepsilon)) \leq 1$, where $p(\cdot)$ is the polynomial in (4.1). Let $T = S(2^{2/3})$, where $S(\cdot)$ is defined in (1.8), and $T' = T + (t - \log(3\varepsilon)) N^{\alpha/3}$. Using the fact that $A_{s,s+t}^0 - C_{s,s+t}^0$ is nonde-
creasing in \(s\), Markov’s inequality, and then Lemma 4.1 we see that

\[
P \left(\sup_{s \in I_{\varepsilon, t}} |A^0_{W,\psi(s)} - C^0_{W,\psi(s)}| > \varepsilon^{7/6} N^2, W \leq T \right)
\]

\[
\leq P (|A^0_{T,T'} - C^0_{T,T'}| > \varepsilon^{7/6} N^2) \leq \frac{E|A^0_{T,T'} - C^0_{T,T'}|}{\varepsilon^{7/6} N^2}
\]

\[
\leq \frac{a^2(T)p(t - \log(3\varepsilon))}{\varepsilon^{7/6} N^4}.
\]

Noting that \(P(W > T) = P(M < \varepsilon^{1/3}), a(T) = \varepsilon^{2/3} N^2\) and \(\varepsilon^{1/12}p(t - \log(3\varepsilon)) < 1\) for \(\varepsilon < \varepsilon_0\) we have

\[
P \left(\sup_{s \in I_{\varepsilon, t}} |A^0_{W,\psi(s)} - C^0_{W,\psi(s)}| > \varepsilon^{7/6} N^2 \right) \leq P(M < \varepsilon^{1/3}) + \varepsilon^{1/12},
\]

which completes the proof. \(\square\)

Our next step is to improve the lower bound in Lemma 4.3. Let

\[
\rho^0_t = N^{-2} A_{W,\psi(t)} - \varepsilon^{7/6}.
\]

On the event

(4.8) \(F = \{|N^{-2}C^0_{W,\psi(s)}| \geq \rho^0_s \text{ for all } s \in I_{\varepsilon, t}\},\)

which has probability tending to 1 as \(\varepsilon \to 0\) by Lemma 4.3, \(C^0_{W,\psi(s)}\) can be coupled with a process \(B^0_{\psi(s)}\) so that \(N^{-2}|B^0_{\psi(s)}| = \rho^0_s\) and \(C^0_{W,\psi(s)} \geq B^0_{\psi(s)}\) for \(s \in I_{\varepsilon, t}\). If for \(k \geq 1\) \(B^k_{\psi(t)}\) is obtained from \(B^0_{\psi(t)}\) in the same way as \(C^k_{W,\psi(t)}\) is obtained from \(C^0_{W,\psi(t)}\), then, on \(F\), \(C^k_{W,\psi(s)} \geq B^k_{\psi(s)}\) for \(s \in I_{\varepsilon, t}\). For \(k \geq 1\) let

\[
\rho^k_s = N^{-2}|B^k_{\psi(s)}|.
\]

We begin with the case \(k = 1\). For \(f_0(t) = g_0(t) - \varepsilon^{7/6}\), where \(g_0\) is as in (4.7), let

(4.9) \(f_1(t) = 1 - (1 - f_0(t)) \exp \left(- \int_{\log(3\varepsilon)}^{t} \frac{(t-s)^2}{2} f_0(s) \, ds \right)\).

Lemma 4.4. For any \(t < \infty\) there is an \(\varepsilon_0 = \varepsilon_0(t) > 0\) so that for \(0 < \varepsilon < \varepsilon_0\) and any \(\delta > 0\),

\[
\limsup_{N \to \infty} P \left[\inf_{s \in I_{\varepsilon, t}} (N^{-2} C^1_{W,\psi(s)} - f_1(s)) < -\delta \right] \leq P(M < \varepsilon^{1/3}) + \varepsilon^{1/12}.
\]

Proof. As in Lemma 3.4, if \(x \notin B^0_{\psi(t)}\), then \(x \notin B^1_{\psi(t)}\) if and only if no generation 1 center is born in the space–time cone

\[
K^\varepsilon_{x,t} \equiv \{(y,s) \in \Gamma(N) \times [W,\psi(t)] : |y-x| \leq (\psi(t) - s)/\sqrt{2\pi}\}.
\]
Combining (4.10) and (4.11), we see that
\[P(x \notin B^1_{\psi(t)}|G_t^0) = (1 - \rho_t^0) \exp \left(- \int_{\log(3\varepsilon)}^t \frac{(t-r)^2}{2} \rho_s^0 \, dr \right). \]

Using this and then changing variables \(s = \psi(r) \), where \(\psi(r) = R + \alpha^3 r \),
\[P(x \notin B^1_{\psi(t)}|G_t^0) = (1 - \rho_t^0) \exp \left(- \int_{\log(3\varepsilon)}^t \frac{(t-r)^2}{2} \rho_s^0 \, ds \right). \]

Let \(E_{x,t} = \{ x \notin B^1_t \} \). Since \(K_{x,t}^x \) and \(K_{y,t}^y \) are disjoint if \(|x - y| > 2(t - \log(3\varepsilon))N^{\alpha/3}/\sqrt{2\pi} \), the events \(E_{x,t} \) and \(E_{y,t} \) are conditionally independent given \(G_t^0 \) if this holds. Define the random variables \(Y_x, x \in \Gamma(N) \), so that \(Y_x = 1 \) if \(E_{x,t} \) occurs, and \(Y_x = 0 \) otherwise. From (4.10)
\[(4.10) \quad E(Y_x|G_t^0) = (1 - \rho_t^0) \exp \left(- \int_{\log(3\varepsilon)}^t \frac{(t-s)^2}{2} \rho_s^0 \, ds \right). \]

Using independence of \(Y_x \) and \(Y_z \) for \(|x - z| > 2(t - \log(3\varepsilon))N^{\alpha/3}/\sqrt{2\pi} \), and the fact that \(\{ z : |x - z| \leq 2(t - \log(3\varepsilon))N^{\alpha/3}/\sqrt{2\pi} \} \) has area \(2(t - \log(3\varepsilon))^2N^{2\alpha/3} \),
\[\text{var} \left(\int_{x \in \Gamma(N)} Y_x \, dx | G_t^0 \right) \]
\[= \int_{x,z \in \Gamma(N)} \left[E(Y_xY_z|G_t^0) - E(Y_x|G_t^0)E(Y_z|G_t^0) \right] \, dx \, dz \]
\[\leq N^2 \cdot 2(t - \log(3\varepsilon))^2N^{2\alpha/3}. \]

Using Chebyshev’s inequality, we see that
\[P \left(\left| \int_{x \in \Gamma(N)} (Y_x - E(Y_x|G_t^0)) \, dx \right| > \frac{\eta}{2} N^2 \middle| G_t^0 \right) \]
\[\leq \frac{4 \text{var} \left(\int_{x \in \Gamma(N)} Y_x \, dx | G_t^0 \right)}{\eta^2 N^4}. \]

Combining (4.10), (4.11) and (4.12) gives
\[P \left(\left| (1 - \rho_t^1) - (1 - \rho_t^0) \exp \left(- \int_{\log(3\varepsilon)}^t \frac{(t-s)^2}{2} \rho_s^0 \, ds \right) \right| > \frac{\eta}{2} |G_t^0| \right) \]
\[\leq \frac{8(t - \log(3\varepsilon))^2}{\eta^2 N^{2 - 2\alpha/3}}. \]
The same bound holds for the unconditional probability. By Lemma 4.3 if \(\eta > 0 \) and
\[
F_{0,\eta} = \left\{ \sup_{s \in I_{\varepsilon,t}} |\rho_s^0 - f_0(s)| \leq \eta \right\}
\]
then \(\lim_{N \to \infty} P(F_{0,\eta}^c) = 0. \)

Let \(\eta' = \eta \left[1 + (t - \log(3\varepsilon))^3 / 3! \right]^{-1} / 2. \) Using \((4.9)\) and the fact that for \(x, y \geq 0 \)
\[
|e^{-x} - e^{-y}| = \left| \int_x^y e^{-z} \, dz \right| \leq |x - y|,
\]
we see that on the event \(F_{0,\eta'} \), we have for any \(s \in I_{\varepsilon,t} \)
\[
\left| (1 - \rho_s^0) \exp \left(- \int_{\log(3\varepsilon)}^s \frac{(s - r)^2}{2} \rho_r^0 \, dr \right) - (1 - f_1(s)) \right|
\leq |(1 - \rho_s^0) - (1 - f_0(s))| + \eta' \int_{\log(3\varepsilon)}^s \frac{(s - r)^2}{2} \rho_r^0 \, dr
\leq \eta' + \eta' \frac{(s - \log(3\varepsilon))^3}{3!} \leq \frac{\eta}{2}.
\]

So for any \(s \in I_{\varepsilon,t} \)
\[
\lim_{N \to \infty} P\left(|\rho_s^1 - f_1(s)| > \eta \right)
\leq \lim_{N \to \infty} P(F_{0,\eta'}^c)
+ \lim_{N \to \infty} P\left(\left| (1 - \rho_s^1) - (1 - \rho_s^0) \exp \left(- \int_{\log(3\varepsilon)}^s \frac{(s - r)^2}{2} \rho_r^0 \, dr \right) \right| > \frac{\eta}{2} \right)
= 0.
\]

Since \(\eta > 0 \) is arbitrary, the two quantities being compared are increasing and continuous, and on the event \(F \) defined in \((4.8)\) \(N^{-2} C_{\varepsilon,\psi(s)}^1 \geq \rho_s^1 \) for \(s \in I_{\varepsilon,t} \),
\[
\limsup_{N \to \infty} P\left[\inf_{s \in I_{\varepsilon,t}} (N^{-2} C_{\varepsilon,\psi(s)}^1 - f_1(s)) < -\delta \right]
\leq P(F^c) + \limsup_{N \to \infty} P\left(\sup_{s \in I_{\varepsilon,t}} |\rho_s^1 - f_1(s)| > \delta \right) \leq P(F^c),
\]
and the desired conclusion follows from Lemma 4.3. \(\square \)

To improve this we will let
\[
(4.14) \quad f_{k+1}(t) = 1 - (1 - f_k(t)) \exp \left(- \int_{\log(3\varepsilon)}^t \frac{(t - s)^2}{2} (f_k(s) - f_{k-1}(s)) \, ds \right),
\]
and recall from \((1.15)\) that as \(k \uparrow \infty \), \(f_k(t) \uparrow f_\varepsilon(t) \).
Lemma 4.5. For any $t < \infty$ there is an $\varepsilon_0 = \varepsilon_0(t) > 0$ so that for $0 < \varepsilon < \varepsilon_0$ and any $\delta > 0$,

$$\limsup_{N \to \infty} P \left[\inf_{s \in I_{t,t}} \left(N^{-2} C_{\psi(s)} - f_\varepsilon(s) \right) < -\delta \right] \leq P(M < \varepsilon^{1/3}) + \varepsilon^{1/12}.$$

Proof. Conditioning on $G_t^k = \sigma \{ B_j^\psi(s) : 0 \leq j \leq k, s \in I_{t,t} \}$, we have

$$P(x \notin B_{\psi(t)}^{k+1} | G_t^k) = (1 - \rho_k^t) \exp \left(-\int_0^t \frac{(t-s)^2}{2} (\rho_s^k - \rho_s^{k-1}) \, ds \right).$$

Let $F_{k,\eta} = \{ \sup_{s \in I_{t,t}} |\rho_s^k - f_k(s)| \leq \eta \}$, and $\eta' = \eta[1 + 2(t - \log(3\varepsilon))^3/3!]^{-1/2}$.

Using (4.14) and $|e^{-x} - e^{-y}| \leq |x - y|$ for $x, y \geq 0$, we see that on the event $G_{k,\eta'} = F_{k,\eta'} \cap F_{k-1,\eta'}$, for any $s \in I_{t,t}$

$$\left| (1 - \rho_s^k) \exp \left(-\int_0^t \frac{(t-s)^2}{2} (\rho_s^k - \rho_s^{k-1}) \, ds \right) - (1 - f_{k+1}(t)) \right|$$

$$\leq |(1 - \rho_s^k) - (1 - f_k(t))| + 2\eta' \int_0^t \frac{(t-s)^2}{2} \, ds$$

$$= \eta' + 2\eta'(t - \log(3\varepsilon))^3/3 \leq \eta/2.$$

Bounding the variance as before we can conclude by induction on k that for any $\eta > 0$

$$\lim_{N \to \infty} P \left(\sup_{s \in I_{t,t}} |\rho_s^k - f_k(s)| > \eta \right) = 0.$$

Next we bound the difference between $f_k(t)$ and $f_\varepsilon(t)$. Let $G(t) = t^3/3!$ for $t \geq 0$ and $G(t) = 0$ for $t < 0$. If *k* indicates the k-fold convolution, then for $k \geq 1$, using arguments similar to the ones in the proof of Lemma 2.2, $G^{*k}(t) = t^{3k}/(3k)!$ for $t \geq 0$ and $G^{*k}(t) = 0$ for $t < 0$. Now if $f * G^{*k}(t) = \int_0^t f(t - r) \, dB^{*k}(r)$, $\tilde{f}_k(\cdot) = f_k(\cdot + \log(3\varepsilon))$ and $\tilde{f}_\varepsilon(\cdot) = f_\varepsilon(\cdot + \log(3\varepsilon))$, then changing variables $s \mapsto t - r$ in (1.14) and (1.15), and using the inequality in (4.13),

$$|\tilde{f}_k(t - \log(3\varepsilon)) - \tilde{f}_\varepsilon(t - \log(3\varepsilon))|$$

$$\leq |\exp(-\tilde{f}_{k-1} \ast G(t - \log(3\varepsilon))) - \exp(-\tilde{f}_\varepsilon \ast G(t - \log(3\varepsilon)))|$$

$$\leq |\tilde{f}_{k-1} - \tilde{f}_\varepsilon| \ast G(t - \log(3\varepsilon)) \ast G(t - \log(3\varepsilon)).$$

Iterating the above inequality and using $|\tilde{f}_\varepsilon(s) - \tilde{f}_0(s)| = \tilde{f}_\varepsilon(s) - \tilde{f}_0(s) \leq 1,$

$$|f_k(t) - f_\varepsilon(t)| = |\tilde{f}_k(t - \log(3\varepsilon)) - \tilde{f}_\varepsilon(t - \log(3\varepsilon))|$$

$$\leq |\tilde{f}_0 - \tilde{f}_\varepsilon| \ast G^{*k}(t - \log(3\varepsilon))$$

$$\leq G^{*k}(t - \log(3\varepsilon)) \leq \frac{(t - \log(3\varepsilon))^{3k}}{(3k)!},$$

where the last equality comes from (2.1).
Choose \(K = K(\varepsilon, t) \) so that \((t - \log(3\varepsilon))^{3K}/(3K)! < \delta/2\). Since \(C_{\psi(t)} \geq C_{W, \psi(t)}^k \) for any \(k \geq 0 \), and on the event \(F \) defined in (4.8), we have \(C_{W, \psi(t)}^k \geq |B_{\psi(t)}^k| \), we have

\[
P\left(\inf_{s \in I_{\varepsilon, t}} (N^{-2}C_{\psi(s)} - f_{\varepsilon}(s)) < -\delta \right) \leq P(F^c) + P\left(\sup_{s \in I_{\varepsilon, t}} |\rho_s^K - f_K(s)| > \delta/2 \right).
\]

Using (4.15) and Lemma 4.3 we get the result. \(\square\)

It is now time to get upper bounds on \(C_{\psi(s)} \). Recall \(g_0(t) \) defined in (4.7), let \(g_{-1}(t) = 0 \) and for \(k \geq 1 \) let

\[
g_k(t) = 1 - (1 - g_{k-1}(t)) \times \exp\left(- \int_{\log(3\varepsilon)}^t \frac{(t - s)^2}{2}(g_{k-1}(s) - g_{k-2}(s)) \, ds \right).
\]

As in the case of \(f_k(t) \), the equations above imply

\[
g_k(t) = 1 - (1 - g_0(t)) \exp\left(- \int_{\log(3\varepsilon)}^t \frac{(t - s)^2}{2}g_{k-1}(s) \, ds \right),
\]

so we have \(g_k(t) \uparrow g_\varepsilon(t) \) as \(k \uparrow \infty \), where \(g_\varepsilon(t) \) satisfies

\[
g_\varepsilon(t) = 1 - (1 - g_0(t)) \exp\left(- \int_{\log(3\varepsilon)}^t \frac{(t - s)^2}{2}g_\varepsilon(s) \, ds \right).
\]

Lemma 4.6. For any \(t < \infty \) there exists \(\varepsilon_0 = \varepsilon_0(t) > 0 \) such that for \(0 < \varepsilon < \varepsilon_0(t) \) and any \(\delta > 0 \),

\[
l\lim_{N \to \infty} \sup_{s \in I_{\varepsilon, t}} P\left[(N^{-2}C_{\psi(s)} - g_\varepsilon(s)) > \delta \right] \leq P(M < \varepsilon^{1/3}) + \varepsilon^{2/3}.
\]

Proof. \(C_{W, \psi(t)}^0 \leq A_{W, \psi(t)}^0 \). If \(\phi_t^0 = N^{-2}A_{W, \psi(t)}^0 \) is the fraction of area covered by generation 0 balloons at time \(\psi(t) \), generation 1 centers are born at rate \(N^{2-\alpha}\phi_t^{0-1}(\cdot) \). Let \(\phi_t^1 \) denotes the fraction of area covered by centers of generations \(\leq 1 \) at time \(\psi(t) \), then using an argument similar to the one for Lemma 4.4 gives

\[
\lim_{N \to \infty} P\left(\sup_{s \in I_{\varepsilon, t}} \phi_s^1 - g_1(s) > \eta \right) = 0
\]

for any \(\eta > 0 \). Continuing by induction, let \(\phi_t^j \) be the fraction of area covered by centers of generations \(0 \leq j \leq k \). Since (4.17) and (4.14) are the same except for the letter they use, then by an argument identical to the one for
Lemma 4.5,

\[
\lim_{N \to \infty} P \left(\sup_{s \in I_{\epsilon, t}} |\phi^k_s - g_k(s)| > \eta \right) = 0
\]

for any \(\eta > 0 \). Now using an argument similar to the one for (4.16)

\[
\sup_{s \in I_{\epsilon, t}} |g_k(s) - g_\epsilon(s)| \leq \frac{(t - \log(3\epsilon))^{3k}}{(3k)!}.
\]

Next we bound the difference between \(C^k_{W,\psi}(t) \) and \(C_\psi(t) \). Let \(T = S(\epsilon^{2/3}) \), where \(S(\cdot) \) is as in (1.8). Using the coupling between \(C_t \) and \(A_t \),

\[
C_\psi(t) - C^k_{W,\psi(t)} \leq A_\psi(t) - A^k_{W,\psi(t)}.
\]

Using the fact that \(EA_{s+t} - EA_{s,s+t} \) is nondecreasing in \(s \), the definitions of \(W \) and \(T \), Markov’s inequality, and Lemma 4.2, we have for \(T' = T + (t - \log(3\epsilon)) N^{\alpha/3} \),

\[
P \left(\sup_{s \in I_{\epsilon, t}} (C_\psi(s) - C^k_{W,\psi(s)}) > \frac{\delta N^2}{4} \right)
\]

\[
\leq P(W > T) + P \left(A_{T'} - A_T > \frac{\delta N^2}{4} \right)
\]

\[
\leq P(M < \epsilon^{1/3}) + \frac{4}{\delta N^2} E(A_{T'} - A_T)
\]

\[
\leq P(M < \epsilon^{1/3}) + \frac{12 \epsilon^{2/3}}{\delta} \sum_{j=K+1}^{\infty} \frac{(t - \log(3\epsilon))^j}{j!}.
\]

Choose \(K = K(\epsilon, t) \) large enough so that \(\sum_{j=K+1}^{\infty} (t - \log(3\epsilon))^j/j! < \delta/12 \).

If we let

\[
F_K = \left\{ \sup_{s \in I_{\epsilon, t}} (C_\psi(s) - C^k_{W,\psi,s}) \leq (\delta/4) N^2 \right\},
\]

then

\[
P(F_K^c) \leq P(M < \epsilon^{1/3}) + \epsilon^{2/3}.
\]

By the choice of \(K \) and (4.19), \(\sup_{s \in I_{\epsilon, t}} |g_K(s) - g_\epsilon(s)| \leq \delta/2 \). Combining the last two inequalities and using the fact that \(N^{-2}C^K_{W,\psi}(s) \leq \phi^K_s = N^{-2}A^K_{W,\psi,s} \),

\[
P \left(\sup_{s \in I_{\epsilon, t}} N^{-2}C_\psi(s) - g_\epsilon(s) > \delta \right) \leq P(F_K^c) + P \left(\sup_{s \in I_{\epsilon, t}} |\phi^K_s - g_K(s)| > \delta/4 \right).
\]

So using (4.18) we have the desired result. \(\square \)
Our next goal is:

Proof of Lemma 1.1. We prove the result in two steps. To begin we consider a function $h_\varepsilon(\cdot)$ satisfying $h_\varepsilon(t) = e^t/3$ for $t < \log(3\varepsilon)$.

\[(4.20) \quad h_\varepsilon(t) = 1 - \exp\left(-\int_{-\infty}^{\log(3\varepsilon)} \frac{(t-s)^2}{2} e^s \frac{ds}{3} - \int_{\log(3\varepsilon)}^{t} \frac{(t-s)^2}{2} h_\varepsilon(s) \, ds\right)\]

for $t \geq \log(3\varepsilon)$, and prove that $h_\varepsilon(\cdot)$ converges to some $h(\cdot)$ with the desired properties.

Lemma 4.7. For fixed t, $h_\varepsilon(t)$ in (4.20) is monotone decreasing in ε.

Proof. If we change variables $s = t - u$ and integrate by parts, or remember the first two moments of the exponential with mean 1, then

\[(4.21) \quad \int_{-\infty}^{t} (t-s)^2 e^s \, ds = \int_{0}^{\infty} u^2 e^{-u} \, du = e^t \int_{0}^{\infty} u e^{-u} \, du = e^t.\]

Using $(t-s)^2/2 = (t-r)^2/2 + (t-r)(r-s) + (r-s)^2/2$ now gives the following identity

\[(4.22) \quad \int_{-\infty}^{r} (t-s)^2 e^s \, ds = e^r \left[\frac{(t-r)^2}{2} + (t-r) + 1\right].\]

Using (4.20), the inequality $1 - e^{-x} \leq x$, (4.21), and changing variables $s = t - u$, we have

\[
h_\varepsilon(t) - \frac{1}{3} e^t \leq \int_{\log(3\varepsilon)}^{t} \frac{(t-s)^2}{2} \left(h_\varepsilon(s) - \frac{1}{3} e^s\right) \, ds
\]

\[
= \int_{0}^{t-\log(3\varepsilon)} \left(h_\varepsilon(t-u) - \frac{1}{3} e^{t-u}\right) \frac{u^2}{2} \, du.
\]

Applying Lemma 3.3 with $\lambda = 1$ and $\beta(\cdot) \equiv 0$ to $h_\varepsilon(\cdot + \log(3\varepsilon)) - \exp(\cdot + \log(3\varepsilon))/3$, we obtain

\[
h_\varepsilon(t) - \frac{1}{3} e^t \leq 0 \quad \text{for any } t \geq \log(3\varepsilon).
\]

This shows that if $0 < \varepsilon < \delta < 1$, then $h_{\delta}(t) \geq h_\varepsilon(t)$ for $t \leq \log(3\delta)$. To compare the exponentials for $t > \log(3\delta)$, we note that

\[
\int_{\log(3\varepsilon)}^{\log(3\delta)} \frac{(t-s)^2}{2} \left(h_\varepsilon(s) - \frac{1}{3} e^s\right) \, ds + \int_{\log(3\delta)}^{t} \frac{(t-s)^2}{2} (h_\varepsilon(s) - h_\varepsilon(s)) \, ds
\]

\[
\leq 0 + \int_{0}^{t-\log(3\delta)} \left(h_\varepsilon(t-u) - h_{\delta}(t-u)\right) \frac{u^2}{2} \, du.
\]
Applying Lemma 3.3 with $\lambda = 1$ and $\beta(\cdot) \equiv 0$ to $h_\varepsilon(\cdot + \log(3\delta)) - h_\delta(\cdot + \log(3\delta))$, we see that $h_\varepsilon(t) - h_\delta(t) \leq 0$ for $t \geq \log(3\delta)$. □

Lemma 4.8. $h(t) = \lim_{\varepsilon \to 0} h_\varepsilon(t)$ exists. If $h \not\equiv 0$ then h has properties (a)--(d) in Lemma 1.1.

Proof. Lemma 4.7 implies that the limit exists. Since $0 \leq h_\varepsilon(t) \leq e^t/3$, $0 \leq h(t) \leq e^t/3$ and so $\lim_{t \to -\infty} h(t) = 0$. To show that

$$h(t) = 1 - \exp\left(- \int_{-\infty}^{t} \frac{(t-s)^2}{2} h(s) \, ds \right),$$

we need to show that as $\varepsilon \to 0$

$$\int_{\log(\varepsilon)}^{t} \frac{(t-s)^2}{2} h_\varepsilon(s) \, ds \to \int_{-\infty}^{t} \frac{(t-s)^2}{2} h(s) \, ds.$$

Given $\eta > 0$, choose $\delta = \delta(\eta) > 0$ so that

$$\delta[1 + (t - \log(3\delta) + (t - \log(3\delta))^2/2] < \eta/4.$$

By bounded convergence theorem, as $\varepsilon \to 0$,

$$\int_{\log(\varepsilon)}^{t} \frac{(t-s)^2}{2} h_\varepsilon(s) \, ds \to \int_{\log(3\delta)}^{t} \frac{(t-s)^2}{2} h(s) \, ds.$$

So we can choose $\varepsilon_0 = \varepsilon_0(\eta)$ so that the difference between the two integrals is at most $\eta/2$ for any $\varepsilon < \varepsilon_0$. Therefore if $\varepsilon < \varepsilon_0$, then

$$\left| \int_{\log(\varepsilon)}^{t} \frac{(t-s)^2}{2} h_\varepsilon(s) \, ds - \int_{-\infty}^{t} \frac{(t-s)^2}{2} h(s) \, ds \right|$$

$$\leq \frac{\eta}{2} + 2 \int_{-\infty}^{\log(3\delta)} \frac{(t-s)^2}{2} 1 \, ds.$$

Using the identity in (4.22) we conclude that the second term is

$$\leq 2\delta[1 + (t - \log(3\delta)) + (t - \log(3\delta))^2/2] \leq \frac{\eta}{2}.$$

This shows that (4.24) holds, and with (4.20) and (4.22) proves (4.23).

To prove $\lim_{t \to \infty} h(t) = 1$ note that if $h(\cdot) \not\equiv 0$, then there is an r with $h(r) > 0$, and so for $t > r$

$$\int_{-\infty}^{t} \frac{(t-s)^2}{2} h(s) \, ds \geq h(r) \int_{r}^{t} \frac{(t-s)^2}{2} \, ds = h(r) \frac{(t-r)^3}{3!} \to \infty$$

as $t \to \infty$. So in view of (4.23), $h(t) \to 1$ as $t \to \infty$, if $h(\cdot) \not\equiv 0$.

The last detail is to show if $h(\cdot) \not\equiv 0$, then $h(t) \in (0,1)$ for all t. Suppose, if possible, $h(t_0) = 0$. Equation (4.23) implies $\int_{-\infty}^{t_0} h(s) [(t-s)/2] \, ds = 0$, and
hence \(h(s) = 0 \) for \(s \leq t_0 \). Changing variables \(s \mapsto t - r \), and using (4.23) again with the inequality \(1 - e^{-x} \leq x \), imply that for any \(t > t_0 \)
\[
h(t) \leq \int_{-\infty}^{t} \frac{(t-s)^2}{2} h(s) \, ds = \int_{0}^{t-t_0} h(t-r) \frac{r^2}{2} \, dr.
\]
Applying Lemma 3.3 with \(\lambda = 1 \) and \(\beta(\cdot) \equiv 0 \) to the function \(h(\cdot + t_0) \), we see that \(h(t) \leq 0 \) for any \(t > t_0 \). But \(h(t) \geq 0 \) for any \(t \), and hence \(h \equiv 0 \), a contradiction. □

To complete the proof of Lemma 1.1 it suffices to show that \(|f_\varepsilon(\cdot) - h_\varepsilon(\cdot)| \) and \(|g_\varepsilon(\cdot) - h_\varepsilon(\cdot)| \) converge to 0 as \(\varepsilon \to 0 \). To do this, note that if
\[
h_0(t) = 1 - \exp\left(-\int_{-\infty}^{t} \frac{(t-s)^2}{2} e^{s} \, ds\right),
\]
then
\[
h_\varepsilon(t) = 1 - (1 - h_0(t)) \exp\left(-\int_{\log(3\varepsilon)}^{t} \frac{(t-s)^2}{2} h_\varepsilon(s) \, ds\right),
\]
and so using the inequality \(|e^{-x} - e^{-y}| \leq |x - y| \) for \(x, y \geq 0 \),
\[
|h_\varepsilon(t) - g_\varepsilon(t)| \leq |h_0(t) - g_0(t)| + \int_{\log(3\varepsilon)}^{t} \frac{(t-s)^2}{2} |h_\varepsilon(s) - g_\varepsilon(s)| \, ds.
\]
Using the inequality \(0 \leq e^{-x} - 1 + x \leq x^2/2 \) and the identity in (4.22),
\[
|h_0(t) - g_0(t)| \leq \frac{1}{2} \left[\varepsilon + \varepsilon(t - \log(3\varepsilon)) + \varepsilon \frac{(t - \log(3\varepsilon))^2}{2} \right]^2
\leq \frac{3}{2} \varepsilon^2 \left[1 + (t - \log(3\varepsilon))^2 + \frac{(t - \log(3\varepsilon))^4}{4} \right].
\]
Applying Lemma 3.3 with \(\lambda = 1 \) and \(\beta(t) = 1 + t^2 + t^4/4 \) to the function
\[
|h_\varepsilon(\cdot + \log(3\varepsilon)) - g_\varepsilon(\cdot + \log(3\varepsilon))|,
\]
we have \(|h_\varepsilon(t) - g_\varepsilon(t)| \leq (3\varepsilon^2/2) \beta \ast V(t - \log(3\varepsilon)) \), where \(V(\cdot) \) is as in Lemma 2.2. Using \(\lambda = 1 \) in the expression of \(V(\cdot) \) and Lemma 2.1,
\[
\beta \ast V(t) = \beta(t) + \int_{0}^{t} \beta(t-s)V'(s) \, ds
\leq \sum_{k=0}^{\infty} \left[\frac{\varepsilon^3}{(3k)!} + 2 \frac{\varepsilon^{3k+2}}{(3k+2)!} + 6 \frac{\varepsilon^{3k+4}}{(3k+4)!} \right] \leq 6 \varepsilon^t.
\]
So \(|h_\varepsilon(t) - g_\varepsilon(t)| \leq (3\varepsilon^2/2) \cdot 6 \exp(t - \log(3\varepsilon)) \), and so
\[
\sup_{s \in [t-t]} |h_\varepsilon(s) - g_\varepsilon(s)| \leq 6 \varepsilon e^t / 2.
\]
Repeating the argument for $f_\epsilon(\cdot)$, and noting that $|h_0(t) - f_0(t)| = |h_0(t) - g_0(t)| + \epsilon^{7/6}$,
\[
\sup_{s \in I_{\epsilon,t}} |h_\epsilon(s) - f_\epsilon(s)| \leq \left(\frac{6}{2} \frac{\epsilon^2}{2} + \epsilon^{7/6}\right) \exp(t - \log(3\epsilon)) = \left(\frac{1}{3} \epsilon^{1/6} + 3 \epsilon\right) e^t.
\]
This completes the second step and we have proved Lemma 1.1. \qed

Now we have all the ingredients to prove Theorem 3.

Proof of Theorem 3. Let $h(\cdot)$ be as in Lemma 1.1. Choose $\epsilon \in (0, \delta/6)$ small enough so that
\[
\sup_{s \in I_{\epsilon,t}} |g_\epsilon(s) - h(s)| < \delta/2, \quad \sup_{s \in I_{\epsilon,t}} |f_\epsilon(s) - h(s)| < \delta/2.
\]

Let $D = \{M \leq 3 \epsilon N^{2 - 2\alpha/3}\}$. On the event D, $W = \psi(\log(3\epsilon)) > 0$. So
\[
P\left(\sup_{s \leq t} |N^{-2} C_{\psi(s)} - h(s)| > \delta\right)
\leq P(D^c) + P(N^{-2} C_W + h(\log(3\epsilon)) > \delta)
+ P\left(\sup_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - h(s)) > \delta\right)
+ P\left(\inf_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - h(s)) < -\delta\right).
\]
(4.25)

To estimate the second term in (4.25) note that $h(\log(3\epsilon)) \leq (1/3) \exp(\log(3\epsilon)) < \delta/2$ and
\[
P(N^{-2} C_W > \delta/2) \leq P(A_W > (\delta/2) N^2) \to 0
\]
as $N \to \infty$ by Lemma 3.2. To estimate the third term in (4.25) we use Lemma 4.6 to get
\[
\limsup_{N \to \infty} P\left(\sup_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - h(s)) > \delta\right)
\leq \limsup_{N \to \infty} P\left(\sup_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - g_\epsilon(s)) > \delta/2\right)
\leq P(M < \epsilon^{1/3}) + \epsilon^{2/3}.
\]
For the fourth term in (4.25) use Lemma 4.5 to get
\[
\limsup_{N \to \infty} P\left(\inf_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - h(s)) < -\delta\right)
\leq \limsup_{N \to \infty} P\left(\inf_{s \in I_{\epsilon,t}} (N^{-2} C_{\psi(s)} - f_\epsilon(s)) < -\delta/2\right)
\leq P(M < \epsilon^{1/3}) + \epsilon^{1/12}.
\]
Letting $\varepsilon \to 0$, we see that for any $\delta > 0$,
\begin{equation}
\lim_{N \to \infty} P\left(\sup_{s \in I_{t, t}} |N^{-2}C_{\psi(s)} - h(s)| > \delta \right) = 0.
\end{equation}

It remains to show that $h(\cdot) \not\equiv 0$. Let ε, γ be such that
\begin{align*}
P[M \leq (1 + \gamma)\varepsilon^{1/3}] + 11\varepsilon^{1/3}/\gamma < 1.
\end{align*}

Fix any $\eta > 0$ and let $t_0 = \log(3\varepsilon(1 + \gamma) + 3\eta)$. Using Lemmas 3.2 and 3.5
\begin{align*}
\limsup_{N \to \infty} P(N^{-2}C_{\psi(t_0)} < \varepsilon) &= \limsup_{N \to \infty} P(\tau(\varepsilon) > \psi(t_0)) \\
&\leq \limsup_{N \to \infty} P[\tau(\varepsilon) > \sigma(\varepsilon(1 + \gamma))] + \limsup_{N \to \infty} P[\sigma(\varepsilon(1 + \gamma)) > \psi(t_0)] \\
&\leq \limsup_{N \to \infty} P[\tau(\varepsilon) > \sigma(\varepsilon(1 + \gamma))] \\
&\quad + \limsup_{N \to \infty} P(|N^{-2}Aw_{\varepsilon(1 + \gamma) + \varepsilon(1 + \gamma) - \eta}| > \eta) \\
&\leq P[M \leq (1 + \gamma)\varepsilon^{1/3}] + 11\varepsilon^{1/3}/\gamma < 1.
\end{align*}

But if $h(t_0) = 0$, we get a contradiction to (4.26). This proves $h(\cdot) \not\equiv 0$.

5. Asymptotics for the cover time.

Proof of Theorem 4. Theorem 3 gives a lower bound on the area covered which implies that if $\delta > 0$ and N is large, then with high probability the number of centers in $C_{\psi(0)}$ dominates a Poisson random variable with mean $\lambda(\delta)N^2(2\alpha/3)^{-1}$, where
\begin{equation*}
\lambda(\delta) = \int_{-\infty}^{0} (h(s) - \delta)^+\, ds.
\end{equation*}

If δ_0 is small enough, $\lambda_0 \equiv \lambda(\delta_0) > 0$. Dividing the torus into disjoint squares of size $\kappa N^{\alpha/3} (\log N)^{1/3}$, where κ is a large constant, the probability that a given square is vacant is $\exp(-\lambda_0 \kappa^2 N^2 \log N)$. If $\kappa \sqrt{\log N} \geq 1$, the number of squares is $\leq N^{2-(2\alpha/3)}$. So if $\lambda_0 \kappa^2 \geq 2$, then with high probability none of our squares is vacant. Thus even if no more births of new centers occur then the entire square will be covered by a time $\psi(0) + O(N^{\alpha/3} \sqrt{\log N})$.

REFERENCES

School of Operations Research and Information Engineering
Cornell University
Ithaca, New York 14853
USA
E-mail: sc499@cornell.edu

Mathematics Department
Duke University
Box 90320
Durham, North Carolina 27708-0320
USA
E-mail: rtd@math.duke.edu