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Abstract

Sequences of networks are currently a common form of network data sets.
Identification of structural change-points in a network data sequence is a
natural problem. The problem of change-point detection can be classified
into two main types - offline change-point detection and online or sequential
change-point detection. In this paper, we propose three different algorithms
for online change-point detection based on certain cusum statistics for net-
work data with community structures. For two of the proposed algorithms,
we use information theoretic measures to construct the statistic for the es-
timation of a change-point. In the third algorithm, we use eigenvalues of
the Bethe Hessian matrix to construct the statistic for the estimation of a
change-point. We show the consistency property of the estimated change-
point theoretically under networks generated from the multi-layer stochastic
block model and the multi-layer degree-corrected block model. We also con-
duct an extensive simulation study to demonstrate the key properties of the
algorithms as well as their efficacy.
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1 Introduction

Network data sets have grown vastly in size and complexity in recent
decades with the rapid advances in data generation and collection technolo-
gies. Although statistical analysis of network data initially focused on single
networks, the study of multiple network data sets has gained a larger audi-
ence with the advent of multilayer and temporal networks. A special form
of multiple networks involves network sequences, both dependent and inde-
pendent. Network sequence datasets have emerged in several fields of study,
including time-series of social networks (Panisson et al., 2013; Stopczynski
et al., 2014; Rocha et al., 2010; Van de Bunt et al., 1999; Mislove, 2009;
Hogg and Lerman, 2012), epidemiological networks (Salathé et al., 2010;
Rocha et al., 2011; Masuda and Holme, 2017), animal networks (Gates and
Woolhouse, 2015; Lahiri and Berger-Wolf, 2007; Chen et al., 2015), mobile
and online communication networks (Krings et al., 2012; Ferraz Costa et al.,
2015; Jacobs et al., 2015; Viswanath et al., 2009; Omodei et al., 2015),
economic networks (Popović et al., 2014; Zhang et al., 2014; Zhao et al.,
2018), brain networks (Park and Friston, 2013; Sporns, 2013; Thompson
et al., 2017), genetic networks (Rigbolt et al., 2011) and ecological networks
(Blonder et al., 2012), to name a few. Analysis of network sequences in terms
of modeling, summary statistical analysis, analysis of dynamics, community
detection, and change-point detection has been investigated in several re-
cent works (see Holme and Saramäki (2012), Holme (2015), Peixoto (2015),
Sikdar et al. (2016), & Peixoto and Gauvin (2018) for some review of re-
cent works). In this paper, we concentrate on the problem of change-point
detection for network sequences.

The study of change-point detection has a long history in the statistics
literature, starting from the early days of quality control (Page, 1954; 1957;
Girshick and Rubin, 1952) to recent genomic studies (Siegmund, 2013). Ap-
plications of statistical methods for change-point detection are widespread.
The disciplines where statistical analysis has been used for change-point de-
tection include medical diagnostics (Yang et al., 2006; Staudacher et al.,
2005; Bosc et al., 2003; Cribben et al., 2012), gene expression (Picard et al.,
2005; Hocking et al., 2013; Bleakley and Vert, 2011), online activity (Lévy-
Leduc et al., 2009), speech and image analysis (Harchaoui et al., 2009; Radke
et al., 2005; Kasetkasem and Varshney, 2002; Celik, 2009; 2010), climate
science (Reeves et al., 2007), economics (Bai and Perron, 1998) and finance
(Lavielle and Teyssiere, 2007; Matteson and James, 2014). The study of the
change-point detection problem started with Gaussian models with changes
in the mean parameter (Page, 1954), but since then the models studied for
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structural change-point detection has varied widely, ranging from parametric
multivariate data models (Chen and Gupta, 2011) and non-parametric mod-
els (Brodsky and Darkhovsky, 2013) to models for dependent and time-series
data (Cho and Fryzlewicz, 2015; Aminikhanghahi and Cook, 2017).

The change-point detection problem can be broadly classified into two
types.

1. Offline change-point detection: The whole data sequence is available
and the change-points are detected within the data sequence. This
problem was studied in the beginning by Page (1954) and Girshick
and Rubin (1952).

2. Online or sequential change-point detection: The data is available se-
quentially and change-points are detected based on the available data.
This problem in classical setting was initially studied by Kolmogorov
(1950), Shiryaev (1963), Lorden et al. (1971) and others.

There is deep literature on both types of change-point detection problems
and possible methods and theories. An excellent account can be found in
the book (Brodsky and Darkhovsky, 2013). In this paper, we concentrate on
the problem of online change-point detection for network sequence data.

The problem of change-point detection in sequences of network data has
recently received some interest with the increase in the availability of mul-
tiple network data sets. However, most efforts have concentrated on the
detection of offline change-points. For instance, Lévy-Leduc et al. (2009)
was an early work on offline change-point detection in networks using hy-
pothesis testing, Peel and Clauset (2015) used a hierarchical random graph
model and a Bayesian procedure to detect change-points, Park et al. (2013)
used local graph statistics for change-point and anomaly detection in dy-
namic networks, and Roy et al. (2017) used a Markov random field model
for generating networks and estimated the change-point using a penalized
pseudo-likelihood. Another point to note is that one approach to determin-
ing change-points is by comparing networks, so hypothesis tests for network
comparisons (e.g. Bickel and Sarkar (2016), Wang et al. (2017), Cape et al.
(2017), Gao and Lafferty (2017), & Jin et al. (2018)) can also be used for
change-point detection in network data with some modification. For a survey
of techniques used in the related problem of anomaly detection in graphs,
see Ranshous et al. (2015). Some recent works (Wang et al., 2017; Bhamidi
et al., 2018; Bao and Michailidis, 2018; Wang et al., 2018; Bhattacharjee
et al., 2018; Wills and Meyer, 2019; Padilla et al., 2019; Zhao et al., 2019)
propose methods for offline change-point detection in networks generated
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from block models and graphon models with some theoretical results on the
consistency of the detection methods. Development and analysis of online
change-point detection methods for network data are relatively rare with
some possible exceptions such as (Chen et al., 2019).

In this paper, we focus on the problem of online change-point detection in
network data with community structures. We consider the special case where
the change-point occurs due to the change in the community structure of
the networks. At the same time, the connection probabilities and the degree
parameters remain the same. The main contributions of our work are as
follows.

(a) We propose two types of algorithms for online change-point detection
based on network data. For the first type, we consider a statistic
that captures the variation of information between estimated com-
munity structures (denoted Ẑ) to construct two algorithms for online
change-point detection. The two algorithms are based on two different
cumulative sum measures (cusum) of the network adjacency matrices
to estimate community structures. For the second type, we develop a
statistic based on the eigenvalues of window-sums of the Bethe Hessian
matrices obtained from the input networks. We construct an algorithm
that uses this statistic to detect a change in estimated numbers of com-
munities (denoted K̂).

(b) We provide the consistency results for the change-point estimators for
all three algorithms under multilayer versions of the stochastic block
model (MSBM). For the Ẑ-based algorithms, we also provide the con-
sistency results for the multilayer degree-corrected block models. For
the K̂-based algorithm, we prove the theoretical results only for the
MSBM.

(c) We provide extensive simulation results to demonstrate the three al-
gorithms’ efficacy for detecting change-points in an online setup.

The paper is structured as follows. In Section 2, we introduce the data
generative model and support algorithms for recovering community struc-
ture that will be used in our Ẑ-based algorithms for online change-point
detection. In Section 3, we propose two Ẑ-based and one K̂-based change-
point detection algorithms for multilayer networks. In Section 4, we provide
theoretical results for the estimators of change points. In Section 5, we
present simulation studies to demonstrate the performance of the proposed
algorithms and discuss their results. We provide full proofs for all of the
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theoretical results discussed herein and relevant preliminary material in the
Appendices A and B.

2 Background and Preliminaries

2.1. Network Sequence Data We consider that the data is given in the
form of a sequence of N ×N adjacency matrices (A(1),A(2), . . . ,A(t), . . .)

corresponding to the sequence of networks
(
G

(1)
N , G

(2)
N , . . . , G

(t)
N , . . .

)
having

the same set of N vertices VN = {v1, . . . , vN} but with varying edge sets.

G
(t)
N is referred as the t-th network layer. Since we are considering the online

change-point detection problem, we assume that the adjacency matrices are
available to us sequentially. At any given point, T , of the sequence, the
available set of adjacency matrices are (A(1),A(2), . . . ,A(T )).

For the purpose of this paper, we only consider undirected and un-

weighted graphs, that is, A
(t)
i,j ∈ {0, 1} for all i, j ∈ {1, . . . , N} and

and A(t) = (A(t))T . However, the conclusions of the paper can be extended
to positively weighted graphs with non-random weights in a quite straight-
forward way by considering weighted adjacency matrices.

We consider that each network G
(t)
N has an assortative community struc-

ture with communities. Let us denote the N ×K(t) matrix
Z(t) to be the actual common community membership matrix of the nodes

in each of the graphs G
(t)
N , where Z

(t)
i,k = 1 if the i-th node belongs to the

k-th community for all G
(t)
N and zero otherwise.

2.2. Notations Let [n] := {1, 2, . . . , n} for and Mm,n be the set
of all m× n matrices which have exactly one 1 and (n − 1) 0s in each row.
1m (resp. 0m) denotes the vector in consisting of all 1s (resp. 0s).
IN is the N × N identity matrix. λ+(A) denotes the minimum positive

eigenvalue, λ↓
� (A) the �−th largest eigenvalue, and λ↑

� (A) the �−th smallest
eigenvalue of the matrix A. Tr(A) denotes the trace of the matrix A. ‖A‖p,q
denotes the Lp,q norm of the matrix A. |[m]| denotes the cardinality of the
set [m]. For a given matrix M, let Mi∗ denote the i-th row of M and
M∗j its j-th column. Z[m] denotes the sub-matrix of (Z)n×K such that
(Z[m])i∗ = (Z)[m]i∗, where i ∈ [m], [m] ⊂ [n], [m]i is the index of the node i
in [n]. Z ¯[m] denotes the sub-matrix of (Z)n×K such that (Z ¯[m])j∗ = (Z) ¯[m]j∗

,

where j ∈ ¯[m], ¯[m] = [n]/[m], ¯[m]j is the index of the node j in [n]. Pω

denotes the matrix form of a label permutation ω : {1, ...,K} → {1, ...,K}
on a clustering. For , 〈A〉 denotes the matrix A with its diagonal
zeroed out: 〈A〉i,j = Ai,j if i �= j, i, j ∈ [n] and 〈A〉i,i = 0 for i ∈ [n]. For any
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subset S of layers, let AS :=
∑

s∈S A(s) denote the sum of the corresponding
adjacency matrices. For some constant C, if for all n � C, denote

f(n) ∈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

O(g(n)) if lim supn→∞
f(n)
g(n) < ∞

o(g(n)) if lim supn→∞
f(n)
g(n) = 0

Ω(g(n)) if lim infn→∞
f(n)
g(n) > 0

ω(g(n)) if lim infn→∞
f(n)
g(n) = ∞

Θ(g(n)) if lim supn→∞
f(n)
g(n) = c ∈ (0,∞).

2.3. Data Generative Models To set the context to investigate the theo-
retical properties of the change-point estimators, we consider a flexible data
generative model that we call the multilayer degree-corrected block model
with one change-point (MDBM). MDBM has six sets of parameters: (i) the
change-point τ ∈ (1, T ]; (ii) the number of communities K(t), such that
K(t) = K for t ∈ [1, T ] (i.e., the number of communities stays the same
before and after τ); (iii) the N × 1 membership vectors z = (z1, . . . , zN )
for layers t ∈ [1, τ) and z̃ = (z̃1, . . . , z̃N ) for layers t ∈ [τ, T ], where each
zi, z̃i ∈ {1, . . . ,K}; (iv) the K × K connectivity probability matrices B :=(
B(t) : t ∈ [1, τ)

)
and B̃ :=

(
B̃(t) : t ∈ [τ, T ]

)
; (v) the N × 1 degree param-

eters vector ψ = (ψ1, . . . , ψN ); and (vi) the K × 1 vector of probabilities
of allocation for each community, π = (π1, . . . , πK) for layers t ∈ [1, τ) and
π̃ = (π̃1, . . . , π̃K̃) for layers t ∈ [τ, T ]. For i > j, i, j ∈ [N ], and t ∈ [1, τ)
MDBM with the six sets of parameters is given by

z1, . . . , z
iid
∼
N Mult(1; (π1, . . . , πK)), (2.1)

(2.2)

and for i > j, i, j ∈ [N ], and t ∈ [τ, T ]

z̃1, . . . , z̃
iid
∼
N Mult(1; (π̃1, . . . , π̃K)), (2.3)

. (2.4)

The inclusion of ψ entails the obvious issue of identifiability. In order to
avoid this issue we assume as in Lei et al. (2015) that

max
i:zi=k

ψi = 1 for all k ∈ [K]. (2.5)
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Suppose Z ∈ MN,K and Z̃ ∈ MN,K denote the actual membership ma-
trices before and after the change-point, respectively. Z and Z̃ are unknown
and we wish to estimate them along with τ . If for i ∈ [N ] the corresponding
community index is zi ∈ [K] (or, z̃i ∈ [K]), then clearly

Zij = 1{zi=j} (or, Z̃ij = 1{z̃i=j}).

In MDBM, each edge is drawn independently given the edge probability

matrices P(t) :=
(
P

(t)
ij

)
i,j∈[N ]

(or, P̃(t) :=
(
P̃

(t)
ij

)
i,j∈[N ]

). So, for i > j, i, j ∈
[N ], and t ∈ [1, τ)

A
(t)
i,j ∼ Bernoulli

(
P

(t)
i,j

)
, where P(t) := D(ψ)ZB(t)ZTD(ψ), (2.6)

and for t ∈ [τ, T ]

A
(t)
i,j ∼ Bernoulli

(
P̃

(t)
i,j

)
, where P̃(t) := D(ψ)Z̃B̃(t)Z̃TD(ψ), (2.7)

where, D(ψ) = Diag(ψ).
We also consider a special case of MDBM, which we refer to as the

multilayer stochastic block model with one change-point (MSBM). MSBM
makes the simplifying assumption that ψi = 1 for all i ∈ [N ]; however, the
number of communities is allowed to change after the change-point. In other
words, K(t) = K for t ∈ [1, τ) and K(t) = K̃ for t ∈ [τ, T ]. While K = K̃
in MDBM, it is not necessarily the case in MSBM. Hence, i > j, i, j ∈ [N ],
and t ∈ [1, τ) the parameter conditions of MSBM are as follows:

z1, . . . , z
iid
∼
N Mult(1; (π1, . . . , πK)), (2.8)

(2.9)

and for i > j, i, j ∈ [N ], and t ∈ [τ, T ]

z̃1, . . . , z̃
iid
∼
N Mult(1; (π̃1, . . . , π̃K̃)), (2.10)

. (2.11)

As with MDBM, each edge is drawn independently as follows: For i >
j, i, j ∈ [N ] and t ∈ [1, τ),

A
(t)
i,j ∼ Bernoulli

(
P

(t)
i,j

)
, where P(t) := ZB(t)ZT , (2.12)
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and for t ∈ [τ, T ]

A
(t)
i,j ∼ Bernoulli

(
P̃

(t)
i,j

)
, where P̃(t) := Z̃B̃(t)Z̃T . (2.13)

2.4. Clustering Algorithms from Relevant Works First, we make precise
the notion of clustering and define a simple measure of distance between two
clusterings as follows.

Definition 1. ξ is a clustering on the set of nodes Vn if ξ = {ξ1, ..., ξK}
such that ξi ∩ ξj = ∅ for i �= j and ∪K

k=1ξk = [N ]. ξ can be represented by
the matrix Z ∈ MN,K , where Zi∗ = ek (ek is k-th unit vector) if node i is
assigned to cluster k in ξ.

One simple way to measure the distance between clusterings is to count
the number of mismatched elements between two clusterings.

Definition 2. Let ξ, ξ′ be two clusterings on [n], Z and nξ
K the matrix and

the cluster size vector based on ξ (Z′ and nξ′

K resp. on ξ′). Let [m]ξ,ξ
′ ⊂ [n]

be the set of node indices such that Zi∗ = Zj∗ ⇔ Z′
i∗ = Z′

j∗ for all i, j ∈
[m]ξ,ξ

′
. Denote the set of mismatched elements between two clusterings by

[m̄]ξ,ξ
′
= [n] \ [m]ξ,ξ

′
.

Algorithms for recovery of community structures will be adapted from
Bhattacharyya and Chatterjee (2020b) & Bhattacharyya and Chatterjee
(2020a) and are reproduced below for reference. The first is based on the
sum of adjacency matrices and the second on the sum of squares of adjacency
matrices. We denote these two algorithms as “Clustering Algorithms 1 and
2” or “Algorithms 1 and 2” for brevity.

Before reciting the consistency results for Algorithms 1 and 2, we recall
below definitions of pertinent parameters involving ψ, ξ and B:

1. Measures of heterogeneity of ψ, for all a ∈ [K]:

(a) Ña :=
∑

i∈ξa ψ
2
i

(b) Ñmax := maxa Ña and Ñmin := mina Ña

(c) Ñ ′
a :=

∑
i∈ξa∩{k1,...,kN′} ψ

2
i ,

(d) Ñ ′
max := maxa Ñ

′
a and Ñ ′

min := mina Ñ
′
a

(e) τa :=
∑

i∈ξa ψ
2
i

∑
i∈ξa ψ

−2
i is a parameter controlling the variation

in heterogeneity within each community.
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2. ψmin := mini∈[N ] ψi

3. λA := (T )−1
∑T

t=1λK

(
N
d B

(t)
)
, the minimum eigenvalue parameter based

on sum of normalized connection probability matrices.

4. λB := (T )−1
∑T

t=1 λK

((
N
d B

(t)
)2)

, the minimum eigenvalue parameter

based on sum of squares of normalized connection probability matrices

5. Nmax := max
(
ZT1N

)
and Nmin = min

(
ZT1N

)
are the sizes of largest

and smallest communities respectively.
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In addition, we let ξ̂ and ξ̃ denote the estimated community labels using
Algorithms 1 and 2, respectively. The theoretical results for Algorithms
1 and 2 reproduced in Theorems 1 and 2 and are based on the following
conditions:

(A) The number of communities, K, is constant.

(B) Community sizes are balanced, i.e., Nmax/Nmin = O(1).
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(C) ψi = αi/max{αj : zi = zj}, where (αi)
N
i=1 are i.i.d. positive weights

such that .

(D) N � 3K.

(E) λB

(
Ñmin
N

)2
> 7

N .

Theorem 1. (Bhattacharyya and Chatterjee, 2020a) Under Conditions
(A) through (D) above, for any ε, η, δ > 0 and c ∈ (0, 1), there are constants
C1 > 0 as function of ε, c, δ and C2 > 0 as function of c, δ, such that if
Td � C2(K/λA)

1+ 1
δ , then

| ¯[m]
ξ,ξ̂| � N̄pr + C1

[
KÑ ′

max

(ψminλAÑ ′
min)

2
+

N(Td)−0.5+δ+η(K
∑

k∈[K] τk)
1/2

λAÑ ′
min

]

(2.15)
with probability at least 1− o(1) as TdλA → ∞, where N̄pr :=

N
e(1−c)Td is the

upper bound on the number of pruned nodes in Step 2 of Algorithm 1.

Theorem 2. (Bhattacharyya and Chatterjee, 2020b) Under Conditions
(A), (B), (C), and (E), for any ε > 0 and Δ > 8, there are constants C > 0
as a function of ε and C ′ > 0 such that if

Nmin >
C(KÑmax)

3λ−2
B

ψ2
minÑ

4
min

+
CΔ(K

∑
a∈K τa)

1/2

(Td)1/4λB(Ñmin/N)2

then

| ¯[m]
ξ,ξ̃| � N̄pr + C

[
(KÑmax)

3

(ψminλB)2(Ñmin)4
+

Δ(K
∑

k∈[K] τk)
1/2

(Td)1/4λB(Ñmin/N)2

]
(2.16)

with probability at least 1−o(1) as (Td)1/4λB→∞, where the upper bound on the
number of pruned nodes in Step 5 of Algorithm 2 is N̄pr :=

N
(Td)1/4λB(Ñmin/N)2

.

2.5. Background on Information Theory We define preliminary terms
from information theory and conclude with a measure of the distance be-
tween clusterings.

Definition 3. Let nξ
K = ZT1 =

(
nξ
1, ..., n

ξ
K

)T
be the vector of cluster sizes

of clustering ξ. Then the entropy of ξ is defined as:

H(ξ) := −
K∑
k=1

nξ
k

N
log

(
nξ
k

N

)
. (2.17)
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Definition 4. Let ξ, ξ′ be clusterings on [N ], Z and nξ
K be defined as in

Definitions 1 and 3 for ξ, and Z′ and nξ′

K for ξ′. Let nξ,ξ′ = ZTZ′ =[
nξ,ξ′

ij

]
K×K

be the contingency table of ξ and ξ′, where nξ,ξ′

ij is the number

of nodes in both ξi and ξ′j for i, j ∈ [K]. The mutual information between ξ
and ξ′ is defined as:

I(ξ, ξ′) :=
K∑
i=1

K∑
j=1

nξ,ξ′

ij

N
log

(
N

nξ,ξ′

ij

nξ
in

ξ′
j

)
. (2.18)

The mutual information between two clusterings measures the informa-
tion one clustering has about the other. The normalized mutual information
has been widely used in the literature as an information-theoretic measure
of similarity between clustering. Here, we use a measure of dissimilarity
between clusterings called variation of information (VI), which is based on
entropy and mutual information.

Definition 5. Let ξ, ξ′,Z,nξ
K ,Z′ and nξ′

K be defined as in Definition 4. The
variation of information is defined as:

VI(ξ, ξ′) := H(ξ) +H(ξ′)− 2I(ξ, ξ′). (2.19)

Properties of VI are discussed in Meilă (2007) and its exhaustive list is
given in Appendix A.1. The most relevant property for our purposes is as
follows:

Property 1. (Meilă, 2007) VI is a metric.

Note that as a metric, VI satisfies the following three axioms: positive
definiteness, symmetry, and the triangle inequality.

2.6. The Bethe Hessian Matrix Recently, a certain class of graph op-
erators has received an increasing level of attention for their spectral prop-
erties that allow for a simple and efficient recovery of community structure.
While some algorithms, such as those based on belief propagation, require
a generative model with correct parameters as inputs, and those based on
adjacency matrices and graph Laplacians are ineffective in the presence of
degree fluctuations, non-parametric spectral clustering methods based on
the non-backtracking and the Bethe Hessian matrices are robust to such
challenges. As a result, they have become popular, reliable tools of choice
when faced with network data that are sparse and heterogeneous (Krzakala
et al., 2013; Saade et al., 2014a; Bordenave et al., 2015; Coste and Zhu, 2019;
Gulikers et al., 2016; Bruna and Li, 2017; Saade et al., 2014b; Watanabe and
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Fukumizu, 2009; Dall’Amico and Couillet, 2019; Dall’Amico et al., 2020; Le
and Levina, 2015). We start by defining these matrices on which some of
the robust non-parametric methods are based.

2.6.1. Definitions.

Definition 6. The non-backtracking operator, B, is a 2|E| × 2|E| matrix
indexed by directed edges i → j and defined Bi→j,k→l = δjk(1 − δil), where
|E| is the number of edges in the adjacency matrix A, i, j, k, l are vertices of
A and δ is the Kronecker delta.

Definition 7. The Bethe Hessian matrix is defined as HS
r := (r2−1)|S|IN+

DS − rAS based on AS with parameter r, where DS
N×N = Diag(dS1 , . . . , d

S
N )

and dSi :=
∑

j∈[N ]A
S
ij for i ∈ [N ]. When |S| = 1 and it is clear from context

which A is used, we write Hr := (r2−1)IN +D−rA with D := Diag(A1N ).

Definition 8. The moving window sum is defined as A[t0,t] :=
∑

s∈[t0,t]A
(s)

where t0 = max{1, t− θ + 1} and the window .

2.6.2. Background. It was noted in Krzakala et al. (2013) that for net-
works containing K communities, while high degree variations suppress sig-
nal from informative eigenvalues of A and the Laplacian, the K largest
eigenvalues of B are real-valued and well-separated from the circle of radius
‖B‖1/2 where the bulk of the eigenvalues of B is contained. Further, Bor-
denave et al. (2015) showed that the largest K eigenvalues of B concentrate
around the informative eigenvalues of E[A].

However, B are non-symmetric, preventing the use of linear algebraic
tools for symmetric matrices, and can be much larger than the adjacency
matrices, presenting computational challenges. In response, Saade et al.
(2014a) gave an intuitive argument rooted in statistical physics and numeri-
cal simulations to demonstrate that Hr is simpler given its symmetric nature
and is at least as effective as B at detecting communities, while offering sig-
nificant gains in computational efficiency. In statistical physics, Hr is an
approximation of the Hessian matrix of the Bethe free energy at the system
equilibria corresponding to the trivial fixed-points of the belief propagation
equations, where every vertex belongs to each community with equal proba-
bility. Here, the parameter r denotes the temperature of the system (Yedidia
et al., 2003). Then, the informative eigenvalues of Hr are the phase transi-
tions in the Ising Hamiltonian model where new communities become visible
(Bruna and Li, 2017).

An important property ofHr that bears connection toB is that when r is
set to an eigenvalue of the latter, the determinant ofHr vanishes (Hashimoto,
1989; Angel et al., 2015).
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On the topic of what specific values should be used for the parameter
r, several proposals have been put forth. Krzakala et al. (2013) proposed

‖B‖1/2, i.e., the radius of the circle containing the bulk, which is approxi-
mated by rd below, while Saade et al. (2014a) proposed a square root of the
mean degree ra for SBM networks:

r2d =

(
N∑
i=1

di

)−1( N∑
i=1

d2i

)
− 1 ra =

√∑N
i=1di
N

where di denotes the degree of node i. Dall’Amico et al. (2019) presented
an intuitive argument that for 2-community degree-corrected block model
networks, r = a+b

a−b is insensitive to degree heterogeneity and showed through
simulations that it outperforms certain other choices for r in such networks.
On the topic of estimating the number of communities K, Le and Levina
(2015) proposed counting the number of negative eigenvalues in Hr, with
the parameter choices rd based on Krzakala et al. (2013) and ra based on
Saade et al. (2014a). Noting that simulations using rd and ra both underes-
timated K when network is unbalanced, Le and Levina (2015) suggested an
additional method of estimating K whereby the number of eigenvalues that
are separated from the bulk by a predetermined integer multiple of the bulk
radius is used instead.

Despite the rich literature, however, a formal proof of the intuition that
the number of communities in a network is given by the number of negative
eigenvalues of Hr, and precisely what value of r enables such a detection
and under what conditions, is still lacking.

3. Online Change-point Detection Methods

We propose the following two types of algorithms for online change-point
detection. In both cases, we compute an estimate of the structural property
of interest using aggregated networks and infer that a change-point has oc-
curred when we detect a change in the estimates.

1. Ẑ-based algorithms detect a change using the estimated community
structure.

2. K̂-based algorithm detects a change using the estimated number of
communities.

These algorithms are discussed in detail below in Sections 3.1 and 3.2,
followed by theoretical results in Section 4.
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3.1. Ẑ-based Change-Point Detection Algorithms The community struc-
ture of a “recent” (to be made precise later) sequence of networks is esti-
mated, and is compared to the estimated structure of an “old” sequence
using VI. We denote an estimated community structure by Ẑ. In con-
structing the two types of aggregated networks to compare, we employ two
approaches. In one, we let the two sequences have a common set of layers;
in the other, we keep the two sequences disjoint. These two approaches are
encoded in Algorithms 3 and 4 discussed later in Section 3.1.2.

In the absence of a change-point, the latent community structures of
a recent and an old sequence of networks are expected to be similar. In
other words, the VI between the two sequences should be small by Property
1. While latent community structures are unobserved, Theorem 4 below
guarantees that as long as the number of mismatched nodes is bounded, the
VI between the estimated and the latent structures is also bounded. This
forms the basis for using estimated community structures in Algorithms 1
and 2.

3.1.1. Upper Bound on VI(Ẑ,Z). Recall that Theorems 1 and 2 pro-
vide upper bounds on the number of misclassified nodes of estimated commu-
nity structures computed using Algorithms 1 and 2, respectively. Theorems
3 and 4 below state that this bound directly implies an upper bound on
VI(Ẑ,Z). The proofs of Theorems 3 and 4 are given in Appendices A.2 and
A.3.

Theorem 3. Given two clusterings ξ and ξ′ (alternatively, Z and Z′

in a matrix form), let [m]ξ,ξ
′ ⊂ [N ] be the set of node indices such that

Zi∗ = Zj∗ ⇔ Z′
i∗ = Z′

j∗ for all i, j ∈ [m]ξ,ξ
′
. Then there exists a K × K

permutation matrix Pω such that

|[m]ξ,ξ
′ | = Tr(ZTZ′

ω) = Tr(ZTZ′Pω), where Z′
ω = Z′Pω. (3.1)

Theorem 4. Let ξ, ξ′ be two clusterings. Let Pω be the permutation
matrix satisfying Eq. 3.1, and denote the contingency table by ZTZ′

ω = [nij ].
Let n1, ..., nK be the cluster sizes with ξ and n′

1, ..., n
′
K of ξ′, respectively.

Without loss of generality, assume n1 < ... < nK and n′
1 < ... < n′

K . Then
VI(ξ, ξ′) given |[m]ξ,ξ

′ | is upper bounded by M(ξ, ξ′, |[m]ξ,ξ
′
), which is defined

as:

M
(
ξ, ξ′, |[m]ξ,ξ

′ |
)
=M

(a)

ξ,|[m]ξ,ξ
′ | +M

(b)

ξ,|[m]ξ,ξ
′ | +M

(c)

ξ,|[m]ξ,ξ
′ | +M

(d)

ξ,|[m]ξ,ξ
′ |

+M
(a)

ξ′,|[m]ξ,ξ
′ | +M

(b)

ξ′,|[m]ξ,ξ
′ | +M

(c)

ξ′,|[m]ξ,ξ
′ | +M

(d)

ξ′,|[m]ξ,ξ
′ |

(3.2)
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where,

M
(a)

ξ,|[m]ξ,ξ
′ | =

K(a)∑
i=0

ni

N
log

N

ni
+

n(a)

N

[
log(K −K(a)) + log

N

n(a)

]
,while n0 = 0

(3.3)

K(a) = min{j|j ∈ 0, ..,K − 1}, such that |[m]ξ,ξ
′ | −

j∑
i=0

ni � (K − j)nj+1

n(a) = |[m]ξ,ξ
′ | −

K(a)∑
i=0

ni

M
(b)

ξ,|[m]ξ,ξ
′ | = −

[
K(b) − 1

N
logN +

n(b)

N
log

N

n(b)
+

K+1∑

i=K(b)+1

ni

N
log

N

ni

]
,

while nK+1 = 0 (3.4)

K(b) = max{j|j ∈ 1, ..,K}, such that |[m]ξ,ξ
′ | − (j − 1)−

K+1∑
i=j+1

ni � nj

n(b) = |[m]ξ,ξ
′ | − (K(b) − 1)−

K+1∑

i=K(b)+1

ni

M
(c)

ξ,|[m]ξ,ξ
′ | =

K(c)∑
i=0

ni − 1

N
[log(K − 1) + log

N

ni − 1
]

+
n(c)

N
[log(K −K(c))(K − 1) + log

N

n(c)
], (3.5)

while n0 = 1

K(c) = min{j|j ∈ 0, ..,K − 1}, such that N − |[m]ξ,ξ
′ | −

j∑
i=0

(ni − 1)

� (K − j)(nj+1 − 1)

n(c) = N − |[m]ξ,ξ
′ | −

K(c)∑
i=0

(ni − 1)

M
(d)

ξ,|[m]ξ,ξ
′ | = −

⎡
⎣n(d)

N
log

N

n(d)
+

K+1∑

i=K(d)+1

ni − 1

N
log

N

ni − 1

⎤
⎦ ,

while n0 = nK+1 = 1 (3.6)
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K(d) = max{j|j ∈ 1, ..,K}, s.t. N − |[m]ξ,ξ
′ | −

K+1∑
i=j+1

(ni − 1) � nj − 1

n(d) = N − |[m]ξ,ξ
′ | −

K+1∑

i=K(d)+1

(ni − 1)

M
(a)

ξ′,|[m]ξ,ξ
′ |, ...,M

(d)

ξ′,|[m]ξ,ξ
′ | have bounds of the same form as M

(a)

ξ,|[m]ξ,ξ
′ |, ...,

M
(d)

ξ,|[m]ξ,ξ
′ |, with n′

i replacing ni.

3.1.2. Two Algorithms. In what follows, we formally introduce the two
algorithms based on Ẑ below as Algorithms 3 and 4. Given a sequence of
adjacency matricesA(1), ...,A(T ), the goal is to detect a change-point τ based
on VI between recovered community structures for layers {1, ..., τ − 1} and
{τ, ..., T}. This is done in two steps. First, for each layer t, the VI between
two sequences of layers differing by a segment containing t is checked whether
it is larger than the upper bound in Theorem 4. If so, it is inferred that t � τ .
In addition, if for some , the VI at t+υJ through t+υJ +υC − 1
progressively becomes larger, then it is concluded that t is the estimated
change-point.

In addition to the adjacency matrices, inputs include the following: cush-
ion κ, which denotes some sufficient number of layers needed for Algorithms
1 and 2 to recover community structure; the number of communities K;
and window θ, which denotes the most recent number of layers representing
the difference in lengths of any two pairs of sequences of networks being
compared.

Algorithms 3 and 4 differ only on the sequences of networks used for
comparison. In Algorithm 3, the recent sequence consists of layers max{1, t−
mθ + 1} through t, while the old sequence consists of max{1, t − mθ + 1}
through t − θ, where m denotes the number of windows and controls the
proportion of old layers in the recent sequence. Hence the two sequences
share at most (m− 1)θ layers. In Algorithm 4, the recent sequence consists
of layers t− θ + 1 through t, while the old sequence is comprised of layers 1
through t− θ and is thus disjoint from the recent sequence.

In lines 3 to 7 in Algorithm 3 and 3 to 6 in Algorithm 4, the community
structure at each t is estimated and VI between recent and old sequences
are computed at layers t − 1 through t + υJ + υC − 1 . In lines 9 to 11 in
Algorithm 3 and lines 8 to 10 in Algorithm 4, VI are checked against the
upper bound from Theorem 4 and whether they progressively increase to
determine if t is a change-point.
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Remark 1. Calculating VI in line 9 of Algorithm 3 involves computing
upper bounds on | ¯[m]t1:t2 | using either (2.15) or (2.16) depending on whether
Algorithm 1 or 2 is used. However, since ξ is unknown, letting Npr be the
number of pruned high-degree nodes, we can calculate an upper bound on
| ¯[m]t1:t2 | using Eqs. 3.7 and 3.8 below (for Algorithms 1 and 2, respectively):

| ¯[m]t1:t2 | = Npr + C

[
(KÑmax)

3

(ψminλB)2(Ñmin)4
+

Δ(K
∑

k∈[K] τk)
1/2

((t2 − t1)d)1/4λB(Ñmin/N)2

]

(3.7)

| ¯[m]t1:t2 | = Npr + C1

[
KÑ ′

max

(ψminλAÑ ′
min)

2
+

N((t2 − t1)d)
−0.5+δ+η(K

∑
k∈[K] τk)

1/2

λAÑ ′
min

]
(3.8)

where C, Δ, C1, δ and η are constants.
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If no change-point is detected by layer t, the layers from max{1, t−m ∗
θ+1} to t−1 are assumed to have the same latent community structure and
ξ̂t−θ given by Ẑ is considered an estimate of ξt−θ. For π, ψ and B needed in
the calculation of | ¯[m]t1:t2 |, we use adjusted profile likelihood estimates from
layers t1 : t2 − θ. We derive the MDBM parameter estimates as follows:

π̂a =
na

N
, ψ̂i =

∑t2−θ
t=t1

d
(t)
i

T
, B̂a,b =

nab

nanb
,

where d
(t)
i denotes the degree of node i ∈ [N ] in layer t ∈ [t1, t2 − θ], T :=

t2 − t1 − θ, na denotes the number of nodes with community label a, and

n
(t)
ab denotes number of edges between communities with labels a and b in

layer t, for a, b ∈ [K]. To satisfy the assumptions that (1) the connectivity
probability matrix does not change with time, and that (2) the local maximal
degree equals 1, we normalize and adjust the estimates as follows:

ψ̂′
i =

ψ̂i

maxj:Zj∗=Zi∗ ψ̂j

, B̂′
a,b =

∑
t n

(t)
ab

(t− θ)nanb
max

i:Zi∗=ea
ψ̂i max

j:Zj∗=eb
ψ̂j .
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Remark 2. The calculation for | ¯[m]t1:t2 | in Algorithm 4 is similar to
that in Algorithm 3. The only difference is that for values of π, ψ and B
that are needed for calculation of | ¯[m]t1:t2 |, we use adjusted profile likelihood
estimates with data from layers 1 to t− θ.
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Remark 3. The time complexity of both Algorithms 3 and 4 isO(TKN2),
driven by the partial eigen-decomposition in Steps 5-6 and Steps 4-5 in Al-
gorithms 3 and 4, respectively.

Remark 4. In both algorithms, tuning parameters consist of the cushion
κ, the window , the number of windows , jump length
υJ ∈ {0, ..., θ − 1}, and check length . In our simulations, we let
κ ∈ {2, 5}; θ ∈ {2, 6}; υC , υJ ∈ {1, 2}.

3.2. K̂-based Change-Point Detection Algorithm Given a sequence of
adjacency matrices for networks, the aggregated adjacency matrices are rep-
resented by sum of the adjacency matrices. Once aggregated adjacency ma-
trix is obtained from the sequence, it is transformed into the corresponding
Bethe Hessian matrixHS

r , and the number of communities K̂ is estimated for
each HS

r . Then, change-points are detected when a change in K̂ is observed.
The details of the algorithm are given in Algorithm 5.

Remark 5. The sample size parameter M would need to be set based on
initial guesses for K informed by one’s domain knowledge such that M � K.
In our simulations with K ∈ {3, 5}, the choice M = 50 worked well.

Remark 6. Tuning parameters of the algorithm consist of cushion κ and
window θ. κ controls how close the change-point is to the beginning of the
sequence such that no change-point occurring before κ can be detected. κ
was assigned a value of 2 and 5. θ controls the length of the interval for
estimating change-point and was assigned values of 2, 4, and 6.

Remark 7. Estimating r that yielded accurate results in the main pro-
cedure required that AS be of sufficient density. In our simulations, that
density ranged from 120 to 130, which equated to approximately 15 to 30
layers depending on the setting of the density parameter ρ. The top row in
Fig. 1 shows that the first-order linear approximation of r in Steps 9 and 10
yielded an estimate quite close to the limiting value of r given the sparsity
setting in the simulations. The bottom row in Fig. 1 shows that the mean
density of AS at which the estimated r is close to the limiting value is similar
at different levels of the density parameter ρ. For other network data, the
parameters in the linear approximation should first be estimated prior to
applying the algorithm.

Remark 8. The time complexity of the sub-procedure EstimateParams
is O(N3) driven by the eigenvalue computation in Step 2, and O(TN3) for
the main procedure where the eigenvalue computation for H(r̂) in Step 10
is repeated T times.
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Figure 1: r̂0 and Mean Density by Layer

4 Theoretical Results

In this section, we provide theoretical results of the change-point esti-
mators proposed in Section 3. Recall that the data is given in the form
of a sequence of N ×N adjacency matrices (A(1),A(2), . . . ,A(t), . . .). Since
we are considering an online change-point detection problem, we assume
that the adjacency matrices are available to us sequentially and at any
given point, T , of the sequence, the available set of adjacency matrices
are (A(1),A(2), . . . ,A(T )). We consider that the data are generated from
MDBM as defined in Section 2.3 and MSBM as its special case with ψi = 1
for all i ∈ [N ] but with potentially different number of communities post-
change-point. Our goal now becomes obtaining theoretical properties of the
change-point estimators proposed in Section 3. Below, we state the main
results for both classes of algorithms. Detailed proofs for all of the results
are given in Appendices A and B.

4.1. Assumptions
4.1.1. Assumptions for Theoretical Results for the Ẑ-based Algorithms.

Although the change-point estimator works for any consistent community
recovery algorithm, for the sake of convenience, without loss of generality,
we consider that the community labels have been estimated by Algorithm
1 to prove theoretical results on consistency. Lemma 1 gives a bound on
the misclassification error based on the VI between the estimated commu-
nity structures using Algorithm 1. Note that in order to use the bound
in Eqs. 2.15, we need Conditions (A) through (D) in Section 2.4 on the
parameters of MDBM.
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With error bounds on the estimated community labels given in Eqs. 2.15
and 2.16, in Appendix A.3, we provide the relationship between the error
bounds and the VI. In what follows, we prove the consistency of the change-
point estimator, τ̂ , output by Algorithms 3 and 4.

4.1.2. Assumptions for Theoretical Results for the K̂-based Algorithm.
We consider network data generated from MSBM as described in Section 2.1.
In addition, we assume the following:

(F) B(t) = B for all t ≥ 1, and a special assortative structure BK×K :=
a−b
N IK + b

N 1K1TK . We note that this special structure is commonly
used in the literature to show theoretical properties of SBMs.

(G) Identical community sizes, i.e., n1 = · · · = nK = N/K for all t ∈
[1, T ]. Hence, after the change-point, we assume that each community
is allocated the same number of nodes.

4.2. Theoretical Results for the Ẑ-based Algorithms
4.2.1. Theoretical Properties of τ̂ in Algorithms 3 and 4. Both Algo-

rithms 3 and 4 output an estimate of the change-point, τ̂ , if the true change-
point τ exists within the sequence; otherwise, both return an empty set.

We start with providing a result on the accuracy of estimated community
structure. Lemma 1 provides a high probability bound on the errors in
estimated community structure.

Lemma 1. Let ξ̂1:T be an estimate of ξ1:T based on layers 1 : T in the

network data (A
(s)
N×N )Ts=1. Let | ¯[m]1:T | be an upper bound on the total number

of misclassified nodes in ξ̂1:T with respect to ξ1:T as stated in Theorem 4.9
from Bhattacharyya and Chatterjee (2020b) under Conditions (A) through
(D) in Section 2.4. If | ¯[m]1:T | � K−1

K N , then, VI(ξ̂1:T , ξ1:T ) � 2 log(K). If

| ¯[m]1:T | < K−1
K N , then as (Td)1/4λB → ∞,

(4.1)

where M
(
ξ1:T , ξ̂1:T , N − | ¯[m]1:T |

)
is as defined in Eq. 3.2 of Theorem 4.

The main theoretical results for τ̂ estimated from Algorithm 3 are given
in Theorems 5 and 6. Theorem 5 shows that in absence of a change-point,
with high probability Algorithm 3 would return a null set. Theorem 6 shows
that estimated change-point τ̂ is close to the true change-point τ with high
probability. Denote ξ̂1:t as ξ̂t, ξ1:t as ξt, | ¯[m]1:t| as | ¯[m]t|. Let ξ1 be the
clustering of layers 1 : τ − 1 and ξ2 be the clustering of layers t � τ . Also,
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recall the quantities defined in terms of the parameters of MSBM and MDBM
of Section 2.3 in Section 3.

Theorem 5. There exists such that for any t < τ and t �
τ + δ0 + θ, if | ¯[m]t| < K−1

K N , as ((t− θ − 1)d)1/4λB → ∞,

.
(4.2)

Theorem 6. Let τ̂ be the estimated change-point from Algorithm 3.
Then there exists such that if | ¯[m]t| < K−1

K N , as ((t−θ−1)d)1/4λB →
∞, .

The proof of Theorem 5 follows from Lemma 1 and 2, where as, proof
of Theorem 6 follows from Lemmas 1, 2 and Theorem 7. The details of the
proofs are given in the Appendices A.4 - A.8.

Lemma 2. For any t:

VI(ξ̂t, ξ̂t−θ) � VI(ξt, ξt−θ) + VI(ξ̂t, ξt) + VI(ξ̂t−θ, ξt−θ)

VI(ξ̂t, ξ̂t−θ) � VI(ξt, ξt−θ)− VI(ξ̂t, ξt)− VI(ξ̂t−θ, ξt−θ).
(4.3)

Theorem 7. There exist θ ∈ Z
+, and such that for any

τ + δ1 � t � τ + δ2 < τ − 1 + 2θ, as ((t− θ − 1)d)1/4λB → ∞,

.
(4.4)

Thus, according to Theorems 5 and 7, VI(ξ̂t, ξ̂t−θ) crossing its upper
bound indicates a change-point and can be confirmed by a subsequent in-
crease in VI(ξ̂t, ξ̂t−θ) in the interval (τ̂ + δ1, τ̂ + δ2). Theorem 6 indicates
that the estimated change-point is not far from the true change-point.

The following theoretical results provide further support to Algorithm
4. Theorem 8 shows that in absence of a change-point, with high probabil-
ity Algorithm 3 would return a null set. Theorem 9 shows that estimated
change-point τ̂ is close to the true change-point τ with high probability.

Theorem 8. There exists such that for any t < τ and t � τ +
δ0+θ, if | ¯[m](t−θ+1):t| < K−1

K N and | ¯[m]t−θ| < K−1
K N , as (d∗θ)1/4λB → ∞,

. (4.5)
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Theorem 9. Let τ̂ be the estimated change-point from Algorithm 4.
There exists such that if | ¯[m](t−θ+1):t| < K−1

K N and | ¯[m]t−θ| <
K−1
K N , as (d ∗ θ)1/4λB → ∞, .

The proof of Theorem 8 follows from Lemmas 1 and 3, where as, proof
of Theorem 9 follows from Lemmas 1, 3 and Theorem 10. The details of the
proofs are given in the Appendices A.9- A.12.

Lemma 3. For any t:

VI(ξ̃t, ξ̂t−θ)� VI(ξ(t−θ+1):t, ξt−θ)+VI(ξ̂(t−θ+1):t, ξ(t−θ+1):t) + VI(ξ̂t−θ, ξt−θ)

VI(ξ̃t, ξ̂t−θ)� VI(ξ(t−θ+1):t, ξt−θ)−VI(ξ̂(t−θ+1):t, ξ(t−θ+1):t)− VI(ξ̂t−θ, ξt−θ).
(4.6)

Theorem 10. There exists θ ∈ Z
+\{1}, and such that

for any τ + δ1 � t � τ + δ2, as (d ∗ θ)1/4λB → ∞

. (4.7)

Theorems 8 and 10 state that a change-point is inferred when (1) VI(ξ̃t, ξ̂t−θ)
crosses its upper bound in Theorem 8 and (2) there is a subsequent increase
in VI(ξ̃t, ξ̂t−θ) in (τ̂ + δ1, τ̂ + δ2). Theorem 9 indicates that the estimated
change-point is not far from the true change-point.

4.3. Theoretical Results for the K̂-based Algorithm We prove theoret-
ical results for the change-point estimate τ̂ obtained from Algorithm 5 for
the MSBM defined in Section 2.3.

4.3.1. Notation. Define d := (a+ (K − 1)b)/K as the expected degree
of each node in each layer, d̄S := 1

N |S|1
T
NAS1N as the average observed

degree for a specific sequence, S, of layers, and Δ :=
√

N/KIK . Define
W := Δ−1ZT Z̃Δ−1 = 1

K1K1TK . Recall that Z ∈ MN,K (resp. Z̃) denotes
the membership matrix before (resp. after) the change-point τ ∈ [T ].

4.3.2. Preliminary Results. We start with a few results on the eigen-
structure of aggregated adjacency matrices.

Lemma 4. Under the conditions (F) and (G) on the MSBM, if no change-

point is present within the layers in [T ], then and

.

Lemma 5. For network sequences generated from MSBM with conditions
(F) and (G), if Z (resp. Z̃) denotes the membership matrix before (resp.
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after) the change-point τ ∈ [T ], then the spectral decomposition of tZBZT +
(T − t)Z̃BZ̃T is given by

X

⎡
⎣
Td 0 0

0 ta−b
K IK−1 0

0 0 (T − t)a−b
K IK−1

⎤
⎦XT , where

X :=
[

1√
N
1N ZΔ−1U (Z̃Δ−1 − ZΔ−1W)U

]
,

and is such that UTU = IK−1 and
[
U

1√
k
1K

]
is an orthogonal matrix, so UUT = IK − 1

K
1K1TK .

4.3.3. Theoretical Properties of the Change-Point Estimator τ̂ in Al-
gorithm 5. Now using the results on the eigen-structure of the aggregated
adjacency matrixA[T ], we show that Algorithm 5 estimates the change-point
τ with high probability.

Theorem 11. Suppose ψ±(r) := r+(1± 1/4)Td/r. There are constants
c, C > 0 such that if (a) Td > C logN , (b) either ψ+(r) � min{t, T −
t}a−b

K − T a
N or max{t, T − t}a−b

K − T a
N < ψ+(r) � T a−b

K − T a
N , and (c)

ψ−(r) > Ta/N , then the values of K̂r := |{� ∈ [N ] : λ↑
� (H

[T ]
r ) < 0}| in the

two cases (i) no change-point within layers [T ] and (ii) one change-point at
layer t ∈ [T ] are different with probability � 1− cNe−2Td/C .

Theorem 11 indicates that if there is a change at a layer t of the number
of negative eigenvalues, K̂r, of a Bethe Hessian matrix with r in a specific
range, it implies the presence of a change-point at the instance t. So, with
high probability t becomes an estimate of the change-point τ .

5. Simulation

5.1. Simulation Setup We simulate network data under the frameworks
of MSBM and MDBM with N = 1200 nodes, T = 40 layers and the numbers

of communities K ∈ {3, 5}. For membership vectors, we set Z
(t)

N×K(t) = Z

for t < τ and Z
(t)

N×K(t) = Z̃ for t � τ , where τ is the change-point. We

generate Zi∗ from Mult
(
1;
(
1
K , ..., 1

K

))
. We fix the community change ratio

Ξ ∈ [0, 1] and form Z̃ by (1) randomly sampling nodes from each community
with probability Ξ to obtain a node subset of size N ′ from [N ] and (2) for
each k ∈ [1,K] and each index i of the sampled nodes, change Zi∗ from
ek to em,m �= k, where m is chosen from {[1,K],m �= k} with probability
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1/(K − 1). We set the connectivity probability matrix as B := ρ[C(IK) +
b(1K1TK)], where ρ controls the expected degree of each node at each layer, C
controls the in/out ratio and thus determines the degree of assortativity, and
b is the baseline value set to 0.1. For MDBM networks, we consider degree
parameters ψi ∼ Uniform(0.6, 1). To simulate networks with different levels
of sparsity and the prominence of the community structure, we consider
ρ ∈ {0.0059, 0.025, 0.05} and C ∈ {0.4, 0.5, 0.6}. For change-points, we let
τ ∈ {1, 5, 10, 20} and for the community change ratio, we consider Ξ ∈
(0.25, 0.5, 0.75). Table 1 summarizes the model parameter settings used in
the simulations. To examine the performance of Algorithms 3, 4, and 5
under different settings, we use three different windows θ ∈ {2, 4, 6} when
running each algorithm. For the clustering steps of Algorithms 3 and 4,
we apply Algorithm 1. To calculate the quantities in Eqs. 3.7 and 3.8,
we followed the suggestions in (Bhattacharyya and Chatterjee, 2020a) and
(Bhattacharyya and Chatterjee, 2020b) and chose Δ = 9, δ = 0.01 and
η = 0.01 for Algorithms 3 and 4. For Algorithm 3, we let C = 0.00005,
C1 = 0.03. For Algorithm 4, we chose C = 0.00025, C1 = 1/6. Under these
settings, VI performed as expected according to Theorem 4.

5.2. Evaluation As indicators of the quality of input signals for change-
point detection, we consider the in/out ratio defined as Π := (C + 0.1)/0.1.
We assess the performance of each algorithm based on the following three
criteria:

1. False positive (FP): τ̂ is treated as a FP if ∅ is not the output when
there is no change-point, and if τ̂ /∈ [τ, τ + 2θ − 2] when there is a
change-point.

2. False negative (FN): τ̂ is treated as a FN if ∅ is the output or if τ̂ /∈
[τ, τ + 2θ − 2] when there is a change-point.

3. Delay := τ̂ − τ when τ̂ ∈ [τ, τ + 2θ − 2].

5.3. Results We evaluated Algorithms 3, 4, and 5 on synthetic networks
generated under all four settings in Table 1. Below is a presentation based
on networks generated under Setting D. Performance results for the other
settings are presented in the Appendix C. We use the evaluation criteria
in Section 5.2 and assess the performance by varying the following model
parameters: (i) the community change ratio Ξ; (ii) the in/out ratio Π; and
(iii) the network sparsity parameter ρ. FP, FN, and delay of Algorithms 3,
4, and 5 with varying levels of Ξ are shown in Fig. 2, the impact of Π on
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(a)

(b)

Figure 2: The performance in terms of FP and FN (Subfigure (a)) and
delay (Subfigure (b)) of Algorithms 3, 4, and 5 in detecting change-points
vs. Ξ with Π = 6 and θ ∈ {2, 4, 6}. Algorithm 1 was used for the Ẑ-
based algorithms. From left to right, subplots in each row are based on the
data generated from (MDBM, ρ = 0.006), (MDBM, ρ = 0.025), (MDBM,
ρ = 0.05), (MSBM, ρ = 0.006),(MSBM, ρ = 0.025) and (MSBM, ρ = 0.05)
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(a)

(b)

Figure 3: The performance in terms of FP and FN (Subfigure (a)) and
delay (Subfigure (b)) of Algorithms 3, 4, and 5 in detecting change-points
vs. Π with ρ = 0.025 and θ ∈ {2, 4, 6}. Algorithm 1 was used for the Ẑ-
based algorithms. From left to right, the subplots in each row are based on
the data generated from (MDBM, Ξ = 0.25), (MDBM, Ξ = 0.5),(MDBM,
Ξ = 0.75), (MSBM, Ξ = 0.25), (MSBM, Ξ = 0.5) and (MSBM, Ξ = 0.75)
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(a)

(b)

Figure 4: The performance in terms of FP and FN (Subfigure (a)) and
delay (Subfigure (b)) of Algorithms 3, 4, and 5 in detecting change-points
vs. ρ with Ξ = 0.5 and θ ∈ {2, 4, 6}. Algorithm 1 was used for the Ẑ-
based algorithms. From left to right, subplots in each row are based on the
data generated from (MDBM, Π = 5), (MDBM, Π = 6),(MDBM, Π = 7),
(MSBM, Π = 5), (MSBM, Π = 6) and (MSBM, Π = 7)
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the performance is shown in Fig. 3, and ρ in Fig. 4. In Figs. 2 through 4,
FP and FN are shown in Subfigure (A) while Delay are shown in Subfigure
(B).

In Figs. 2 through 4, FP, FN, and delay of Algorithms 3, 4, and 5 versus
the window θ are shown. Higher θ results in higher accuracy as measured by
FP and FN while leading to an increase in delay, since the weight of each new
layer gets relatively smaller with larger θ. This can be confirmed in Subfigure
(A) in Figs. 2, 3, and 4 where all algorithms show better performance with
θ = 6 while Subfigure (B) show less delay with θ = 2 for all algorithms.
Hence there is a accuracy-delay trade-off in the choice of θ. Noticing that
the maximal value of Delay is θ, a general strategy is to choose θ that equals
to the maximal acceptable Delay.

It can be seen from Subfigure (A) in Figs. 2, 3, and 4 that all algorithms
tend to have better accuracy (as reflected by FP and FN ) on networks
with larger values of either Ξ, Π or ρ, especially when θ is set to a large
value. However, as can be confirmed in Subfigure (B) in Figs. 2, 3, and 4,
there is no evidence of a decrease in Delay for networks with larger values
of Ξ, Π or ρ. There are multiple factors that can affect the Delay of the
algorithms. Take Algorithm 3 as an example. The idea of the algorithm is to
compare clustering estimation based on historical and updated sub-sequences
of layers of networks. This means that when there is an increase in Ξ, Π
or ρ, clustering estimations become more precise on the one hand, while
more layers of networks after the change-point are needed in the updated
sub-sequence.

It is evident in Figs. 2 and 4 that while all three algorithms perform
similarly in sparse networks (ρ = 0.006), the K̂-based Algorithm (5) out-
performs the Ẑ-based Algorithms (3 and 4) for higher values of ρ. That
K̂-based algorithm performs better than Ẑ-based algorithms makes sense
since community structure estimation is generally harder than community
number estimation.

6 Conclusion

In this paper, we proposed three algorithms based on two broad ap-
proaches for online change-point detection for network sequences with com-
munity structure. Two of the three algorithms are based on the change in
estimated community structures and the third based on the change in the
estimated numbers of communities in networks represented as the Bethe
Hessian matrices. We proved theoretical results showing the efficacy of the
change-point estimates asymptotically as aggregated degree of the networks
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grows to infinity. We proved the theoretical results for general cases of both
the MSBM and MDBM for Algorithms 3 and 4. For Algorithm 5, we proved
the theoretical results for the special case of the MSBM.

One of the obvious next steps would be to generalize the theoretical
framework for Algorithm 5 and show that the change-point estimate can
recover the change-point under a much general model set up. Tackling de-
pendent sequence of networks will also be another promising set of future
problems.
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